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Abstract. The bilevel problem (BLP) is an optimization problem that has another optimization problem in its
constraints. This framework finds utility in modeling decentralized scenarios, which arise in many real-world ap-
plications such as traffic management, transportation, and economic policy. Differential Evolution (DE) techniques
have emerged in literature for addressing such complex problems. However, handling constraints, particularly lin-
ear equality constraints, poses a significant challenge for DE and other metaheuristics. To address this issue,
we previously introduced DELEqC algorithm, enhancing DE with a mechanism to deal with the linear equality
constraints. A specialized variant, BL-DELEqC, was further proposed to tackle general BLPs. Another variant,
DELEqC-III, transforms the original constrained optimization problem into a lower-dimensional unconstrained
one, offering applicability to BLPs with linear equality constraints. Thus, we explore in this study the efficacy
of DELEqC-III in handling BLPs with linear equality constraints. The proposed BL-DELEqC-III is compared to
BL-DELEqC on a selection of benchmark BLPs, demonstrating superior results.

Keywords: Bilevel programming, Linear equality constraints, Differential evolution

1 Introduction

The bilevel programming problem (BLP) models an important class of hierarchical optimization tasks that
involve two levels: the upper level (UL) and the lower level (LL). The main characteristic of a BLP is that the UL
optimization problem is constrained by a nested LL optimization problem. This nested structure is defined as a
mathematical programming problem in which the UL has a subset of its variables constrained to be the optimal
solution of the LL optimization problem.

The problem of interest in this paper is the constrained BLP defined as

min
xul,xll

F (xul,xll)

subject to min
xll

f(xul,xll)

subject to h(xul,xll) = 0

(1)

where xul ∈ Rn and xll ∈ Rm are the decision variables of the upper- and the lower-level, respectively, F :
Rn+m → R is the UL objective function, f : Rn+m → R is the LL objective function and h : Rn+m → Rq

denotes the LL linear equality constraints. Given the complexity of these problems, Evolutionary Algorithms (EAs)
[1] are a common alternative for solving them, due to their robustness and adaptability to this type of application.
While various methods have been developed to tackle unconstrained general BLPs, there is a significant gap in
research regarding methods designed for the constrained scenario.

Although EAs are widely used for solving BLPs, dealing with constraints in such methods is not trivial, as
they were originally designed for unconstrained search. Consequently, additional mechanisms are required to han-
dle constrained optimization problems effectively. Numerous constraint handling techniques have been proposed,
including penalty methods, selection approaches, special representation schemes and move operators, repair tech-
niques, among others [2, 3]. In this paper, we focus on obtaining solutions that automatically satisfy all linear
equality constraints. As equality constraints are difficult to be exactly fulfilled, they are typically approximated by
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inequality constraints (i.e., |h(x)| ≤ ε), where a small tolerance value ε > 0 is set by the user. We can find a few
examples of this class of problems in the library of test problems that applies such a strategy [4].

While this approach temporarily enlarges the feasible space, it remains challenging to obtain feasible or high-
quality candidate solutions [5]. Here, the LL optimization problem is subject to linear equality constraints denoted
as Exxul+Eyxll = c, where Ey ∈ Rq×m, Ex ∈ Rq×n and c ∈ Rq , with q ≤ m. Note that both the LL objective
f and the constraint h are functions of the upper- and lower-level variables, xul and xll, respectively.

To address this issue, the BL-DELEqC method was proposed in [6] using the BL-DE [7] approach coupled
with DELEqC [8] for solving BLPs with linear equality constraints in the lower level. Starting with an initial
population that satisfies the linear equality constraints, DELEqC ensures feasibility throughout the search process
by avoiding the standard DE crossover and using a specialized mutation scheme. DELEqC-II [9] and DELEqC-
III [10] were further proposed enhancing DELEqC with new mechanisms to deal with the linear equality constraints
for solving single-level optimization problems. Given that DELEqC-III outperforms DELEqC-II in most test
problems, we focus on using DELEqC-III. Differently from DELEqC and DELEqC-II, the DELEqC-III reduces
the dimension of the problem from n to n − m, where n is the number of variables and m denotes the number
of linear equality constraints. This transformation converts the problem into an unconstrained one, enabling the
application of crossover and mutation operations traditionally used in DE.

In this paper, we propose using the BL-DE approach in which DELEqC-III is used for solving the LL opti-
mization problem. The proposed BL-DELEqC-III, automatically satisfies the linear equality constraints by reduc-
ing the dimension of the LL problem transforming it into an unconstrained one.

The remainder of the paper is structured as follows. Sections 2 and 3 provide background material on the DE
algorithm and the DELEqC versions for single-level optimization. The proposed BL-DELEqC-III is described in
Section 4 and Section 5 presents the experiments. Section 6 presents our conclusions and final remarks.

2 Differential Evolution (DE)

DE [11, 12] is a population-based stochastic method designed to solve optimization problems in continuous
search spaces. DE and its variants have been successfully applied to a wide range of real-world problems and are
recognized as some of the most competitive and versatile evolutionary methods [13].

The method starts with a random population X of N candidate solutions within the search space defined by
the lower (x(L)) and upper bounds (x(U)). Each candidate solution xi is evaluated by the objective function f(xi),
assigning a quality measure to that individual (its fitness). At each generation, all individuals undergo mutation
and crossover operations, following a predefined DE variant. The DE variant used here is denoted by DE/target-to-
best/1/bin (Eqs. 2 and 3). For each vector xi of size D, where i = 1, . . . , N , a vector wi is generated by mutation
according to:

wi = xi + F× (xbest − xi) + F× (xr1 − xr2) (2)

where xi is the target individual, xbest is the best individual of the current population, r1-th and r2-th are distinct
and randomly selected individuals, different from the i-th, and F is the scale parameter used to control the amplitude
of the search in the direction of the applied differences. In the crossover operation, the trial vector vi is generated
using elements from both the target vector xi and the donor vector wi as:

vij =

{
wi

j , if rand(0, 1) < CR or j = jRand,

xi
j , otherwise

(3)

where i = 1, . . . , N and j = 1, ..., D. The crossover rate CR is a user-defined parameter, rand(0, 1) is a uniformly
distributed random number in [0, 1], jRand is a randomly generated integer from 1 to D, where D is the dimension
of the problem. The fitness of the trial vector vi, is compared to that of the target vector xi and the best solution is
selected for the next generation of X. This evolutionary process continues until a stopping criterion is met.

3 DELEqC versions for single-level optimization

In our first attempt to deal with linear equality constraints, DELEqC was proposed in [8] to deal with the
following single-level constrained optimization problem

min
x

f(x)

subject to Ex = c
(4)
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Maceió, Alagoas, November 11-14, 2024



Bernardino, Angelo & Barbosa

where f : Rn → R, E ∈ Rm×n and c ∈ Rm. It is assumed that m < n and E has full rank (rank(E) = m),
that is, the rows of E are linearly independent. A candidate solution x ∈ Rn is said to be feasible if x ∈ S where
S = {x ∈ Rn : Ex = c} denotes the feasible set. A vector d ∈ Rn is a feasible direction at the point x ∈ S if
x+ d is feasible, that is, E(x+ d) = c. Hence, the feasible direction d must satisfy Ed = 0 or that any feasible
direction belongs to the null space of the matrix E, denoted as, N (E) = {x ∈ Rn : Ex = 0}. In this way, given
two feasible vectors x1 and x2 one can see that d = x1−x2 is a feasible direction, as E(x1−x2) = 0. DELEqC [8]
explores this principle. By starting with a feasible initial population w.r.t. the linear equality constraints, the
feasibility is maintained by avoiding the standard DE crossover and using an adequate mutation scheme along the
search process. As a result, the method consistently generates feasible vectors, provided that the vectors involved
in the differences are themselves feasible.

An improved version, called DELEqC-II, was proposed in [9, 14], which employs both mutation and crossover
operators. This is accomplished by applying a convex combination of the target vector and the donor vector during
the crossover operation. Considering CR = (0, 1], the proposed crossover is a convex combination of the involved
vectors: vij = (1 − CR) × wi

j + CR × xi
j , where i = 1, . . . , N , and j = 1, . . . , D. Additionally, a projection

procedure was also adopted to correct the solutions that “escape” from the feasible set, due to numerical errors in
the floating-point arithmetic operations that may occur during the search.

A different scheme was proposed in [10], where both DE’s mutation and crossover operators were applied
in their original form. In DELEqC-III, to maintain feasibility with respect to the linear equality constraints, the
null-space approach was used. It is based on constructing a matrix Z ∈ Rn×(n−m) such that its columns form a
basis for N (E). For any d ∈ N (E), there is p ∈ R(n−m) such that d = Zp. If x̃ is a feasible solution of the
linear system Ex̃ = c, then the search region can be defined as S = {x ∈ Rn : x = x̃ + Zp,p ∈ R(n−m)}
where any x ∈ Rn satisfies the constraints. By defining S as previously, a new function ϕ : R(n−m) → R is given
by ϕ(p) = f(x̃+ Zp), which should be minimized. This new optimization problem has no constraints on p, and
the number of variables is reduced from n to (n−m). DELEqC-III applies the same initial population procedure
from DELEqC and DELEqC-II that generates feasible candidate solutions. By using information of the Z matrix,
the original problem (4) is transformed into the lower-dimensional unconstrained problem (min ϕ(p)).

4 Proposed solution method

The proposed BL-DELEqC-III applies a nested approach, employing two DE algorithms, each responsible
for optimizing one level of the BLP. A pseudo-code of the method is given by Alg. 1, 2 and 3.

4.1 The upper-level procedure

The BL-DELEqC-III algorithm (or DEUL) iteratively evolves pairs of solutions through successive evolution-
ary steps. For each UL solution xi

ul, where i = 1, . . . , Nul, there is an associated optimum LL solution x∗i
ll . The

DEUL maintains two populations: the UL population Xul, which contains Nul upper-level candidate solutions, and
X∗

ll, a collection of the corresponding Nul optimum lower-level solutions obtained so far. The initialization and
evaluation of both populations occur between lines 1 and 5 of Alg. 1.

At each generation, each UL target vector xi
ul undergoes mutation and crossover operations to generate its

respective UL trial vector vi
ul (line 8). For each vi

ul, the lower-level DE is executed (line 9). The DELL is outlined
in Alg. 2, which returns the best LL solution v∗

ll from the LL population Xll of size Nll, obtained in response to
the given vi

ul. In the upper level, the pair of trial vectors (vi
ul, v

∗
ll) is then evaluated based on the UL objective

function (line 10). At line 11, its fitness in both upper and lower levels is compared to that of its respective pair of
target vectors (xi

ul, x
∗i
ll ). The better pair of solutions is selected for the next generation of populations Xul and X∗

ll.
At the upper and lower levels, their respective iterative procedure continues until a stopping criterion, given by a
maximum number of upper- and lower-level generations, Gul and Gll, respectively. BL-DELEqC-III concludes
by returning the best-found pair of solutions.

4.2 The lower-level procedure

The DELEqC-III method (or DELL) is called for each UL candidate solution vi
ul. The input data related to

the LL optimization problem are: Ey (matrix), and c (vector) associated with the linear equality constraints, and
Zxll

(matrix) containing a basis for the null space of Ey.
Differently from the single-level problem, in BLP the linear equality constraints of LL can be written as

Exxul + Eyxll = c (5)
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where xul ∈ Rn, xll ∈ Rm, Ex ∈ Rq×n, Ey ∈ Rq×m and c ∈ Rq , with q ≤ m, where q is the number of linear
equality constraints. Following the same principle as in the single-level case, the feasibility concerning the LL
linear equality constraints is maintained by constructing a matrix Zxll

∈ Rm×(m−q) such that its columns form a
basis for N (Ey), the null space of the matrix Ey. It is noteworthy that the UL variables are passed as parameters
to the LL problem, so that, the set of constraints can be rewritten as Eyxll = c−Exxul. Hence, the null space of
matrix Ey can be obtained by solving the homogeneous system Eyxll = 0.

For any d ∈ N (Ey), there is py ∈ R(m−q) such that d = Zxll
py. If x̃ll is a feasible solution of the linear

system (5), then the search region can be defined as

Ŝ = {xll ∈ Rm : xll = x̃ll + Zxll
py,py ∈ R(m−q)} (6)

where any xll ∈ Rm satisfies the constraints. By defining Ŝ as in (6) a new function ϕ̂ : R(m−q) → R can be as
ϕ̂(py) = f(x̃ll + Zxll

py) that should be minimized. The BLP is then transformed into

min
xul,xll

F (xul,xll)

subject to min
py

ϕ̂(py) = f(x̃ll + Zxll
py), where xll = x̃ll + Zxll

py

(7)

The DELL starts generating a feasible initial population, as presented in Alg. 3. Associated with each member
of the population Xll, there are: (i) the vector xll ∈ Rm (LL decision variables); and (ii) the vector py ∈ R(m−q)

(decision variables of the transformed problem). In Alg. 2, mutation and crossover operations are performed on
vector vll ∈ Rm−q (line 4). As individuals are evaluated in the original space, i.e., Rm, the operation vll =
x̃ll +Zxll

vll (line 5) has to be performed before fitness evaluation (similarly, xll = x̃ll +Zxll
py in line 6 of Alg.

3). After evaluating the individual based on the LL objective function (line 6), the trial vector vll is compared to
the target vector xll (line 7), and the one with the best objective function is selected for the next generation. Next,
the population Xll is updated with the pair (xi

ll,p
i
y). The DELL return the best LL solution found for the given vul.

Algorithm 1: BL-DELEqC-III or DEUL

1 for i← 1 to Nul do
2 xi

ul ← init random pop(x(L)
ul , x

(U)
ul );

3 (x∗
ll, fx∗

ll
)← DELL(x

i
ul); // Algorithm 2

4 fXul [i]← evaluateul(x
i
ul,x

∗
ll);

5 fX∗
ll
[i]← fx∗

ll
;

6 for g ← 1 to Gul do
7 for i← 1 to Nul do
8 vi

ul ← apply opvul(CR,F,xr1,r2,best,i
ul );

9 (v∗
ll, fv∗

ll
)← DELL(v

i
ul); // Algorithm 2

10 fvul ← evaluateul(v
i
ul,v

∗
ll);

11 if fvul ≤ fXul [i] and fv∗
ll
≤ fX∗

ll
[i] then

12 xi
ul ← vi

ul; fXul [i]← fvul ;
13 x∗i

ll ← vi
ll; fX∗

ll
[i]← fvll ;

14 Xul[i]← xi
ul; X

∗
ll[i]← x∗i

ll

15 select best(fX∗
ul
, fX∗

ll
);

16 return the best pair of solutions found

Algorithm 2: DELEqC-III or DELL
input : vul (UL solution), problem data (Ey, c, Zxll ).

1 (x̃ll,Xll)← init feasible pop(Xll, vul, Ey, c,
Zxll) ; // Algorithm 3

2 for g ← 1 to Gll do
3 for i← 1 to Nll do
4 vi

ll ← apply opvll(CR,F,pr1,r2,best,i
y ) ;

// vll,py ∈ R(m−q)

5 vi
ll = x̃ll + Zxllv

i
ll ;

// vll, x̃ll ∈ Rm;Zxll ∈ Rm×(m−q)

6 fvll ← evaluatell(vul,v
i
ll);

7 if fvll ≤ fxll [i] then

8 xi
ll ← vi

ll; p
i
y ← vi

ll; fXll [i]← fvll ;

9 Xll[i]← (xi
ll,p

i
y)

10 select best(fX∗
ll
);

11 return the best solution found and its fitness

Algorithm 3: init feasible pop
input : Xll (LL population matrix), vul (UL solution) and problem data (Ey, c, Zxll )

1 M = EyE
T
y ;

2 Perform LU Factorization: M = LU ;
3 Solve Mb = c (Lw = c and Ub = w) ;
4 x̃ll = ET

yb ; // x̃ ∈ Rm

5 for i← 1 to Nll do
6 xi

ll = x̃ll + Zxllp
i
y ; // pi ∈ R(m−q) is randomly generated

7 f i
xll
← evaluatell(vul,x

i
ll) ;

8 Xll[i]← (xi
ll,p

i
y)

9 return x̃ll, Pxp
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5 Computational Experiments

Computational experiments were conducted to evaluate the performance of the proposed BL-DELEqC-III
against BL-DE [7] and BL-DELEqC [6], which is BL-DE equipped with DELEqC [8]. The proposal was imple-
mented in C++ and the codes are publicly available1. The matrix Zxll

was obtained via the command Zxll
=

null(Ey,’r’) in Matlab®. Note that any other procedure to solve the homogeneous system Eyxll = 0 can be
used to generate the matrix Zxll

. Supplementary material is also available describing the test problems analyzed.
We performed 10 independent runs for all methods.

5.1 Parameters settings

We used Performance Profiles (PPs) [15, 16] for selecting the values of F, CR, and DE variant of BL-
DELEqC-III. PPs are tools for visualizing and analyzing results obtained by a set of methods. They help identify
the technique that performs best across a range of problems and the one that produces the most reliable results.
Additionally, the area under the PP curves indicates the general performance of the methods when solving a set of
different problems. We analyzed the following values: F ∈ {0.6, 0.7, 0.8, 0.9, 1}, CR ∈ {0.5, 0.6, 0.7, 0.8, 0.9},
and the variants DE/rand/1/bin, DE/best/1/bin, DE/target-ro-rand/1/bin and DE/target-to-best/1/bin. The remain-
ing parameters are the same as in [6]. As the number of generations used for solving the lower-level problem
critically affects the computational budget, we considered in the analyses the combination of the problem (Prob-
lems P.1-P.5) and the number of LL generations (Gll = {50, 100, 200, 500}) as different problems in PPs. This
comparative analysis results in 5 × 4 = 20 problems. The results obtained by the maximization problems were
multiplied by −1 so the smaller values are preferable in all the cases analyzed. The best results for BL-DELEqC-
III were obtained using CR= 0.7, F= 0.7, and DE/target-to-best/1/bin. A comparative analysis of the DE variants
in BL-DELEqC-III can be found in the supplementary material.

The parameters selected for BL-DELEqC and BL-DE were the same as in [6], that is, F=0.7, DE/target-to-
rand/1/bin variant, upper- and lower-level population size equal to 30, and 200 generations for the UL problem. In
addition, CR= 0.9 and |h(x)| ≤ ϵ = 10−4 were used for the standard BL-DE.

5.2 Analysis of the Results

We compare the results obtained by BL-DELEqC-III with those presented in [6]. The results are analyzed in
terms of the UL objective function value F (xul,xll) and the number of LL function evaluations #FELL. We also
analyzed the performance of the methods considering 50, 100, 200, and 500 generations at the lower level (Gll).
The stop criteria for the UL problem is the maximum number of generations Gul = 200 for all tested techniques.
In addition to the maximum number of generation, we also adopted α =

∑m
i=1

σ2(yt
i)

σ2(yinitial
i )

< αstop = 10−4 in the

stopping criterion at the lower-level problem, where m is the number of LL variables, yti are the LL variables in
generation t and yinitiali are the LL variables in the initial population.

Tables 1, 2 and 3 present the results obtained, with median and mean values rounded to 2 decimal places.
The “fr” indicates the number of feasible runs, that is, violation of the LL constraints is not superior to 10−4

and |f(xul,xll) − f∗| ≤ 0.12. Considering the number of feasible runs, BL-DELEqC-III demonstrates greater
robustness, indicated by fr=10 in all test problems for any value of Gll. This behavior is attributed to its feasibility-
preserving approach. Regarding the final solution obtained, BL-DELEqC-III outperforms the other approaches
for every number of Gll, except for Problems P.1 and P.4, both with Gll equal to 200 and 500, in which BL-DE
obtained the best mean and median results. The good performance observed for BL-DE in these cases, when Gll is
large, is caused by the flexibility of the equality constraints commonly adopted in metaheuristics. The approaches
with DELEqC and DELEqC-III handle these constraints without this strategy. Also, BL-DELEqC reached the
smallest #FELL in all tested cases, except for Problem P.1, in which BL-DE concluded its search with a small
#FELL.

6 Conclusions

In this paper, we propose a bilevel method that employs DE for solving the UL optimization problem, while
DELEqC-III is used to handle the linear equality constraints of the LL problem. Computational experiments were
conducted to evaluate the performance of our proposal when compared to other methods from the literature. The

1https://github.com/ciml/blde-deleqc
2See the supplementary material for the description of the best solution f∗ of each test problem.
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Table 1. Results for Problems P.1 and P.2.

Method Gll

Problem P.1 Problem P.2

F (xul,xll) #FELL
fr

F (xul,xll) #FELL
fr

Mean Median Mean Median Mean Median Mean Median

BL-DELEqC-III

50 30.06 30.04 9004107 9007500 10 4.00 4.00 9225900 9225900 10

100 29.96 29.98 9338049 9341205 10 4.00 4.00 18270900 18270900 10

200 29.96 29.98 9338049 9341205 10 4.00 4.00 36360900 36360900 10

500 29.96 29.98 9338049 9341205 10 4.00 4.00 90630900 90630900 10

BL-DELEqC

50 29.77 29.73 7594629 7593315 10 – – – – 0

100 29.83 29.84 7603632 7603305 10 – – – – 0

200 29.80 29.79 7602429 7603305 10 – – – – 0

500 29.80 29.79 7602429 7603305 10 3.24 3.25 90354130 90351390 9

BL-DE

50 30.00 30.00 4904400 4897770 10 – – – – 0

100 29.82 29.76 5430975 5455800 8 – – – – 0

200 30.02 29.96 6351488 6335250 8 – – – – 0

500 30.08 30.14 8769963 8622000 9 – – – – 0

Table 2. Results for Problems P.3 and P.4.

Method Gll

Problem P.3 Problem P.4

F (xul,xll) #FELL
fr

F (xul,xll) #FELL
fr

Mean Median Mean Median Mean Median Mean Median

BL-DELEqC-III

50 -1.46 -1.46 7689102 7688775 10 -30.91 -30.88 9046464 9046695 10

100 -1.47 -1.47 7748733 7744755 10 -30.63 -30.57 9387645 9389040 10

200 -1.46 -1.46 7749333 7751460 10 -30.63 -30.57 9387645 9389040 10

500 -1.46 -1.46 7749333 7751460 10 -30.63 -30.57 9387645 9389040 10

BL-DELEqC

50 -1.45 -1.45 7134744 7133190 10 -30.13 -30.12 7645704 7641975 10

100 -1.45 -1.45 7205708 7205940 8 -30.07 -30.09 7651236 7651020 10

200 -1.45 -1.45 7305270 7296570 9 -30.09 -30.10 7651896 7652490 10

500 -1.45 -1.45 7533994 7521795 8 -30.09 -30.10 7651896 7652490 10

BL-DE

50 – – – – 0 – – – – 0

100 – – – – 0 -18.03 -21.19 18025310 18002040 3

200 – – – – 0 -35.78 -35.04 30522942 30712680 10

500 – – – – 0 -35.43 -35.21 33079937 32559000 9

proposed BL-DELEqC-III achieved the best results in most cases. However, the number of calls to the LL objective
function was not the smallest. Thus, we conclude that while the proposed method produces good results and finds
feasible solutions in all independent runs using any value of LL generations, it requires more objective function
evaluations at the lower level. As DELEqC-III is specifically designed to handle linear equality constraints, addi-
tional approaches are required to solve more general constrained optimization problems. We plan to investigate
the combination of BL-DELEqC-III with other constraint-handling techniques.
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Table 3. Results for Problem P.5.

Method Gll

F (xul,xll) #FELL
fr

Mean Median Mean Median

BL-DELEqC-III

50 0.00 0.00 9041361 9041430 10

100 0.00 0.00 9385320 9383175 10

200 0.00 0.00 9385320 9383175 10

500 0.00 0.00 9385320 9383175 10

BL-DELEqC

50 0.00 0.00 7637856 7632345 10

100 0.00 0.00 7645335 7648140 10

200 0.00 0.00 7648593 7648695 10

500 0.00 0.00 7648593 7648695 10

BL-DE

50 – – – – 0

100 11.17 8.01 18025310 18002040 3

200 0.03 0.03 30127362 30011895 10

500 0.03 0.03 32938393 33088440 9
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