
Predicting Blockchain Application Performance
with Machine Learning Techniques

Willian M. Rodrigues1, Silvia D. Rissino2, Karin S. Komati1

1Graduate program in Applied Computing (PPComp)
Instituto Federal do Espı́rito Santo (IFES), Campus Serra
Av. dos Sabiás, 330, Morada de Laranjeiras, 29166-630, Serra-ES, Brazil
willian15mr@gmail.com, kkomati@ifes.edu.br
2Universidade Federal do Espı́rito Santo (UFES)
Rodovia BR-101, Km 60, Bairro Litorâneo, 29932-540, São Mateus-ES, Brazil
silvia.rissino@ufes.br

Abstract. Blockchain technology is a distributed ledger designed to record all transactions within its network,
characterized by its decentralized nature, resistance to tampering, and attributes such as consistency, anonymity,
and traceability. However, evaluating blockchain applications’ performance can be complex due to their intricate
and distributed infrastructure. This research employs machine learning model-based methods to predict blockchain
systems’ performance using predetermined configuration parameters. The data used in this study is derived from
a blockchain simulator, generating blockchain data to facilitate performance predictions. The simulation process
involves using simulated data and configuration settings for each run, including parameters such as the number
of nodes, the number of miners, consensus algorithm, maximum block size, and transaction quantities, among
others. Output metrics such as the total number of blocks, transaction rate, block propagation time, and latency
are utilized to assess network performance. The simulator was run 184 times with various configurations. Our
findings indicate that the Random Forest model outperformed other models used in the experiments, achieving the
highest R² scores for multiple metrics, such as 0.987 for total number of transactions and 0.765 for average block
propagation time, while also demonstrating lower RMSE values, indicating more accurate predictions.

Keywords: Root Mean Square Error, R2 Score, Blockchain simulator.

1 Introduction

Blockchain is a distributed ledger technology that enables secure and transparent transactions without the
need for intermediaries [1]. Initially proposed as the foundation of Bitcoin, this technology has expanded to
various applications, including finance, supply chains, healthcare, and governance, due to its decentralized and
immutable nature [2]. With the continuous advancement of blockchain technologies, it is important to evaluate not
only the structure and performance of networks but also to explore enhancement and prediction methods through
advanced machine learning (ML) and optimization techniques.

Despite the success and increasing adoption of blockchain technology, significant challenges regarding its
efficiency and scalability remain. The complex and distributed nature of blockchain networks makes it difficult to
predict and optimize their performance [3]. Furthermore, the configuration of simulation parameters, such as the
number of nodes, block size, number of transactions, and miner involvement, can drastically influence network
behavior. These challenges create a gap in the literature where the application of ML and optimization techniques
can offer innovative solutions. For instance, the work of Albshri et al. [4] focuses on the performance evaluation
of blockchain-based applications using ML techniques to predict and enhance their functionality.

This work aims to continue the research of Albshri et al. [4] by incorporating previously used ML algorithms
and introducing additional ones. Albshri et al. employed k-Nearest Neighbors (KNN) and Support Vector Machine
(SVM). This study extends the analysis by including these algorithms and adding Random Forest (RF) [5], Linear
Regression (LR) [6], XGBoost [7], CatBoost [8], and LightGBM [9]. Through these methods, it will be possible
to anticipate network behaviors and trends, identifying patterns and relationships between input data and output
metrics. This study also uses the same dataset as the work of Albshri et al. [4], which created a comprehensive
dataset through a simulation environment, controlling nine configuration parameters to generate thirteen perfor-

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024



Predicting Blockchain Application Performance with Machine Learning Techniques.

mance metrics. This dataset enables a detailed evaluation of blockchain applications by providing diverse data
points for various configurations

The overall objective of this work is to provide an integrated approach that combines blockchain network
simulation, ML, optimization, and data analysis, enabling a deeper understanding of network behavior and the
development of strategies to improve its performance and efficiency in various scenarios. Specifically, we seek to
apply ML techniques to identify and predict patterns in simulation data, use hyperparameter optimization algo-
rithms to improve the performance of ML models, and analyze the results using performance metrics such as R²
score and RMSE in order to provide a deeper understanding of network behavior and develop strategies to improve
its performance and efficiency in different scenarios.

The structure of the article is as follows: Section 2 explores related works. Section 3 describes the experimen-
tal methodology conducted. Section 4 details the results obtained and their analysis. Finally, Section 5 concludes
the article with final considerations and suggestions for future work.

2 Related Work

Baliga et al. [10] conduct a detailed performance analysis of Quorum, an enterprise-focused blockchain
platform derived from Ethereum. The study evaluates Quorum’s performance in terms of transaction through-
put, latency, and scalability under various configurations and workloads. The analysis reveals that Quorum can
handle up to 1650 transactions per second (TPS) with a block time of 50 milliseconds in a network of 3 nodes.
When using the Raft consensus mechanism, Quorum achieves better performance, with the capability to handle
up to 1650 TPS and maintain lower latency compared to the Istanbul BFT mechanism, which provides slightly
higher throughput only up to 1500 TPS but with significantly higher latency. The study also demonstrates that as
the network size increases, the transaction throughput decreases and latency increases, highlighting the trade-offs
between scalability and performance in Quorum. These quantitative results provide valuable insights into optimiz-
ing Quorum for enterprise blockchain applications, informing decisions on consensus mechanism selection and
network configuration.

Woznica et al. [11] address security issues and challenges faced by public consensus networks, including scal-
ability, throughput, and latency, along with essential considerations for enterprise blockchain networks. The work
proposes a comprehensive performance evaluation of private blockchain implementations and algorithms, focusing
on solutions like Hyperledger Fabric, Sawtooth, and Iroha. The evaluation uses metrics such as transaction latency,
throughput, and network scalability, and tests various parameters including transaction sending rate, block size, and
network traffic distribution. The results indicate that Hyperledger Fabric achieved a transaction throughput of up to
150 transactions per second (TPS) with a varying latency depending on network configuration. Sawtooth demon-
strated a throughput of around 27.4 TPS with an average latency of 2.34 seconds for specific configurations, while
Iroha showed varying performance based on network size and block size, with latency increasing significantly as
network size grew. Additionally, the study found that increasing block size generally improved throughput but also
increased latency, and higher transaction sending rates led to network congestion, impacting overall performance.
These quantitative results provide valuable insights for optimizing private blockchain networks for enterprise use.

The article by Albshri et al. (2023) presents two primary contributions in the domain of blockchain perfor-
mance evaluation. Firstly, the study employs KNN and SVM algorithms to predict the performance of blockchain
applications based on various configuration parameters. The dataset used for training these models was generated
through a simulation environment, controlling nine configuration parameters to produce thirteen performance met-
rics. The results demonstrated that the KNN model outperformed SVM, achieving an R² score of 0.92 compared
to 0.89 for SVM, and a lower Root Mean Squared Error (RMSE) of 67.06 versus 72.44 for SVM. Secondly, the
research introduces an Improved Salp Swarm Optimization (ISO) algorithm, which incorporates Rough Set Theory
to handle uncertainties and optimize blockchain configuration parameters for desired performance levels. The ISO
model showed a 4% reduction in RMSE compared to the standard Salp Optimization (SO) model and achieved
an R² score closer to 0.83 for the target performance metric M13 (in this paper renamed as M12) of 1100 trans-
actions per second, outperforming other optimization algorithms like Particle Swarm Optimization, Harris Hawk
Optimization, Gray Wolf Optimization, Artificial Bee Colony, and Salp Optimization.

3 Materials and Methods

The experiments were conducted on a Windows 10 computer with an 11th Gen Intel Core i7-11800H proces-
sor (2.304 GHz), 15.75 GB of RAM, and an NVIDIA GeForce RTX 3060 Laptop GPU (6144 MB). The source
code is available on GitHub1.

1https://github.com/WillianMR/BlockchainOptimization

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Maceió, Alagoas, November 11-14, 2024



W. M. Rodrigues, K. S. Komati, S. D. Rissino

3.1 Dataset

The dataset utilized in this study corresponds to the dataset referenced in Albshri et al. [4], sourced from a
Google Sheet named “BlockchainDataset”. This dataset comprises several sheets that delineate various facets of
a simulated blockchain network, encompassing the Config, Results, Block, Transaction, Transaction Latency, and
Transaction Pool sheets. Relevant data from these sheets were extracted and organized into pandas DataFrames to
facilitate streamlined data manipulation and analysis. The simulated blockchain model underwent 184 iterations,
each employing distinct parameter configurations detailed in Table 1. Conditional features were identified and
subsequently used in conjunction with a defined set of performance metrics M (Table 2) to assess the blockchain’s
operational efficacy.

Assume a number of configuration parameters (input) and performance metrics (output) of a blockchain-
based solution as follows:

1. Configuration Parameters in Config sheet, P: the set of Z parameters P = {P0, P1, . . . , PZ} represents the
input configuration of the blockchain network. Table 1 provides information about the configuration columns
used in the simulations, identification number, name, data type, minimum and maximum values. These
parameters are critical for defining the initial setup and conditions under which the blockchain simulations
were conducted. Notably, columns P1 (No. of Miner), P2 (Transactions), P3 (Consensus Algorithm), and
P9 (Simulation Time) do not have any variation in their values, all being constant across the simulations.
These parameters are critical for defining the initial setup and conditions under which the blockchain simu-
lations were conducted.

2. Performance Metrics in Results sheet, M: the set of n metrics M = {M0, M1, . . . , Mn} represent the
conditional outputs with respect to the given parameters P. Table 2 outlines the results dataset, identification
number, name, data type, minimum and maximum values. Each column in the results data serves as an
output metric used to evaluate the performance of the ML models in predicting and analyzing blockchain
network behavior. Table 2 outlines the results dataset, identification number, name, and data type. It is
important to note that the column M4 (Total No. of Blocks without Tx) does not have any variation in its
values, being constant across the simulations. Therefore, this column was not used for training or testing the
models. Each column in the results data serves as an output metric used to evaluate the performance of the
ML models in predicting and analyzing blockchain network behavior.

Table 1. Config Columns Information

ID Description Data Type Min Max

P0 No. of Node Integer 3.0 15.0

P1 No. of Miner Integer 1.0 1.0

P2 Transactions Integer 1.0 1.0

P3 Consensus Algorithm Integer 1.0 1.0

P4 Total No of Transactions Per Sec Float 9.0 1650.0

P5 Max Block Size Integer 1.0 1.0

P6 Max Tx Size Integer 0.064 0.064

P7 Min Tx Size Integer 0.001 0.001

P8 Block Interval Float 0.05 0.0999

P9 Simulation Time Float 1.0 1.0

Table 2. Results Columns Information

ID Description Data Type Min Max

M0 Total No. of Blocks Integer 9.0 43.0

M1 Total No. of Blocks include Tx Integer 8.0 42.0

M2 Total No of Transactions Integer 9.0 1203.0

M3 Total No. of Pending Tx Integer 0.0 450.0

M4 Total No. of Blocks without Tx Integer 1.0 1.0

M5 Avg. Block Size (MB) Float 0.0303 0.9716

M6 Avg. No. of Tx per block Integer 1.0 30.8462

M7 Avg. of Tx Inclusion Time (secs) Float 0.4212 0.5854

M8 Avg. Tx Size (MB) Float 0.0279 0.0373

M9 Avg. Block Propagation (secs) Float 0.0209 0.0894

M10 Avg. Transaction Latency (secs) Float 0.0160 0.2664

M11 Transactions execution (secs) Float 0.8047 0.9995

M12 Transaction Throughput (Tx/secs) Float 11.1841 1248.6553

Figure 1. Training and testing flow with parameters and metrics

These tables are essential because they contain the configurations and results used to train the models, al-
lowing us to evaluate performance based on each column of the results dataset. The configuration data provides
the input parameters for the simulations, while the results data contains the corresponding output metrics. By an-
alyzing these datasets, we can assess how effective different ML models are at predicting and optimizing various
aspects of blockchain network performance.

As illustrated in Figure 1, the models are trained and tested using a combination of parameters P0, P1, ...,
P9. During each training session, the model focuses on predicting a single column M0, M1, ..., M12 separately,
ensuring that the result of one column does not influence the result of another. This method allows for an isolated

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024



Predicting Blockchain Application Performance with Machine Learning Techniques.

evaluation of each performance metric, providing a clear understanding of how each parameter affects different
aspects of the blockchain network.

3.2 Models

Supervised learning algorithms encompass a diverse array of models tailored for classification, regression,
and other predictive tasks. The fundamental concept of SVM involves identifying a hyperplane that optimally sep-
arates the dataset into classes [12]. The KNN method is a non-parametric approach wherein a sample is classified
based on the majority vote of its nearest neighbors, assigning the sample to the most prevalent class among its
K nearest neighbors; for regression tasks, the predicted value is derived by averaging the values of its K nearest
neighbors [13]. Logistic Regression is a model employed to predict the probability of a categorical dependent vari-
able, estimating the likelihood that an observation belongs to a particular category, and is particularly advantageous
when the output variable is binary [6]. RF is an ensemble learning technique that constructs multiple decision trees
during training and makes predictions by aggregating the outcomes of all trees, thereby enhancing classification
accuracy, mitigating overfitting, and maintaining high generalization capacity [5].

Advanced boosting frameworks like XGBoost, LightGBM, and CatBoost have been developed to enhance
computational efficiency and predictive accuracy. XGBoost (Extreme Gradient Boosting) is an optimized frame-
work for decision trees that employs boosting, enhancing computational efficiency and predictive accuracy through
extensive regularization and pruning techniques to avoid overfitting [7]. LightGBM is a boosting framework that
uses gradient boosting to efficiently construct decision trees, noted for its ability to handle large datasets and its
speed and efficiency by employing binning techniques to convert continuous data into discrete bins, thus accelerat-
ing the training process [9]. Finally, CatBoost is a gradient boosting algorithm that can handle categorical variables
without extensive preprocessing, designed to provide optimal results with minimal configurations, especially useful
in datasets with many categorical variables [8].

For model selection and hyperparameter optimization, three distinct methods were employed: Exhaustive
Grid Search, Randomized Parameter Optimization, and Optuna. Exhaustive Grid Search operates by evaluating
multiple combinations of parameter values, cross-validating each combination to determine the optimal parameters
for a model. Despite being computationally intensive, it is widely used due to its thoroughness in identifying the
best hyperparameters for ML models [14]. Randomized Parameter Optimization is a hyperparameter tuning tech-
nique that randomly samples a fixed number of parameter combinations from a specified distribution, rather than
exhaustively searching all possible combinations. This approach reduces computational cost and time compared
to exhaustive grid search by focusing on a random subset of the hyperparameter space, which can still effec-
tively identify suitable parameter values [15]. Optuna is an open-source hyperparameter optimization framework
designed to automate the process of tuning hyperparameters for ML models. It employs efficient sampling algo-
rithms, such as the Tree-structured Parzen Estimator (TPE) and the Asynchronous Successive Halving Algorithm
(ASHA), to explore the hyperparameter space more effectively than traditional methods like grid search or random
search [16].

Each model was evaluated using a variety of performance metrics with an 80-20 hold-out train-test split.
The code was implemented in Python, leveraging data science libraries extensively: pandas for data manipulation,
NumPy for numerical operations, and scikit-learn for building ML pipelines and model evaluation. Additionally,
the libraries Optuna, joblib, matplotlib, and seaborn were utilized for hyperparameter optimization, model saving
and loading, and data visualization, respectively.

3.3 Evaluation Metrics

The performance of ML models in this work is quantified using two key metrics: the R2 Score and the Root
Mean Squared Error (RMSE). The choice of these metrics is further motivated by their ability to provide a clear,
interpretable evaluation of model performance in the context of blockchain network simulations. These metrics
were selected based on their prevalence in the literature, specifically in the context of blockchain performance
evaluation, as highlighted by Albshri et al. (2023) [4]. Both R2 and RMSE provide comprehensive insights into
the accuracy and reliability of the predictions made by the models used in this study, such as KNN and SVM,
which have been effectively applied in prior research.

The R2 Score, also known as the coefficient of determination, measures how well the predicted values ap-
proximate the real data points. It captures the proportion of variance in the dependent variable that is predictable
from the independent variables, making it a useful metric for understanding the effectiveness of the models in
capturing complex relationships in blockchain performance metrics [17].

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Maceió, Alagoas, November 11-14, 2024



W. M. Rodrigues, K. S. Komati, S. D. Rissino

R2 = 1− SSres

SStot
(1)

where SSres is the sum of squares of residuals and SStot is the total sum of squares.
RMSE measures the average magnitude of the errors between the predicted and actual values. It is the square

root of the average of squared differences between predictions and actual observations [18]. RMSE is a widely
used metric in predictive modeling and is particularly useful for assessing the accuracy of models when errors in
prediction carry significant implications.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

where yi is the actual value, ŷi is the predicted value, and n is the number of observations.

4 Results

Table 3 provides information on the best performing model for each column {M0, M1, ... , M12} except
M4, including the R2 score, RMSE, training time, and prediction time. The R2 score and RMSE values are
inversely correlated for the same model and output M. However, each row in Table 3 was trained independently for
a specific performance metric, making each row independent of the others. This explains why similar R2 values
can correspond to significantly different RMSE values, such as an R2 of 0.782 with an RMSE of 27.782 for M0
and an R2 of 0.765 with an RMSE of 0.005 for M9.

The RF model achieved the highest R2 scores for columns M0, M2, M3, M6, M9, and M11. This perfor-
mance can be attributed to its ensemble nature, which aggregates multiple decision trees to enhance predictive
performance. RF effectively handles feature interactions and variances, resulting in higher accuracy in predicting
complex blockchain behaviors. The model showed moderate performance in column M11.

Table 3. Best Model for Each Column

Column Description Model R2 RMSE Train Time (s) Predict Time (s)

M0 Total No. of Blocks Random Forest 0.782 27.782 0.022 0.022

M1 Total No. of Blocks include Tx LightGBM 0.813 36.493 0.019 0.019

M2 Total No of Transactions Random Forest 0.987 27.782 0.020 0.020

M3 Total No. of Pending Tx Random Forest 0.767 33.539 0.028 0.028

M5 Avg. Block Size (MB) XGBoost 0.965 0.060 0.033 0.033

M6 Avg. No. of Tx per block Random Forest 0.959 1.819 0.033 0.033

M7 Avg. of Tx Inclusion Time (secs) Linear Regression 0.479 0.022 0.016 0.016

M8 Avg. Tx Size (MB) KNN 0.190 0.001 0.003 0.003

M9 Avg. Block Propagation (secs) Random Forest 0.765 0.005 0.017 0.017

M10 Avg. Transaction Latency (secs) LightGBM 0.834 0.015 0.016 0.016

M11 Transactions execution (secs) Random Forest 0.603 0.457 0.014 0.014

M12 Transaction Throughput (Tx/secs) XGBoost 0.989 26.929 0.019 0.019

The LightGBM model performed best for columns M1 and M10, leveraging its gradient boosting capabilities.
LightGBM’s strength lies in its ability to build and combine multiple weak learners, making it adept at capturing
subtle patterns in the data. The XGBoost model excelled in columns M5 and M12, due to its regularization
techniques that prevent overfitting and improve generalization. This characteristic is particularly beneficial in
scenarios with diverse transaction sizes and network conditions, typical in blockchain environments.

The LR model showed competitive performance in column M7, indicating that simpler linear relationships
were predominant for that specific performance metric. LR’s straightforward approach is sometimes advantageous
when the underlying data structure is not overly complex. However, the overall performance in column M7 was
relatively low. This could be due to the high variability and noise present in the blockchain network data, which
Linear egression might not handle well due to its simplicity and assumption of linear relationships. The KNN
model performed best for column M8, benefiting from its non-parametric nature, which allows it to adapt based on
the proximity of data points. This method is useful when transaction data points are naturally clustered. Despite
this, the performance in column M8 was notably low. This can be attributed to the curse of dimensionality, where
KNN’s effectiveness diminishes as the number of features increases. Additionally, the clustering of data points
might not be as clear or distinct, making it challenging for KNN to find optimal neighbors for accurate predictions.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024



Predicting Blockchain Application Performance with Machine Learning Techniques.

Figure 2(a) shows scatter plots of R2 scores for each model across all columns. These visualizations highlight
the variability in model performance, with some models consistently outperforming others in specific columns.
Notably, the scatter plots for M2, M5, M6, and M12 present better R2 values across all models, indicating these
metrics are generally well-predicted by the models. In contrast, M8 shows poor R2 values for all models, suggest-
ing that this metric is more challenging to predict accurately. The variability in the results for M0, M1, M3, M9,
and M10 indicates that the models’ performance changes significantly depending on the target variable.

The box plots in Figure 2(b) provide additional insights into the distribution of R2 scores for each model.
These figures illustrate the overall performance trends and the variability in prediction accuracy. The box plots
summarize the central tendency and spread of the R2 scores, showing the median, quartiles, and potential outliers.
This helps to identify models that not only perform well on average but also have consistent performance across
different metrics. For example, RF shows a higher median R2 score and less variability, indicating more reliable
performance. On the other hand, models like KNN and SVM exhibit a wider range of R2 scores, suggesting they
may be more sensitive to specific configurations or metrics.

Figure 2. (a) Scatter plot of R2 scores by model and M (column). (b) Box plot of R2 score distribution by model.

The results of Albshri et al. [4] demonstrate that KNN, used as a regression tool to predict the overall
performance of the blockchain in terms of metrics such as throughput, latency, and transaction success, achieved
superior accuracy compared to SVM. The optimal k value was determined to be 5, resulting in an RMSE of 67.06
and an accuracy of 92%, while SVM, used as a classification algorithm, achieved an accuracy of 89%. Comparing
these results with the models discussed in this paper, such as RF, which showed higher R2 scores and lower RMSEs
across various columns, highlights that the choice of ML model is highly dependent on the nature of the data and
the characteristics of the predictive variables. While the main article focused on predicting overall performance
using a single set of parameters, the models in the provided text were evaluated across different columns with
varied metrics, highlighting the importance of a detailed and segmented analysis to capture the complexities of
blockchain behavior. This underscores the difference in approach, where a column-by-column analysis can reveal
specific nuances that a global assessment might miss, providing a more comprehensive and precise understanding
of the system’s performance.

The practical implications of our results are substantial, particularly for enterprises and organizations deploy-
ing blockchain solutions. Models like RandomForest and XGBoost provide reliable predictive power across a
range of performance metrics, which can aid in optimizing network configurations, improving transaction through-
put, and minimizing latency. These models, due to their scalability and ability to handle large datasets, are well-
suited for real-world applications where blockchain systems are characterized by high variability and demand high
accuracy.

5 Conclusions

The findings of this study underscore the importance of selecting appropriate ML models for predicting
blockchain performance metrics. Our results demonstrated that the RF model performed better than the other
models used in the experiments, managing intricate feature interactions and variances, and achieving superior R2

scores across multiple variables. In contrast, models such as SVM displayed elevated RMSE values, indicative
of less reliable predictions. The use of KNN and SVM as baseline models provided a comparative benchmark,
highlighting the potential improvements offered by advanced models.

Future research will concentrate on refining these models further and exploring additional ML techniques to
bolster predictive accuracy and computational efficiency. The generation of new simulations to augment dataset
volume will play a pivotal role in enhancing model resilience and applicability. Moreover, a critical avenue for

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
Maceió, Alagoas, November 11-14, 2024



W. M. Rodrigues, K. S. Komati, S. D. Rissino

future exploration involves the evaluation of alternative performance metrics. For instance, Mean Absolute Error
(MAE) provides a more interpretable error measure in terms of actual units, which may be more practical for real-
time blockchain performance evaluations. On the other hand, Mean Absolute Percentage Error (MAPE) offers
insights into relative prediction errors, but can introduce bias when dealing with very small true values.

Furthermore, hybrid model exploration and real-time data integration represent developmental avenues to
address the dynamic attributes of blockchain systems. These endeavors will incorporate advanced ensemble meth-
ods and deep learning strategies to capture intricate data patterns and interdependencies effectively. Additionally,
exploring feature engineering techniques to better encapsulate temporal and network-related facets of blockchain
data will be imperative. Collectively, these advancements aim to foster the development of more precise, effi-
cient, and dependable predictive models for evaluating blockchain performance, while ensuring that the choice of
evaluation metrics supports both accuracy and interpretability within the context of blockchain systems.

Acknowledgements. The authors would like to thank FAPES/UnAC (No. FAPES 1228/2022 P 2022-CD0RQ, No.
SIAFEM 2022-CD0RQ) for the financial support provided through the Sistema UniversidaES. Professor Komati
thanks CNPq for the DT-2 grant (nº 302726/2023-3) and project nº407742/2022-0, also thanks FAPES for project
nº 1023/2022 P:2022-8TZV6.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[2] M. Pilkington. Blockchain technology: Principles and applications. In M. Oliver and R. Smith, eds, Research
Handbook on Digital Transformations, pp. 225–253. Edward Elgar Publishing, 2016.
[3] I. S. Rao, M. M. Kiah, M. M. Hameed, and Z. A. Memon. Scalability of blockchain: a comprehensive review
and future research direction. Cluster Computing, pp. 1–24, 2024.
[4] A. Albshri, A. Alzubaidi, and E. Solaiman. A model-based machine learning approach for assessing the
performance of blockchain applications. In 2023 IEEE International Conference on Smart Internet of Things
(SmartIoT), pp. 46–55. IEEE, 2023.
[5] L. Breiman. Random forests. Machine learning, vol. 45, n. 1, pp. 5–32, 2001.
[6] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied logistic regression. John Wiley & Sons, 2013.
[7] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining, pp. 785–794, 2016.
[8] L. Prokhorenkova, A. Gulin, A. Dobrynin, and P. Tokmakov. Catboost: unbiased boosting with categorical
features. Advances in neural information processing systems, vol. 31, 2018.
[9] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in neural information processing systems, pp. 3146–3154, 2017.
[10] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee. Performance evaluation of the quorum blockchain platform.
arXiv preprint arXiv:1809.03421, 2018.
[11] A. Woznica and M. Kedziora. Performance and scalability evaluation of a permissioned blockchain based on
the hyperledger fabric, sawtooth and iroha. Computer Science and Information Systems, vol. 19, n. 2, pp. 659–678,
2022.
[12] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, vol. 20, n. 3, pp. 273–297, 1995.
[13] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American
Statistician, vol. 46, n. 3, pp. 175–185, 1992.
[14] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Proceed-
ings of the 24th International Conference on Neural Information Processing Systems, NIPS’11, pp. 2546–2554,
Red Hook, NY, USA. Curran Associates Inc., 2011.
[15] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning
Research, vol. 13, n. Feb, pp. 281–305, 2012.
[16] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2623–2631. ACM, 2019.
[17] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer Science & Business Media, 2009.
[18] R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accuracy. International Journal of
Forecasting, vol. 22, n. 4, pp. 679–688, 2006.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC

Maceió, Alagoas, November 11-14, 2024


	Introduction
	Related Work
	Materials and Methods
	Dataset
	Models
	Evaluation Metrics

	Results
	Conclusions

