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Abstract. This work shows a one-dimensional finite element model to predict axial forces with friction in tubing
strings subjected to operational loads in the production of oil and gas. These strings undergo several combinations
of axial forces throughout their lifetime. Accurate prediction of these forces is essential to maintain the structural
integrity of this fundamental component of the well barrier system. Frictional forces, which impact axial forces,
occur due to the contact between the string and the casing, which happens when the tube buckles. Due to the vari-
ety of operational loads, a general solution to the friction problem requires a numerical approach. To achieve the
proposed objective, the adopted modelling is verified through analytical solutions, investigating the results related
to the axial forces and displacements undergone by the tubing during a specific operation. Mesh refinement studies
and computational cost of the simulations are also discussed in a case study. It is observed a good concordance
between numerical results, and an acceptable computational cost. The main contribution of the work is the possi-
bility of using numerical modelling for tubing, including friction, with good accuracy, low computational cost, and
potential for real-time analysis.
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1 Introduction

It is crucial to understand that operational loads on tubing strings can significantly impact their integrity. Well
integrity assessment regulations outline specific load cases to consider, such as oil production and fluid injection.
Bellarby [1] emphasizes the need to prioritize the assessment of the most critical cases concerning axial forces
based on the defined loadings.

Self-weight, temperature, pressures, buckling, and friction influence axial forces during operations in tubing
strings. Buckling and friction are directly related since this instability creates a contact force between the tubing
and casing strings. This contact force, known as friction force, transforms into axial forces. Mitchell [2] explains
that friction due to buckling has analytical solutions limited to specific loads, thus necessitating numerical methods
for general solutions.

Bellarby [1] states that when dealing with operational loads, it is common to initially disregard friction. This
is because these loads are applied over a period that can last years, the displacements are relatively small, and the
effects of vibrations tend to alleviate contact and friction forces. However, it is important to acknowledge that the
complete absence of friction cannot be guaranteed; therefore, it is necessary to conduct an analysis sensitive to
the presence of friction. In these analysis, the models are constructed initially without friction, and later a realistic
friction factor is introduced.

Friction impacts operational loads, especially during buckling, and is influenced by the load history, as men-
tioned by Mitchell [3]. It is crucial to note that friction, though often underestimated, plays a significant role in
buckling analysis [4].

Several studies have explored the effects of friction between the tubing and casing strings on axial forces,
including those presented by Brett et al. [5], Wu and Juvkam-Wold [6], and Miska et al. [7]. However, these studies
do not account for load history in their friction analyses. As mentioned earlier, load history directly influences
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the resulting axial forces because the string’s kinematics define the direction of movement and friction. Models
presented by Mitchell [2] and Mitchell et al. [8] incorporate this load history.

Among studies that support load history, Mitchell [2] stands out for its static numerical modelling. This
model features a cubic displacement field and dependent degrees of freedom for the finite element in terms of dis-
placement and elastic axial strain. These aspects introduce complexities, such as the piston effect from composite
sections in the string or intermediate packers. This effect creates discontinuities in axial strains and axial forces,
requiring a special transition element, as noted by Mitchell [2].

Mitchell [2] did not explore the application of the transition element in his work. However, Rodrigues [9]
builts on this modelling to create a simplified strategy. He added small elements before and after diameter changes
to capture discontinuities. This approach worked well but required filtering to remove noise from the results.

Based on these considerations, this work proposes a finite element model based on Mitchell [2], but consid-
ering only displacement degrees of freedom to predict axial loads with friction in tubing strings under operational
loads. To achieve the proposed goal, the study examines elements with linear, quadratic, and cubic displacement
fields. First, it implements and verifies these elements using a classic example with a known analytical solution.
Then, it investigates a synthetic yet realistic well. The study compares forces, axial displacements, and computa-
tional costs between the proposed and reference models through mesh refinement analyses. The main contribution
of this work is the use of numerical modelling for tubing with potential application in real-time analysis.

2 Numerical modelling of friction due to buckling

Mitchell [2] proposes that the axial force in the tubular varies with depth due to the effects of self-weight and
friction generated by buckling, as illustrated and generalized through the equation in Fig. 1.

Δ𝑧

𝐹𝑎 + Δ𝐹𝑎𝐹𝑎

𝐹𝑛 = 𝑊𝑛Δ𝑧

𝑊aΔ𝑧

𝜇𝐹𝑛

𝑧

𝐹𝑎
′ 𝑧 = −𝑊𝑎 cos 𝜃 ± 𝜇𝑊𝑛

Figure 1. Tubing force balance including friction.

In this Figure, F
′

a(z) is the derivative of the axial force with respect to the depth z, Wa is the weight per unit
length of the string, µ is the friction coefficient, Wn is the contact force due to buckling, and θ is the inclination of
the well relative to the vertical.

Using the static equilibrium and constitutive equations of a linear elastic material, it is possible to define the
axial force Fa as

Fa = EAsεz − νAs(σr + σθ), (1)

where E is the Young modulus, As is the tubular steel cross-sectional area, εz is the axial strain, ν is the Poisson
coefficient, σr is the radial stress, and σθ is the hoop stress. Tubing strings undergo thermal effects that can cause
either elongation or shortening. Thus, the string undergoes a thermal deformation εT defined as

εT = K∆T, (2)

where K is the thermal expansion coefficient of steel and ∆T is the temperature change.
Another phenomenon observed in these strings is buckling, which leads to shortening. Mitchell [2] employs

the helical buckling correlations for vertical wells proposed by Lubinski et al. [10]. In this context, the string
undergoes a buckling strain εB and a contact force Wn, given by

εB =

 0 Ff ≤ 0

− r2c
4EI

Ff Ff > 0
, (3)
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Wn =

 0 Ff ≤ 0

− rc
4EI

F 2
f Ff > 0

, (4)

with

Ff = −Fa + PiAi − PoAe, (5)

where rc is the annular radius, I is the moment of inertia of the string, Ff is the buckling force, Pi and Ai are the
internal pressure and area, while Po and Ae are the external pressure and area.

Based on these strains, one can define the axial strain as

εz = u′ − εT − εB , (6)

where u′ is the total axial strain.
The solution to the thick-walled cylinder problem provides a relation for the stresses, allowing the axial force

in eq. (1) to be defined as

Fa = EAs(u
′ − εT − εB − εH), (7)

with

εH = − 2ν

EAs
(PiAi − PoAe). (8)

The strain εH relates to the poisson effect or ballooning in the strings. Lateral pressures from fluids inside
and outside the string cause this effect. The tangential and radial stresses lead to contraction or expansion of the
string, resulting in axial strains.

Substituting eq. (7) into the expression in Fig. 1 leads to the following equilibrium equation:

[EAs(u
′ − εT − εB − εH)]′ = −Wa cos(θ)± µWn. (9)

As detailed by Mitchell [2], the use of eq. (9) for friction analysis is necessary because it requires considering
the direction of displacements u, and equation in Fig. 1 alone is not sufficient. In many operational scenarios
involving tubing, boundary conditions related to displacements at the packer or the wellhead also exist. Thus, eq.
(9) is used to determine displacements and eq. (7) to calculate axial forces. The axial and contact force due to
buckling depend on the axial force, requiring an iterative approach in eq. (9).

When proposing an approximate displacement field, the solution to eq. (9) is not exact. One approach to
determine the coefficients of this field and minimize the error from the approximation is to multiply the equilibrium
equation by weighting functions Wj and then integrate over the element domain [z1, z2]. This technique is known
as the weighted residual method, which, when associated with the Galerkin method, results in∫ z2

z1

{[EAs(u
′(z)− εT − εB − εH)]′ − (−Wa cos(θ)± µWn)}ϕjdz = 0. (10)

where ϕj are the interpolating functions of the approximate displacement field u(z), which is given by

u(z) = c1ϕ1(z) + c2ϕ2(z) + c3ϕ3(z) + c4ϕ4(z). (11)

The coefficients cj and the functions ϕj are based on the elements shown in Fig. 2, defined by the degrees of
freedom presented in the image. Note that Mitchell [2] used a cubic element with 2 nodes, which has degrees of
freedom for displacement and axial strain. In contrast, the other elements proposed in this work have degrees of
freedom only for displacement.

Regarding the interpolating functions, they can be expressed as a function of a variable x, as indicated in
eq. (12) and detailed in Tab. 1. This table also presents the stiffness matrix Kg and the force vector F for each
element. The variables dxj account for contributions from thermal deformations, buckling, and ballooning effects,
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as well as friction force in the force vector, as shown in eq. (13). The element length is represented by λ, while
Fa1 and Fa2 represent boundary force conditions at the top and bottom of the element, respectively.

𝑢 𝑧1 = 𝑢1

𝑢 𝑧2 = 𝑢2

𝑢 𝑧1 = 𝑢1

𝑢 𝑧2 = 𝑢3

𝑢
𝑧1 + 𝑧2

2
= 𝑢2

𝑢 𝑧1 = 𝑢1

𝑢′ 𝑧1 = 𝑢1
′

𝑢 𝑧2 = 𝑢2

𝑢′ 𝑧2 = 𝑢2
′

𝑢 𝑧1 = 𝑢1

𝑢
2𝑧1 + 𝑧2

3
= 𝑢2

𝑢
𝑧1 + 2𝑧2

3
= 𝑢3

𝑢 𝑧2 = 𝑢4

Mitchell’s cubic elementQuadratic element 4-node cubic elementLinear element

Figure 2. Finite elements for numerical axial analysis with friction in tubing strings.

x =
2(z − z1)

(z2 − z1
− 1. (12)

dxj =

∫ z2

z1

EAs(εT + εB + εH)ϕ
′

jdz −
∫ z2

z1

±µ(Wn + Fn)ϕjdz. (13)

Table 1. Interpolation functions, stiffness matrix, and force vector of the finite elements under study.

Elem. Linear Quadratic Mitchell’s cubic 4-node cubic

ϕ1
1
2 (2− x) 1

2

(
x2 − x

)
1
4

(
x3 − 3x+ 2

)
1
16

(
−9x3 + 9x2 + x− 1
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(
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3 Computational implementation and verification of the numerical modelling of friction
due to buckling

The computational implementation of the finite element numerical modelling follows the methodology pre-
sented in Rodrigues [9]. The only difference is that, instead of the cubic element used by Mitchell [2], this approach
considers linear, quadratic, and cubic elements with 4 nodes, featuring the characteristics defined above.

To verify the computational implementation of the new elements, a tubing string from the vertical well pre-
sented in Lubinski et al. [10] is studied during a squeeze cementing operation, assuming a friction coefficient of
0.3. Mitchell [11] and Rodrigues [9] developed analytical solutions for axial forces and elastic displacements with
friction in such scenario, which are used as reference solutions. The Python programming language is used on a
personal computer with an Intel Core i5-10300U CPU 2.50 GHz, 4 cores, 8 logical processors, and 8 GB of RAM.

Figure 3 shows the percentage errors in displacements and forces from a mesh refinement study, comparing
analytical solutions and the elements presented in this work. The first mesh is composed by four elements of
equal length. Subsequently, the mesh is refined by halving the length of each element. The correct computational
implementation of the models is evident from the convergence characteristics and the low error in forces and

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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displacements, which is less than 5%. The linear element is an exception, as it requires increased mesh refinement
to meet this criterion.

In Figure 3(a), the percentage error in elastic displacement is lower for the 4-node cubic element. This is due
to its higher number of displacement degrees of freedom. The quadratic element also performs comparably or even
as well as the cubic element proposed by Mitchell [2], despite having a second-degree displacement function. For
forces at the top of the tubing, as shown in Fig. 3(b), the element proposed by Mitchell [2] shows zero error. This
result is expected because the example includes a packer seal bore, and the axial force at the tubing base is specified
in the displacement degree of freedom of that element. Consequently, other models require more refinement to
achieve the expected value, which is related to the non-linearity of the friction force and its occurrence in only a
portion of the tubular. For the axial force at the top (see Fig. 3(c)) the 4-node cubic aligns more closely with the
analytical solution, while the quadratic element and the Mitchell’s cubic element exhibit similar behavior.
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Figure 3. Verification of finite element modelling through mesh refinement study in tubing string.

4 Case study

A realistic synthetic vertical well is studied. This well is of offshore nature and the water depth is 1957 m.
The sections of the tubing are in Tab. 2, and additional well informations can be found in Rodrigues [9].

Table 2. Sections and properties of the tubing in the vertical well.

Section
Measure Depth [m] Tubular

Top Base OD (in) [mm] ID (in) [mm] Wa (lbf/ft) [kN/m]

1 1976.27 1992.62 (5.5) [140] (4.67) [119] (23) [0.336]

2 1992.62 2446.96 (6.625) [168] (5.791) [147] (28) [0.409]

3 2446.96 2492.24 (5.5) [140] (4.67) [119] (23) [0.336]

4 2492.24 5261.79 (6.625) [168] (5.791) [147] (28) [0.409]

5 5261.79 5352.50 (5.5) [140] (4.67) [119] (23) [0.336]

6 5352.50 5375.00 (4.5) [114] (3.92) [100] (13.5) [0.197]

The packer in the tubing is located at a measured depth of 5375 m and is mechanically set. Thus, the tubing
is fixed, rather than being free at one end as in the previous example. The tubing is evaluated during a production
operation. Fig. 4(a) and 4(b) show the pressures and temperatures during this operation.

Similarly to the previous example, a mesh study is realized by refining the elements along each section of the
tubing. However, since the errors in this example are bigger away from the top and bottom, the maximum absolute
error along the tubular is used as the error metric. Additionally, because no analytical solution is available for this
case, the modelling proposed by Mitchell [2] with a very refined mesh is used as the reference for the axial forces
in this study. Thus, the strategy of using small elements at discontinuities is employed to compare the element
proposed by Mitchell [2] with the elements proposed in this work.

Figure 5 illustrates the maximum absolute error in axial forces and the computational cost in the analysis
of a fixed tubing during production, considering the studied elements. The analysis with the linear element is
not presented due to the need for more refined meshes. In Fig. 5(a), it can be observed that the maximum
absolute errors between the proposed cubic element and the reference element are similar, with the proposed one
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Maceió, Alagoas, November 11-14, 2024



A finite element model to predict axial forces with friction in tubing strings

being slightly more accurate. This result is expected since, in this example, there is no prescribed axial force
and all degrees of freedom of the 4-node cubic element are related to displacement. The maximum errors are
around 2 klbf [8,896 kN], while the forces range between 150 klbf [667,233 kN] and -120 klbf [-533,787 kN],
indicating the accuracy of the 4-node cubic element. The quadratic element shows larger errors, but these decrease
significantly with mesh refinement. Regarding computational cost, as illustrated in Fig. 5(b), the simulations take
seconds, and the quadratic element has the lowest computational cost due to its fewer degrees of freedom.
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Figure 4. Pressures and temperature in tubing during production.
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Figure 5. Mesh refinement study using different elements in fixed tubing.

The Figure 6 illustrates the axial forces in the tubing using a mesh with 140 elements. As can be observed, the
quadratic and cubic 4-node elements show no noise in the depths with diameter variation (see Tab. 2). This char-
acteristic represents an advantage for the proposed elements. They can also exhibit errors similar to the reference
model with a lower computational cost, as is the case for the quadratic element.
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Figure 6. Axial forces in fixed tubing under production.
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5 Conclusions

A finite element model for predicting axial forces with friction in tubing under operational loads with linear,
quadratic, and cubic displacements was implemented and correctly verified through analytical solutions. In the
case study with a fixed tubing, the quadratic element demonstrated the best cost-benefit ratio with meshes of 44
elements. The error in the axial forces was similar to that of cubic models but with a lower computational cost,
which is relevant for real-time analysis in industry. Additionally, no noise in the axial forces was observed in
relation to the element proposed by Mitchell [2]. The next steps of this work include simulating additional wells,
including directional ones, to more precisely discuss the applicability of the proposed elements.
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