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Abstract. The initial phases of well drilling projects involve the crucial step of installing conductor casing, which 

can be achieved through various methods, including conductor driving. Given the often-challenging environmental 

conditions, conducting experimental analyses of drilling parameters becomes impractical. Consequently, 

numerical modeling emerges as a feasible and reliable alternative for process control.  In this study, the open-

source software ANURA 3D was adopted, which utilizes the Material Point Method (MPM) in its solutions.  

Therefore, this research aims to explore the impact of some numerical parameters associated with computational 

modeling on problem solution. For this purpose, a two-dimensional axisymmetric computational model of self-

weight penetration was employed. In this work, the influence of material point specification and time step size was 

analyzed. Increasing material point specification provided results for vertical displacement and tension 

distribution; however, beyond a certain point, the results do not show any significant differences, only an increase 

in computational costs. It was also observed that, for the time step sizes considered in this analysis, no significant 

differences could be noted, despite minor time step increase accuracy of results. 

Keywords: MPM; Drilling; Conductor Casing.  

1  Introduction 

Advancements in computer technology have made numerical simulation crucial across various engineering 

fields. One of the reasons for this is that computer modeling offers the possibility of optimizing and investigating 

processes, such as offshore oil well drilling. In this context, the initial phases of well drilling projects begin with 

the installation of the conductor casing, which can be carried out using different methods, including impact driving. 

This operation consists of three distinct stages: self-weight penetration, suction and hammering. As this is often 

an operation carried out in hostile environments, experimental analysis of drilling parameters becomes unfeasible, 

making numerical modeling of the problem a feasible and reliable alternative for controlling process variables. 

Typically, problems in the mechanics of materials are addressed using the Finite Element Method (FEM). 

However, FEM faces challenges in handling large deformations, leading to significant mesh distortions and 

convergence issues [1]. To overcome these challenges, particle-based methods such as the Material Point Method 

(MPM) have been developed. Simulations of this nature are inherently complex due to the influence of multiple 

factors, including intrinsic problem parameters and numerical simulation variables. Proper calibration is essential, 
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considering the computational cost, to achieve solutions that closely match experimental results for the same 

problem.  

In literature, it is common to encounter studies that analyze numerical parameters of simulations in various 

engineering problems, applied to their respective numerical methods. Examples of such studies using MPM 

include the work of Ceccato and Simonini [2], who simulated piezocone penetration tests (CPTu) and incorporated 

into their analyses the influence of material point specification in clayey soil. Another example is Martinelli and 

Galavi [3], who developed computational modeling of Cone Penetration Tests (CPT) in sandy soil, investigating 

the influence of several numerical parameters, including computational mesh refinement and numerical integration 

method. In this context, this work aims to understand how certain numerical parameters of MPM can influence 

soil behavior during the self-weight penetration phase of a conductor casing through the displacement achieved 

and the soil stress patterns. Such analysis will enhance our understanding of the process and potentially lead to an 

optimization of the problem, considering the associated computational costs. 

2  Methodology 

The installation process is known for its complexity and simulating it can be challenging due to the 

occurrence of large deformations. To tackle this, the ANURA 3D was used to model and simulate the conductor 

casing installation numerically. This software is designed for the numerical modeling and simulation of large 

deformations using the Material Point Method (MPM). 

2.1 Material Point Method 

The Material Point Method (MPM) was originally developed by Sulsky and Schreyer [4] to solve fast 

transient impact solid mechanisms problems [5]. It integrates the advantages of point-based and mesh-based 

methods. MPM uses an Eulerian-Lagrangian approach, where space is discretized into an Eulerian mesh and the 

modeled continuous body is discretized into material points that store the material properties. Fig. 1 shows the 

computational cycle of MPM. The material points transfer state variable values to the mesh nodes. The updated 

calculations at the nodes are then transferred back to the material points. At the end of each time step, the mesh is 

reset to its initial position, while the particles remain in their displaced positions, preventing excessive distortion 

of the elements. Information stored at the nodes is not permanent, thereby eliminating issues related to mesh 

distortion [6, 7, 8]. 

 

 

 

 

 

 

 

 

Figure 1. Illustration of the material point method [7]. 

 

2.1.1 Two phase single point formulation 

 

An explicit dynamic two-phase formulation in MPM has been developed to consider soil and water 

interactions. It considers the generation and dissipation of pore water pressure during the structure installation 

process, accounting for dynamic waves in both water and solid phases [2, 9] in cohesive soils under saturated 

conditions, for example. The governing equations are mass conservation, momentum conservation and a 

constitutive model provide the solution of the system, described in equations 1 to 5. These equations solve for the 

accelerations of the pore liquid and soil skeleton as the primary unknown variables [3, 10].  

𝜌𝐿𝒂𝐿 = ∇ ∙ (𝑝𝐿𝑰) + 𝜌𝐿𝒃 −
𝑛𝜇𝐿

𝜅𝐿
(𝝂𝑳 − 𝝂𝑺) (1) 
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(1 − 𝑛)𝜌𝑆𝒂 + 𝑛𝜌𝐿𝒂𝐿 = 𝛁 ∙ (𝝈′ + 𝑝𝐿𝑰) + 𝜌𝑚𝒃 (2) 

𝑑𝑛

𝑑𝑡
= (1 − 𝑛)(∇ ∙ 𝝂𝑺) (3) 

𝑃𝐿̇ =
𝐾𝐿

𝑛
[(1 − 𝑛)∇ ∙ 𝝂𝑆 + 𝑛∇ ∙ 𝛎𝐿] (4) 

𝝈̇′ = 𝑫𝜺𝑆̇ − 𝛀𝝈′ − 𝝈′𝛀 − 𝜀𝑣,𝑆̇ 𝝈. ′ (5) 

Where,  𝑛 is the porosity; 𝜌𝑆 and 𝜌𝐿 and are the densities of the solid grains and liquid, respectively; 𝜌𝑚 is 

the mixture density (𝜌𝑚 = (1 − 𝑛)𝜌𝑆 + 𝑛𝜌𝐿); 𝑰 is the identity tensor; 𝝂𝑺 and  𝛎𝐿  are, respectively, the velocities 

of the solid and liquid phases; 𝝈′is the stress tensor; 𝐾𝐿 is the bulk modulus of pure water, and 𝒃 is the body force 

vector; 𝑫 is the stiffness matrix; ; 𝝈̇′ and 𝜺𝑆̇ are, respectively, the stress rate and strain rate of the solid phase; 𝛀 is 

the rotation tensor; and 𝜀𝑣,𝑆  is the volumetric strain increment [11]. The discretized forms of mass conservation is 

in equations 6 and 7: 

 

𝑀̅𝐿,𝑖𝒂𝐿,𝑖 = 𝑓𝐿̅,𝑖
𝑒𝑥𝑡 − 𝑓𝐿̅,𝑖

𝑖𝑛𝑡 + 𝑓𝑖̅
𝑑 (6) 

𝑀̅𝑆,𝑖𝒂𝑺,𝑖 + 𝑀̅𝐿,𝑖𝒂𝐿,𝑖 = 𝑓𝑖̅
𝑒𝑥𝑡 − 𝑓𝑖̅

𝑖𝑛𝑡 (7) 

In which 𝑀̅𝑆,𝑖 𝑀̅𝐿,𝑖, 𝑓𝐿̅,𝑖
𝑒𝑥𝑡, 𝑓𝐿̅,𝑖

𝑖𝑛𝑡 and 𝑓̅𝑑are the nodal values, respectively, for: the mass matrix of the solid and 

liquid phases; the external force vector, internal force vector, and drag force. These forces depend on shape 

function calculated to material point (MP) position, number of MP in the cell computational grid and gravitational 

force.  

 

2.1.2  Rigid Body Algorithm  

The MPM has been developed using an explicit solver and as result. Explicit schemes necessitate small 

enough time steps to capture wave propagation in the system and a stiff or less permeable material needs lower 

time steps [9]. In addition, the larger the elastic modulus, the lower critical the time step, it results in very high 

computational cost to simulate rigid structures. The critical time step does not depend on rigid body stiffness, so 

simulating rigid structures as a rigid body can decrease computational time, as there is no need to integrate stresses 

at rigid material points [10]. The stiffness of a steel conductor is very high compared to the stiffness of soil, so the 

conductor can be assumed to be a rigid body [9, 12, 10].  

According to Ceccato et al. [10], this algorithm works as follows: first, momentum and velocity is mapped 

from particles nodes calculating rigid body acceleration (Eq. 8) and it is prescribed to all the nodes that belong to 

Eq. 9. The nodal velocity is computed according to Eq. 10. The rigid body algorithm is embedded into the contact 

framework, so it is verified if the contact algorithm is applied then the rigid body velocity is written to all 

corresponding MPs. 

 

𝒂𝑟𝑏 =
(𝑚𝑟𝑏𝒈 + 𝒕𝑟𝑏 − ∑ 𝒇𝒔𝒐𝒊𝒍

𝒊𝒏𝒄
𝒊=𝟏 )

𝑚𝑟𝑏
 

(8) 

𝒂𝑟𝑏
𝑖 = 𝒂𝒓𝒃, for 1 ≤ 𝑖 ≤ 𝒏𝒓𝒃 (9) 

𝒗𝒓𝒃
𝒊 = 𝒗0

𝑖 + 𝒂𝑟𝑏
𝑖 Δ𝑡, for 1 ≤ 𝑖 ≤ 𝒏𝒓𝒃, (10) 

where 𝒈 is the gravitational force, 𝒂𝑟𝑏 and 𝒎𝑟𝑏 are the acceleration vector and total mass of rigid body, 

respectively, 𝒕𝑟𝑏 is the external load vector applied to the rigid body (equal to zero in this case), 𝒏𝑐 is the number 

of nodes and 𝒊 is the node relative index within the contact surface, respectively,  𝒇𝒔𝒐𝒊𝒍
𝒊  is the force transmitted 

from soil to the structure at i-th contact node. Finally, 𝒂𝑟𝑏
𝑖  and 𝒗𝒓𝒃

𝒊   are the nodal acceleration and nodal velocity 

of the rigid body, respectively, Δ𝑡 is the increment time and 𝒗0
𝑖  is the velocity at beginning of each-time step.  

 

2.1.3 Contact Algorithm 
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Contact is important to understand many engineering problems, including conductor-soil interaction. A 

contact happens when two deformable solids touch each other, however, it is easier in MPM due is background 

grid [8]. The advantage of this algorithm is that it automatically detects the contact surface, meaning there is no 

need to define any special elements at the interface between bodies [14, 10]. A frictional contact algorithm 

developed by Bardenhagen et al [15] with addiction of Al-Kafaji [14] for adhesive soils is used to modelling 

interaction between structure and soil [9]. The contact effect occurs due to the correction of the velocity difference 

between bodies A and B (𝒗𝒊,𝐴 and 𝒗𝒊,𝐵) and the combined system velocity (𝒗𝒊,𝑆), which are resolved by momentum 

equations at the node 𝒊. Considering prescribed velocity of body A in instant 𝑡 + Δ𝑡:  

𝑖𝑓 {
(𝑣𝑖,𝐴

𝑡+ ∆𝑡 − 𝑣𝑖,𝑆
𝑡+ ∆𝑡) ∙ 𝑛𝑖

𝑡 >  0, 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑖𝑛𝑔; 

(𝑣𝑖,𝐴
𝑡+ ∆𝑡 − 𝑣𝑖,𝑆

𝑡+ ∆𝑡) ∙ 𝑛𝑖
𝑡 <  0, 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑛𝑔 ,

 (11) 

where, 𝑛𝑖
𝑡 is the unit outward normal to body A at node 𝑖. Upon detecting the approach, the algorithm analyzes 

whether adhesion occurs between the bodies and obtains their corrected nodal velocities, including adhesion and 

friction terms. The corrected velocity of A, 𝑣̃𝑖,𝐴 can be obtained using Equation 12 [2, 10]: 

 

𝒗̃𝑖,𝐴 = 𝒗𝑖,𝐴 − [(𝒗𝑖,𝐴 − 𝒗𝑖,𝑆) ∙ 𝒏𝑖,𝐴]𝒏𝑖,𝐴 + [(𝑣𝑖,𝐴 − 𝒗𝑖,𝑆) ∙ 𝒏𝑖,𝐴]𝜇𝒕𝒊 −
𝑎𝐴𝑖∆𝑡

𝑚𝑖,𝐴
𝒕𝒊, (12) 

 

where, 𝐴𝑖 is the surface area associated with node 𝑖 and 𝑡𝑖 is the tangential factor, 𝜇 is the friction coefficient and 

𝑎 is the adhesion factor.  

2.2 Numerical Model of Conductor Casing Installation  

Numerical simulation of conductor casing installation has been developed in a 2D-axisymmetric MPM. A 

default computational model was established to conduct analysis of numerical parameters. The Fig. 2 below shows 

the geometry employed, as well as its features such as dimensions, mesh refinement and constraints. This geometry 

uses 3-noded triangular elements, and a mixed integration approach, which utilizes material points (MP) and Gauss 

points, was employed to calculate the internal forces. The advantage of the mixed integration scheme is its 

mitigation of cell-crossing instabilities and stress oscillations [10, 13].   

 

 

Figure 2. Geometry, mesh and fixities of 2D-axisymmetric model in MPM (Authors, 2024). 

 

The penetration resistance of the conductor arises from a combination of clay adhesion on both the inside 

and outside surfaces and the end bearing resistance across the cross-sectional area, or the entire area if plugging 

occurs [16]. Thus, this may imply some operational simplifications that can be made to simulate problems of this 

magnitude. Based on this assumption, the present modeling considers the conductor casing as a massive structure, 

in order to simplify the problem under analysis, considering the external radius of the conductor casing as a minor 
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element in the domain.  

The geometry and mesh of the computational model illustrated in Fig. 2 show a conductor casing with a 

diameter of D = 0.91m (36in). The length of the casing (64Dm), as well as the height and bottom of the domain, 

vary with D. This geometry utilizes an unstructured mesh, with increased refinement near the casing to enhance 

result accuracy. The domain shown in Fig. 2 includes 6 material points per element in the soil (green region) and 

1 material point per element in the conductor casing (yellow region). The total number of material points is 6773. 

Additionally, this geometry comprises 4778 elements and 2504 nodes. The casing is above ground, and its 

installation occurs through self-weight penetration into the soil. A moving mesh procedure [14] is applied in the 

domain to ensure that soil-conductor casing elements maintain consistent shapes throughout the simulation, as the 

contact nodes on the conductor casing and soil always remain at the same coordinates. This approach helps reduce 

oscillations in contact forces [9, 3, 10,13]. The simulations were performed on a computer with the following 

specifications: Intel Core i5-9600K (@3.70 GHz), 16 GB of RAM, and Windows 11 (64-bit).  

2.3 Properties 

In order to model this work, the data was obtained from CPTu tests provided by the company. Based on the 

analysis of the data it was established that the Mohr-Coulomb constitutive model would be suitable for modeling 

the response of the cohesive undrained soil considered in this work. Some of these parameters should be 

mentioned, such as the initial porosity of 0.58, density of 1475.40 kg/m³, Bulk Modulus of 2.15(104), dynamic 

viscosity of 1.57(10-6) Kpa.s and the K0 value of 0.96. Regarding the Mohr-Coulomb criteria parameters, notable 

values include a Poisson's ratio of 0.49, an effective elasticity modulus of 17896.06 kPa, and effective cohesion 

and friction angle of 36.29 kPa and 0.43 rad, respectively. Additionally, during the modeling stage of the soil-

conductor contact, the adhesion factor of 4.64 kPa stands out. 

3  Results 

To better understand the problem under investigation, several associated numerical parameters need further 

examination to validate the model. Therefore, to explore the impact of these parameters on results such as depth 

reached and stress behavior, some results will be presented.  

The first part of the analysis consisted of varying the material point (MP) specifications per element in the 

soil region and fixing other numerical parameters. The gain in depth decreases over time due to increasing soil 

resistance, causing the curve to stabilize. Figure 3 illustrates how these variations in material points influence the 

achieved depth, aiming to determine an optimal value at a specific point. The curve corresponding to 3MP 

stabilizes around 25m, while 6MP and 12MP curves stand around 21m. 

 

 
Figure 3. Comparison of the depth reached with different material points in the soil (Authors, 2024). 

 

As shown, the curves for 6 material points and 12 material points behave very similarly but differ in 

computational cost. Table 1 presents the computational costs associated with the models, indicating that as the 

number of material points increases, the computational effort also increases. Therefore, for further analysis, the 

model with 6 material points in the soil is preferred, as it offers a lower computational cost while still providing 
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effective results for the required analysis. 

 

Table 1. File Size and Simulation time 

MP Specification Simulation Time Size 

3 MP 14:27 hrs 99.7 GB 

6 MP 27:22 hrs 191 GB 

12 MP 58:04 hrs 375 GB 

 

Figure 4 presents the vertical effective stress distribution in soil. When examining the stresses near the 

conductor casing, there is an expected increase in stresses at the tip region as shown in Fig. 4. Although the results 

appear similar, the dissipation of these stresses is more precise in the cases with 6 and 12 material points. Increasing 

the material point specification does not result in significant improvement to justify the increase in computational 

cost. 

 

 
Figure 4. Comparison of the vertical effective stress (kPa) with different material points in the soil 

 

Another analysis to consider is the evaluation of the time step implementation. Figure 5 illustrates four 

different time increments analyzed for this problem. Decreasing the time steps improves result accuracy but also 

extends the computational time needed for the simulation. However, the figure shows that, for this particular 

problem, reducing the time step does not significantly enhance the results. 

 
Figure 5. Comparison of the depth reached with different time step (Authors, 2024). 

 

Table 2. File Size and Simulation time  

Time Step Simulation Time Size 

0.0025s 36:23 hrs 380 GB 

0.005s 27:22 hrs 191 GB 

0.01s 12:45 hrs 95 GB 

0.05s 06:25 hrs 19 GB 

 

In terms of computational cost, there is a significant difference between the analyses performed. As expected, 
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shorter time steps lead to higher computational costs and greater memory consumption. In this context, choosing 

a larger time step appears to optimize the solution, allowing for greater progress. 

4  Conclusions 

The MPM proved to be a promising approach for numerical modeling of conductor casing driving, even if 

simplification strategies are considered, such as assuming an isotropic and uniform soil layer and using a 2D-

axisymmetric procedure. Analysis of numerical parameters helped to understand computational behavior in terms 

of simulation time and file size. In this case, increasing the material point specification improved results for vertical 

displacement and tension distribution up to 6MP. When adopting 12MP, these results did not show any significant 

difference, only increasing computational costs. Similarly, decreasing the time increment did not reveal any 

significant differences even though smaller time increments lead to higher accuracy of the result. For future work, 

we aim to study the influence of mesh refinement and contact numerical parameters on the results, including other 

stages of conductor casing driving such as suction and hammering beside self-weight installation. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 

authorship of this work, and that all material that has been herein included as part of the present paper is either the 

property (and authorship) of the authors, or has the permission of the owners to be included here.  
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