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Abstract. The oil and gas industry has been leveraging cutting-edge technologies, such as artificial intelligence 

and the Internet of Things, for well integrity analysis, aiming to enhance operational safety and reduce production 

losses. Timely detection of unexpected events through the well lifecycle, such as spurious closure of Downhole 

Safety Valves (DHSV) and rapid productivity loss events, is crucial. The integration of sensor-based monitoring 

and computational modeling provides vital insights for identifying and mitigating such anomalies, thereby 

bolstering industry's reliability and sustainability. However, the anomaly detection in oil and gas wells faces 

significant challenges due to the highly unbalanced nature of historical data, with few unexpected events, and the 

frequent valve changes that can disrupt pressure and temperature patterns, complicating unsupervised techniques. 

This paper utilizes TranAD, a deep transformer network-based multivariate time-series model that relies on 

attention-based sequence encoders to detect anomalies solely based on non-anomalous training data. It is assessed 

the effectiveness of TranAD in detecting anomalies using the 3W database, a public repository released by 

Petrobras containing real-world undesirable events in oil and gas wells. TranAD models trained on 3W are 

compared with benchmark techniques applied to this dataset, yielding promising results due to its data and time-

efficient training strategy. 
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1  Introduction 

The oil and gas industry is undergoing a profound transformation, increasingly relying on cutting-edge 

technologies such as artificial intelligence, cloud computing, and the Internet of Things to enhance operational 

efficiency and safety. Within this evolving landscape, maintaining the integrity of oil production wells is crucial 

for ensuring operational safety, preserving the environment, and minimizing production losses. Detecting 

unexpected events—particularly anomalies like spurious closures of Downhole Safety Valves (DHSV) and rapid 

productivity loss events—requires timely intervention to mitigate risks and safeguard the industry's sustainability. 

 

Sensor-based monitoring, combined with computational modeling, plays a vital role in providing insights 

necessary for identifying and addressing these anomalies. However, anomaly detection in oil production wells 

presents significant challenges. Historical data from wells tends to be highly unbalanced, with rare occurrences of 

unexpected events. Additionally, routine operations, such as valve changes, can substantially alter pressure and 

temperature behavior, complicating the detection process and potentially confounding unsupervised techniques. 
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To address these challenges, machine learning techniques have been increasingly applied in well production 

monitoring. These techniques aim to detect specific events that could signal potential problems, thereby improving 

preventive measures and enabling more proactive interventions. Various models have been explored in this 

context, each with its own set of advantages and limitations. For instance, Decision Trees (DT) have been 

recognized for their interpretability and performance, as highlighted by Alharbi et al. [1], while more complex 

classifiers like Random Forest (RF) and Adaptive Boosting (AdaBoost) have shown varying degrees of success in 

well production anomaly detection, as discussed by Turan and Jaschke [2]. The field of novelty detection in time 

series, often referred to as anomaly detection, remains a challenging but critical area of research due to its direct 

implications for real-time applications in the industry. 

 

In this context, this paper evaluates TranAD (Tuli et al. [3]), a deep transformer network-based model 

designed for multivariate time-series anomaly detection. TranAD employs attention-based sequence encoders to 

detect anomalies using non-anomalous training data, which is particularly effective for highly unbalanced datasets 

with rare, unexpected events. Unlike traditional methods that may struggle with the non-linear and dynamic nature 

of sensor data, TranAD's architecture models complex interactions between multiple variables over time, 

effectively addressing subtle anomalies intertwined with normal operational fluctuations. This study uses the 3W 

dataset (Vargas et al. [4]) —Petrobras’s first public repository of real-world undesirable events in oil wells—to 

assess TranAD’s effectiveness, comparing it with established benchmark techniques to validate its efficacy and 

demonstrate its potential in advancing anomaly detection methodologies within the oil and gas industry. 

2  Overview of the TranAD Model and the 3W Dataset 

This paper evaluates the effectiveness of a deep transformer network, TranAD, using a public dataset. Both 

TranAD and the dataset are well-documented in their respective literature. This section provides an overview of 

TranAD’s strengths and its application in various case studies. Additionally, it delves into the intricacies of the 

3W dataset, highlighting the complexities and challenges inherent in real-world data, such as incompleteness, data 

imbalance, and feature variability. 

2.1 TranAD overview 

TranAD is a deep transformer network specifically designed for anomaly detection in multivariate time-series 

data developed by Tuli et al. [3], providing a robust solution to the complexities of modern industrial datasets. 

Leveraging the transformer architecture, TranAD captures long-range dependencies and contextual information 

within time-series data, addressing the limitations of traditional methods like ARIMA and LSTM-based models, 

which often struggle with high data volatility and computational inefficiency. 

 

A standout feature of TranAD is its use of the Peak Over Threshold (POT) method for anomaly identification. 

The POT method dynamically selects threshold values by fitting the data distribution with a Generalized Pareto 

Distribution (GPD), focusing on the most extreme values in the data sequence. This approach is particularly 

effective in distinguishing between normal and anomalous behavior, even when anomalies are subtle. TranAD not 

only outputs one result per anomaly but also provides individual results for each feature. It then leverages these 

feature-level results to generate a comprehensive anomaly detection outcome, enhancing its precision in real-world 

applications where quick and accurate anomaly detection is crucial. 

 

Another key strength of TranAD is its use of self-attention mechanisms, which allow the model to weigh the 

importance of different time steps, thereby improving its ability to detect context-dependent anomalies. TranAD's 

adversarial training process further amplifies reconstruction errors, making the model more sensitive to minor 

deviations that might indicate anomalies. This approach not only improves detection accuracy but also ensures 

efficient training, even when trained predominantly on non-anomalous data. This focus on non-anomalous training 

helps TranAD maintain high performance even in scenarios where labeled anomalous data is scarce. 

 

Empirical studies have demonstrated TranAD's superiority over state-of-the-art models, with up to a 17% 

increase in F1-score and a 99% reduction in training times compared to traditional methods. For instance, on the 

Server Machine Dataset (SMD), TranAD outperformed other models, particularly in detecting anomalies that 

closely resemble normal behavior—a common challenge in industrial applications. This makes TranAD 
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particularly well-suited for complex, real-world datasets like the 3W dataset, where data incompleteness, 

imbalance, and high dimensionality pose significant challenges. 

2.2 3W dataset overview 

The 3W dataset is a unique and realistic public dataset designed to address the complexities of detecting 

undesirable events in offshore naturally flowing oil wells. It embodies several inherent challenges typical of real-

world industrial data, such as data incompleteness, feature variability, and event rarity. These characteristics mirror 

the genuine conditions encountered in oil production monitoring, where data is often imperfect and unpredictable. 

This realism is intentional, as highlighted in the original paper, enabling the evaluation of various preprocessing 

techniques and their effectiveness in improving model performance across different tasks. By preserving the raw 

nature of the data—including missing values, frozen variables, and outliers—the 3W dataset provides a robust 

benchmark for developing and testing advanced anomaly detection methods that must operate effectively in 

realistic, noisy environments. 

 

Specifically, one of the primary challenges of the 3W dataset is incompleteness. The dataset contains a 

significant number of missing values due to sensor malfunctions or communication issues in the hostile offshore 

environment. These missing data points can lead to sparsity, complicating the modeling process and requiring 

robust imputation or handling strategies to avoid biased results. Another complexity is the data imbalance. The 

3W dataset includes instances of eight different types of undesirable events, but these anomalies are rare compared 

to the normal operating conditions. To mitigate this, the dataset includes not only real events but also simulated 

and hand-drawn instances to enrich the available data. However, the imbalance between normal and anomalous 

instances still presents a significant challenge for model training, often leading to models that are biased toward 

normal conditions. 

 

In terms of structure, the first release of the 3W dataset comprises 1,984 instances, each containing a complete 

contiguous time-series set of observations. These instances are derived from real, simulated, and hand-drawn 

sources, capturing data from 21 different wells and representing various operational conditions. The dataset 

includes 8 process variables (features), such as pressures and temperatures at different points in the production 

system. The instances encompass 8 different types of undesirable events, such as spurious closures of DHSV and 

severe slugging, in addition to non-anomalous data. This is visually illustrated in Fig 1, from the original paper, 

which presents a scatter map showing the temporal positioning of the gathered data from the 21 different wells, 

with instances color-coded to distinguish between the 8 types of anomalous events and the non-anomalous data. 

The files (instances) vary in size (number of observations) due to the different lengths of time-series data they 

contain, reflecting the real-world variability in monitoring periods and event durations. This variability, combined 

with the presence of feature variability—where key process variables exhibit diverse behaviors depending on the 

operational state of the well—adds another layer of complexity to the analysis. Moreover, some variables may be 

either frozen (showing constant values due to sensor failures) or exhibit outlier behaviors, further complicating the 

data processing. 

 

 

Figure 1. Scatter map of real instances of the 3W dataset, adapted from Vargas et al. [4] 
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Several studies have explored anomaly detection on the 3W dataset using various machine learning 

techniques. Vargas et al. [4] benchmarked models like Isolation Forest and One-Class SVM, with the former 

achieving an F1-score of 0.727. Fernandes Jr. et al. [5] further enhanced performance by testing classifiers such 

as Local Outlier Factor (LOF), which achieved an F1-score of 0.870 with feature extraction. Marins et al. [6] used 

Random Forests for classifying fault classes, obtaining a 97.1% accuracy, while Turan and Jaschke [2] applied a 

sliding window approach, where Decision Trees reached an F1-score of 85% in multi-class classification. These 

studies collectively demonstrate the effectiveness and challenges of various models in detecting anomalies within 

the 3W dataset. 

3  Implementation details 

In this section, we detail the specific steps and decisions made during the implementation of the TranAD 

model on the 3W dataset. Given the complexity of time-series data and the unique challenges presented by the 3W 

dataset, careful consideration was given to both data preprocessing and the analysis of the model’s output. Our 

methodology is divided into two main parts: the preprocessing of the raw data to ensure its suitability for anomaly 

detection and the analysis of the results generated by the TranAD model. 

3.1 Data Preprocessing of the 3W Dataset 

As this paper focuses on benchmarking TranAD’s ability to detect anomalies in the context of oil production 

wells, only real cases from the 3W dataset were used for this initial analysis. In total, there are 1,019 real instances 

used in this paper. The real instances in the non-anomalous dataset (event 0) are from wells 1 to 8, totaling 594 

instances. In contrast, the anomalous instances (events 1 to 8) are distributed across these wells with 259 instances 

and an additional 166 instances in wells 9 to 18. Wells 19 to 21 and event 8 (hydrate in the production line) only 

contain simulated and hand-drawn instances, so they were omitted. 

 

In this context, two methodologies were applied: In the first, a local model was trained using the non-

anomalous data from each well individually and tested on the corresponding anomalous data from the same well. 

In the second approach, a global model was trained using all the non-anomalous data and then tested across all 

wells. 

 

Feature selection was based on four key sensors: P-PDG, P-TPT, T-TPT, and P-MON-PCK, chosen 

according to the cost-benefit analysis provided by Vargas et al [4]. Approximately 2% of faulty data were removed, 

and some instances with extensive NaN values were excluded. However, instances with frozen data, such as P-

PDG in wells 1, 2, 4, and 5, and P-MON-PCK in well 8, were retained to ensure there was sufficient training data. 

 

In neural network models, feature scaling is essential to ensure that no single feature disproportionately 

influences the model's learning process. Without scaling, features with larger ranges can dominate, leading to 

biased predictions. Neural networks are particularly sensitive to the scale of input data, making it critical to 

normalize features so they contribute equally to the model's training. As highlighted by Goodfellow et al. [7] and 

Bishop [8], proper scaling enhances model performance and mitigates bias. To address this, Min-Max scaling was 

applied, with scaling done by time segments within wells for non-anomalous data and on a per-instance basis for 

anomalous data due to their complexity and variability. 

3.2 Model Training Optimization 

In the training phase, it was observed that 21 epochs provided an optimal balance between underfitting and 

overfitting for this type of data. This choice was made to ensure that the model learned effectively without 

overfitting to the specificities of the training set, which could diminish its generalizability. 

3.3 Performance Evaluation Metrics 

For evaluating the model's performance, some key metrics were used, while the F1-score was the mandatory 

metric. A brief explanation of those metrics is presented below, but a more extensive context can be found on 

Bishop [8] and Goodfellow et al. [7]. 
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− Confusion Matrix: This matrix summarizes the model's performance by displaying the number of true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). These values range 

from 0 to the total number of observations, with higher TP and TN values indicating better performance. 

 

− Precision: Measures the accuracy of positive predictions and ranges from 0 to 1, where a higher value 

indicates fewer false positives. Precision is calculated as: 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
.  (1) 

− Recall: Recall, also known as True Positive Rate, measures the ability of the model to correctly identify 

positive instances. Like precision, its value ranges from 0 to 1, with higher values indicating better 

detection of true positives. Recall is calculated as: 

 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
.  (2) 

− Specificity: Specificity, also known as True Negative Rate, is the ratio of correctly predicted negative 

observations to all actual negatives. It’s value ranges from 0 to 1, with higher values indicating better 

detection of negative values, that is the correct labelling of non-positives. Specificity is calculated as: 

 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 = 𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
.  (3) 

 

− F1-score: This metric is the harmonic mean of precision and recall, providing a single metric that 

balances both. It is calculated as: 

 𝐹1 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  (4) 

 

and ranges from 0 to 1. The F1-score is particularly important in this application, given the imbalanced 

nature of the data, where anomalies are much rarer than normal events. It effectively combines precision 

and recall into a single metric that accounts for both false positives and false negatives, ensuring that the 

model detects anomalies accurately while minimizing false alarms. This balance is crucial for 

maintaining the reliability and relevance of the anomaly detection system in an operational context. 

 

− Balanced Accuracy (ACCb): Balanced accuracy is the average of the True Positive Rate (recall) and the 

True Negative Rate (specifity). It is calculated as follows: 

 𝐴𝐶𝐶𝑏 =
1

2
× (𝑇𝑃𝑅 + 𝑇𝑁𝑅)  =

1

2
× (

𝑇𝑃

𝑇𝑃+𝐹𝑁
 +

𝑇𝑁

𝑇𝑁+𝐹𝑃
)  (5) 

4  Results and analysis 

This section breaks down how the TranAD model performed in detecting anomalies in oil production wells. 

It starts by examining the results for individual wells, analyzing how the model handled different situations. 

Following that, the analysis broadens to assess the model's overall performance across all wells, highlighting both 

its strengths and limitations. 

4.1 Well-specific model training results 

Due to the absence of real instances for event 8 and for event 5 across wells 1 to 8, only events 1, 2, 3, 4, 6, 

and 7 were included in the well-specific model training. After processing the data, a total of 259 instances were 

tested, the compiled results are presented in Tab. 1. The last row of totals shows the count of instances across 

events, with TN, TP, FP, and FN also aggregated. The overall F1-score and ACCb are weighted means based on 

the instance count. By selecting the best F1-score feature-wise for each test, the average F1-score across all tests 

was 0.983, with a balanced accuracy of 0.985. Notably, across every event, the feature 'P-MON-CKP' consistently 

produced the highest F1-score. 
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Table 1. Compiled results of well-specific model training 

Event Instances TN TP FP FN F1 ACCb Feature 

1 5 168,818 84,764 26,558 31,996 0.692 0.720 P-MON-CKP 

2 4 3,756 40,771 0 0 1.000 1.000 P-MON-CKP 

3 1 0 17,975 0 1 1.000 1.000 P-MON-CKP 

4 240 0 1,718,835 0 113 1.000 1.000 P-MON-CKP 

6 6 28,554 20,258 7,765 1 0.877 0.907 P-MON-CKP 

7 3 107,771 39,282 0 231,135 0.333 0.333 P-MON-CKP 

TOTAL 259 308,899 1,921,885 34,323 263,246 0.983 0.985 P-MON-CKP 

 

Despite the generally strong performance metrics, event 1 (Abrupt Increase of BSW) performed slightly 

worse than the other events, while event 7 (Scaling in PCK) suggests that TranAD may not be well-suited for 

detecting this type of anomaly. It's important to note that, except for event 4 (Flow Instability), which had 240 test 

instances, the number of instances tested was relatively small, contributing to the concise performance metrics. 

4.2 Single training results 

A single model training was conducted using all non-anomalous data. A total of 574 instances were utilized 

for training, excluding 20 instances from well 6 during preprocessing. For testing, 411 instances were used, 259 

of which were previously tested in the well-specific model, and 152 were new test instances from wells 9, 10, 14, 

15, 16, 17, and 18. Some wells did not contain real data, and 14 anomalous instances were excluded during 

preprocessing. The compiled results are presented in Tab. 2, constructed similarly to Tab. 1. The F1-score and 

ACCb metrics showed a decline, with respective values of 0.797 and 0.798, reflecting a 19% drop compared to 

the first methodology. 

Table 2. Compiled results of single training broader model 

Event Instances TN TP FP FN F1 ACCb Feature 

1 5 195,376 51,052 0 65,708 0.400 0.400 P-MON-CKP 

2 8 0 61,780 13,184 2 0.870 0.904 T-TPT 

3 32 0 568,405 0 30 1.000 1.000 P-MON-CKP 

4 344 0 1,984,536 0 475,899 0.808 0.808 P-MON-CKP 

5 11 95,297 282,534 32,633 140,424 0.686 0.716 P-MON-CKP 

6 6 36,319 9,352 0 10,907 0.167 0.167 P-MON-CKP 

7 5 152,039 0 0 313,937 0.000 0.000 - 

TOTAL 411 479,031 2,957,659 45,817 1,006,907 0.797 0.798 P-MON-CKP 

 

The worst performance was observed in event 7 (Scaling in PCK), where no anomalies were identified, 

resulting in a zero cumulative sum of positive values (both TP and FP). Event 6 (Quick Restriction in PCK) also 

performed poorly, with both metrics at 0.167, and event 1 (Abrupt Increase of BSW) had metrics at 0.400. The 

feature 'P-MON-CKP' remained the most effective for anomaly detection in most events. The exception was event 

2 (Spurious Closure of DHSV), where 'T-TPT' emerged as the best feature, showing strong metrics. 

4.3 Comparative Analysis with Related Work 

To better understand the effectiveness of the TranAD model applied in this study, it is essential to compare 

its performance with previous research conducted on the 3W dataset. Various studies have explored different 

machine learning techniques to detect and classify anomalies within oil production wells, each focusing on specific 

types of events and models. 

 

As summarized in Tab. 3, Vargas et al. [4] benchmarked traditional models like Isolation Forest across all 

eight types of anomaly events, achieving an F1-score of 0.727. Fernandes Jr. et al. [5] improved detection 

performance using LOF, with an F1-score of 0.870, while their Autoencoder model performed less effectively. 

Marins et al. [6] employed Random Forests across all events, reporting from 97.1% to 99.0% balanced accuracy, 

demonstrating the robustness of ensemble methods. Similarly, Turan and Jaschke [2] used Decision Trees in a 

multiclass classification, achieving an F1-score of 0.921. 
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Table 3. Comparison with Related Work 

Author Proposed methodology Mean (and STD) of F1-score 

Vargas et al. [4] Isolation forest 0.727 (0.1822) 

Fernandes Jr. et al. [5] Local outlier factor 0.870 (0.14) 

Turan and Jaschke [2] Decision tree multiclass classifier 0.921 (0.1027) 

Marins et al. [6] One-class classifier 0.971* 

Multiple binary classifiers 0.990* (0.0070) 

Single multiclass classifier 0.918* (0.0817) 

This paper TranAD (well-specific) 0.983 (0.1142) 

TranAD (single broader model) 0.797 (0.3978) 

*only ACCb was provided from author Marins et al. [6] 

 

In comparison, the TranAD model in this study showed superior performance in well-specific training, with 

an F1-score of 0.983, but encountered challenges in broader generalization during single training across wells, 

where the F1-score dropped to 0.797. These results highlight the potential of TranAD in targeted applications, 

while also indicating areas for further improvement, particularly in handling diverse well conditions. 

5  Conclusions 

The TranAD model demonstrated high efficacy in anomaly detection when applied to well-specific models, 

achieving a mean F1-score of 0.983, surpassing benchmarks established by related works on the 3W dataset. 

However, its performance declined notably in broader model training, with an F1-score dropping to 0.797. This 

contrast underscores the model's sensitivity to well-specific conditions and suggests that TranAD is particularly 

suited for targeted anomaly detection rather than generalized applications. A key observation is the consistent 

performance of the 'P-MON-CKP' feature across various events, highlighting its potential as a reliable indicator in 

oil well anomaly detection. 

 

Despite these promising results, the methodology's reliance on the best F1-score feature-wise selection 

indicates a potential bias due to data incompleteness, warranting further investigation. Future work should focus 

on addressing these limitations by exploring alternative transformer-based models and evaluating their 

performance across a broader range of scenarios and datasets, potentially incorporating advanced feature selection 

techniques to enhance robustness and generalization. 
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