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Abstract. The behavior of oil reservoirs, characterized by geophysical, geochemical, and geological properties, 

can be understood through the simulation of computational models, involving the construction of meshes of finite 

volume elements with equations derived from fundamental principles. However, the execution of multiple 

simulations for activities such as optimization and uncertainty assessment results in substantial computational 

costs. To overcome this challenge, proxy models are proposed, aiming to replace reservoir simulators with 

adequate precision. This work proposes the implementation of data-based proxies for reservoir simulators using 

Artificial Neural Networks (ANNs). This approach utilizes time series of well controls as inputs, generating 

responses for Bottom Hole Pressures (BHPs) and/or flow rates. In recent years, proxy models based on neural 

networks have been applied to obtain predictions of flows and/or pressures in reservoirs. For example, Recurrent 

Neural Networks (RNNs), specialized in handling sequential data, were used by [1] to predict water flows in the 

Xiluodu hydroelectric reservoir in China. Convolutional Neural Networks (CNNs), specialized in pattern 

recognition in images and videos, were also employed by [2] to predict pressures and flow rates of injector and 

producer wells, respectively. In the scope of this study, distinct neural network architectures were evaluated to 

predict outputs of a synthetic two-phase model with partial faults. Given the adoption of mixed controls, where 

producer wells are controlled by BHP and injector wells by flow rate, the use of Multi-head Neural Networks [3] 

was also investigated. This approach allows differentiated processing of input data, contributing to more robust 

and efficient learning. For each considered architecture, the RMSE and number of epochs required during training 

process was analyzed. The results indicate the CNN architecture proved to be effective with a lower error and 

reasonable training duration. 
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1  Introduction 

Oil reservoirs are underground formations where oil and gas accumulate, and understanding their behavior 

is crucial for efficient extraction. This is usually done through computational simulations, such as (CMG, 2022), 

that represent the reservoir in a simplified model, using a grid of finite-volume elements that incorporate 

petrophysical properties such as porosity and permeability. These simulations involve the numerical solution of 

equations derived from fundamental principles, such as thermodynamic equilibrium, mass conservation, heat 

transfer, and fluid flows in porous media. 

To optimize oil and gas production, engineers perform various simulations considering different production 
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and injection strategies. However, this process is computationally intensive and time-consuming, as exemplified 

by the Challenger Olympus case (Fonseca et al., 2018). As an alternative, proxy models based on historical 

production data have been developed to replace simulators with adequate accuracy. These models can be classified 

as physical, functional, or data-driven, with neural networks being an important example of the latter category. 

In recent years, neural network-based proxy models have been used to predict flow rates and pressures in 

reservoirs. Zhang et al. (2019) applied recurrent neural networks to forecast water flow rates in hydropower 

reservoirs, while Alakeely and Horne (2020) used both recurrent and convolutional networks for predicting 

pressures and flow rates in wells. Jiang et al. (2023) and Kim and Durlofsky (2021) developed recurrent neural 

network-based models utilizing historical production data. This paper introduces an innovative approach by 

developing a black-box proxy model that provides time series outputs representing the impact of input controls 

across different scenarios, offering a comprehensive analysis of reservoir behavior for improved decision-making 

in reservoir management. The study focuses on proxies for biphasic reservoir simulators using time series data 

from injector and producer well controls, proposing mixed controls—bottom-hole pressure for producers and flow 

rates for injectors—to better reflect real-world management. It also explores multi-head neural networks that 

integrate RNNs and CNNs, creating robust models that capitalize on the strengths of each strategy. 

2  Problem formulation 

Deep Learning is a machine learning technique utilizing artificial neural networks with multiple processing 

layers. It became prominent in the 2000s due to improved hardware and abundant data, enabling solutions to 

complex problems like image classification and language models. A key concept in Deep Learning is the loss 

function, which assesses model quality and tracks training convergence. For regression tasks, the loss function, 

such as mean squared error (MSE), measures the difference between observed and predicted values by adjusting 

the neural network's weights and biases, as defined in Equation (1). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸
𝑊, 𝑏

=  
1

𝑁𝑡𝑟𝑎𝑖𝑛

∑ (𝐸𝑖)

𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1

 (1) 

Where 𝑁𝑡𝑟𝑎𝑖𝑛 is the number of samples used in the training process, 𝐸 is the objective function, 𝑊 and 𝑏 

are the weights and biases, respectively. The training process involves iteratively adjusting the model weights to 

minimize the loss function. The classic optimization algorithm is gradient descent, which uses the derivative of 

the loss function to adjust the weights. The derivatives are obtained through automatic differentiation in 

TensorFlow Keras (Abadi et al., 2015), chosen for its user-friendly interface, facilitates Deep Learning for 

beginners. The learning rate is a crucial parameter affecting the step size for optimization, with higher rates 

speeding up convergence but risking instability, while lower rates ensure stability but slower training. Other 

hyperparameters, such as batch size and the number of epochs, also impact training. Batch size influences 

convergence, with options like stochastic or mini-batch methods, and multiple epochs are needed to iterate over 

the entire dataset, though too many epochs can lead to overfitting. Choosing the right neural network architecture—

whether convolutional, recurrent, or fully connected—depends on the problem and may require experimentation. 

The next section will cover the architectures used in this study. 

3  Methodology 

Recently, the use of Artificial Neural Networks (ANN) in petroleum reservoir engineering has expanded, 

proving helpful in simulations and proxy creation (Alakeely, 2020; Kim, 2023). This section introduces the 

architectures applied to our problem, involving both Recurrent Neural Networks (RNNs) and Convolutional 

Neural Networks (CNNs), which will be combined to optimize proxy modeling. We will detail how RNNs and 

CNNs will be integrated into the overall architecture of the implemented networks, exploring their complementary 

capabilities. It is crucial to highlight that this is not a conventional time series prediction problem. Instead, the 

proxy acts as a black box, where inputs consist of well controls, and outputs correspond to the desired responses 

for the respective controls. 



Alexandre de Souza Jr., Rafael F. V. C. Santos, Ramiro B. Willmersdorf, Silvana M. B. Afonso, 

 Leonardo C. Oliveira, Bernardo Horowitz, Juan A. R. Tuerosa, Mateus G. Machado 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

Recurrent Neural Networks (RNNs) are designed for sequential data like time series or natural language, 

maintaining a "memory" of past observations to capture temporal context (Brownlee, 2018). This feature is useful 

for predicting well flow rates, where changes in control impact both immediate and future flows. Each RNN unit, 

or recurrent cell, holds and transmits historical input information through hidden states. Long Short-Term Memory 

(LSTM) networks improve upon RNNs by addressing vanishing gradients with gated recurrent cells and cell states, 

as shown in Figure 1. LSTMs use forget, input, and output gates to manage memory flow, retaining relevant long-

term and short-term information. Despite their robustness and performance, LSTMs are computationally intensive 

and lead to longer training times. 

 

 

Figure 1. Example of a LSTM layer with three recurrent cells. 

Convolutional Neural Networks (CNNs), introduced by LeCun (1989), are more efficient than traditional 

neural networks in recognizing patterns in images and videos (Géron, 2023). By replacing dense layers with 

convolutional layers, CNNs reduce the number of parameters and improve performance in both time and space 

(Chollet, 2021). They use hierarchical layers where each layer detects progressively complex patterns, with filters 

or kernels highlighting recognized features. Techniques such as padding, stride, and pooling further optimize the 

network. Figure 2 illustrates a CNN architecture. Recent studies have applied LSTM and GRU networks to predict 

reservoir outputs, such as water flow rates in hydropower reservoirs (Zhang et al., 2019) and pressures and flow 

rates in wells (Alakeely and Horne, 2020). Kim and Durlofsky (2021) developed an LSTM-based proxy model for 

well-control optimization, using bottom-hole pressures as inputs and water and oil flow rates as outputs, with a 

suggested architecture of 200 LSTM cells. Jiang et al. (2023) presented an interpretable RNN incorporating 

material balance for predicting reservoir behavior, integrating physical knowledge into model training. 

 

 

Figure 2. Example of two-layer convolutional architecture applied to an input layer. 

In neural network architectures, "multi-head" refers to a structure where several sub-networks process input 

data individually, and their outputs are subsequently combined and processed by the rest of the network. This 

approach, introduced by (Ibrahim et al., 2021), allows each sub-network to specialize in different aspects of the 

input data, enhancing the network's ability to learn complex data representations and improving its generalization 

capability. In this study, we propose five neural network architectures, two of which are multi-headed to specialize 

in different input control types: BHP in producer wells and water flow rate in injector wells. The initial architecture 

consists of two CNN layers for the same input characteristics, followed by dense layers. The second architecture 
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comprises two LSTM layers for time series prediction. Another proposed architecture hybridizes these two models 

sequentially. Additionally, we explore two more architectures with independent convolutional models for each 

input type using a multi-head approach: one consisting of two CNN layers only and another with an LSTM layer 

in sequence. Figure 3 illustrates these architectures. 
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(b) 

 

 

 

 

 

 

(c)  

 

 

 

 

 

 

 

 

(d) 
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Figure 3. Proposed neural network architecture models: (a) CNN, (b) LSTM, (c) CNN-LSTM, (d) Multi-head 

CNN, and (e) Multi-head CNN-LSTM. 

4  Application 

This study utilized a synthetic biphasic model (Cao et al., 2014) to validate various proxy strategies using 

RNNs and CNNs. The reservoir model, with two internal partial faults, features 5 layers of 33x33 active cells each. 

Horizontal permeability is constant at 270 mD, while vertical permeability is 10% of horizontal permeability. The 

average reservoir pressure is 500 psi, with an initial water saturation of 0.1 (Figure 4(a)) and porosity of 0.2. The 

model includes 4 producers and 5 injectors, with fault cells having zero porosity, transmissibility, and permeability 

(Figure 4(b)).  

 

(a)    (b)    

Figure 4. Model of the first case study: (a) initial water saturation and (b) permeability. 
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Production history data were generated using the IMEX reservoir simulator (CMG, 2022), yielding 366 

samples. Well controls, changing every 180 days over 900 days with 5 cycles per well (Figure 5), varied from 300 

to 400 psi for producers and 505 to 600 psi for injectors. A correlated controls strategy with a Gaussian covariance 

function ensured smooth, consistent perturbations. Simulator responses, such as oil and water production rates and 

water injection or pressure, were recorded every 30 days (Figures 6 and 7). The data were divided into 70% 

training, 20% validation, and 10% testing. Table 1 shows the primary hyperparameters for RNN and CNN 

architectures. Training involved up to 500 epochs, a batch size of 32, and the Adam optimizer (Kingma and Ba, 

2015) with a learning rate of 10-3. Early stopping with a patience of 10 epochs and a minimum error variation of 

10-4 was also used. 

 

(a)  (b)  

Figure 5. Correlated BHP controls for (a) producing wells and (b) injection wells. 

(a)  (b)  

Figure 6. Flow rates in producing wells, with correlated controls: (a) oil rate and (b) water rate. 

 
Figure 7. Water flow rate in injection wells, with correlated controls. 

Table 1. Hyper parameters used to define the proposed neural network architectures. 

Layer Hiperparameter Value 

Convolutional 

Filters 32 

Kernels 10, 13 

Activation Function ReLU 

Recurrent 
Number of LSTM Cells 200 

Activation Function ReLU 
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5  Results 

The obtained results reveal intriguing insights into the comparative analysis among the different neural 

network architectures considered in this study. Figure 8 illustrates violin plots for 10 test executions of each 

architecture, displaying the number of epochs during training and the RMSE (%), respectively. These 

visualizations provide a comprehensive view of the performance variability and stability across different models.  

 

(a) (b) 

Figure 8. (a) Number of epochs and (b) RMSE (%) during training for 10 executions, with correlated controls. 

 

Table 2 summarizes the results obtained using 30 timesteps across various architectures with a consistent 

sample size. Among the architectures evaluated, the basic CNN architecture demonstrated notable efficiency with 

an average RMSE of 2.33% and 95 epochs. The LSTM architecture, while having a higher number of trainable 

parameters (491,413), required fewer epochs (67) but had a slightly higher average RMSE of 2.52%. The CNN-

LSTM hybrid model, with 478,549 trainable parameters, performed similarly to the LSTM with an average RMSE 

of 2.55% over 68 epochs. The Multi-head CNN showed a moderate performance, with 174,835 trainable 

parameters and an average RMSE of 2.41% over 77 epochs, balancing complexity and efficiency. Interestingly, 

the Multi-head CNN combined with LSTM, although having a reduced average epoch count of 42, resulted in the 

highest average RMSE of 2.62%. 

 

Table 2. Results obtained for the synthetic two-phase model proxies. 

Architecture N. Trainable Params. Average N. Epochs Average RMSE (%) 

CNN 204,339 95 2.33 

LSTM 491,413 67 2.52 

CNN-LSTM 478,549 68 2.55 

Multi-head CNN 174,835 77 2.41 

Multi-head CNN + LSTM 449,045 42 2.62 

 

The CNN architecture excelled in RMSE and training duration, accurately predicting production and 

injection rates. Figure 10 shows the forecasted oil and water production rates and injection rates, demonstrating 

the CNN model's strong alignment with actual data and its effectiveness in capturing complex reservoir dynamics. 

 
(a) 

  
(b) 

 
(c) 

Figure 10. Flow forecasts: (a) oil production from producer P-1, (b) water production from producer P-1 and 

(c) water injected into I-1, using correlated control samples. 
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6  Conclusions 

This study introduces a novel black-box proxy model for reservoir simulation, outputting time series data on 

the impact of input controls under various scenarios. It improves reservoir management by analyzing biphasic 

reservoirs (oil and water phases) with mixed controls reflecting real-world practices. The model uses multi-head 

neural networks, including RNNs and CNNs, to enhance robustness. Results show that while CNNs, typically used 

in computer vision, achieved a lower RMSE and reasonable training time, the Multi-head CNN and CNN with 

LSTM offered a balance between epochs and model complexity. These insights highlight the need to balance 

performance metrics and model complexity in selecting reservoir simulation proxy models. Future work may focus 

on optimizing hyperparameters and applying the models to different reservoirs and control strategies. 
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