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Abstract. In the oil and gas industry, investigating anomalies is crucial to prevent production losses, environmental 

accidents, and reduce maintenance costs. This study explores a density-based unsupervised machine learning 

model, the Local Outlier Factor (LOF), combined with autoencoders, to detect anomalies in subsea 

production/injection wells, through sensors. Two approaches are proposed: the first involves using well pressure 

and temperature sensor data, which are pre-processed with autoencoders to reduce dimensionality and capture key 

features, before being fed into the LOF model. The second approach applies the data directly to the LOF without 

using autoencoders and compares the results with previous studies on detecting important events. The experiments 

were conducted on real cases of wells with operational failures, focusing on different well anomalies defined in 

the 3W public database. After developing the models, the Autoencoder+LOF approach achieved the best 

performance, with an average F1 score of 0.8520 for the studied anomalies, compared to 0.7417 obtained by LOF 

itself. Additionally, there was a 62.22% reduction in computational time when using the Autoencoder. These 

results confirm that integrating autoencoders for data dimensionality reduction significantly improves anomaly 

detection overall, demonstrating the effectiveness of the proposed system in identifying unexpected events in time 

series. 
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1  Introduction 

The processes in the oil and gas industry present a high level of complexity, requiring careful conduct and 

assertive monitoring to deal with possible failures (Sobrinho et al. [1]). In this case, the use of sensor-based data 

monitoring is a common practice, aiming to identify possible anomalies in structures and proactively prevent 

accidents. As emphasized by Vargas [2], the detection and classification of rare and undesirable events play a 

critical role in the oil industry. Vargas [2] also cites a study conducted by the Exploration and Production 

Operations Unit of Petrobras in Espírito Santo (UO-ES), which estimated a production loss of 1,514,000 barrels 

in 2016 due to anomalies in its offshore production wells operated by Natural Lift. Considering this estimate as an 

annual average, at $50 per barrel, the financial impact of these anomalies on UO-ES is $75.7 million per year. 

In this context, the adoption of artificial intelligence and machine learning (ML) methodologies is being 

applied by various authors as a method for investigating critical intervals and monitoring well production, aiming 

to detect specific events and enhance the ability for proactive prevention and intervention. An example of this can 

be seen in Nascimento [3], where the author used one-class classifiers such as Support Vector Machine (SVM) 

and Isolation Forest to detect anomalies in wells and achieved recall scores higher than 0.98. Additionally, 

Fernandes Junior et al. [4] also compared one-class classifiers such as Isolation Forest, One-Class Support Vector 
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Machine (OCSVM), Local Outlier Factor (LOF), and Elliptic Envelope by applying them to a public database 

called 3W, with the best performance obtained by the LOF model with an F1 score of 88.2%, followed by Isolation 

Forest with 74.3%. 

This article aims to apply and compare ML techniques for anomaly detection in oil production wells, using 

case studies presented in the 3W public database provided by Vargas [2], composed of multivariate time series of 

both real industry and simulated well sensor data. Two important event detection techniques were presented and 

compared: the first involved the direct application of data to the LOF model, and the second involved reducing 

data dimensionality using autoencoders before applying it to the LOF. Additionally, the performance of the two 

proposed approaches was evaluated in relation to the important events present in the database, as well as in 

comparison with related works from the literature. 

2  On the Machine Learning techniques addressed 

Local Outlier Factor (LOF) is a widely used technique in the context of anomaly detection, being defined as 

an unsupervised ML approach. Developed by Breunig et al. [5], LOF is designed to assess the degree of 

abnormality of data points in relation to their nearest neighbors, making it a powerful tool for anomaly detection. 

According to Misra et al. [6], LOF aims to evaluate the degree of abnormality of points by comparing their 

local density with the density of their neighbors. Thus, points with significantly lower density than their neighbors 

are considered outliers, or anomalous points. It provides an anomaly score for each data point, enabling robust 

anomaly detection in complex and high-dimensional datasets. 

In LOF, it is possible to adjust hyperparameters such as the number of neighbors to consider, the distance 

metric, and the contamination level in the dataset. Additionally, the parameter novelty can be configured to enable 

anomaly prediction in time series (Fernandes Junior et al. [4]). This aspect will be discussed in the development 

of the model in this paper. 

The use of autoencoders (AE) to generate a reconstructed output that closely approximates the original data, 

but with reduced dimensions, has been explored by several authors in the literature, such as Chen et al. [7], 

Sobrinho et al. [2] and Aranha et al. [8]. This technique involves training the autoencoder to reconstruct data with 

reduced dimensions in the output, resembling the original data. This is possible because the nodes in the 

intermediate layers have a reduced number, which forces the model to learn weights that represent a condensed 

version of the input data (Fernandes Junior et al. [4]). 

In addition to the use of autoencoders itself, it can be combined with other models. In the context of this 

study, we explore its integration with the Local Outlier Factor for anomaly detection, given that the combination 

of autoencoders with LSTM has proven effective in identifying complex temporal and spatial patterns in data, as 

demonstrated by previous studies such as Aranha et al. [9], Vargas [2], and Fernandes Junior et al. [4]. 

3  Materials and methods 

The methodology applied for anomaly detection in oil well operations involves five distinct stages, starting 

with data collection and preprocessing, followed by feature extraction, and finally, classification and performance 

evaluation. The primary objective of this study is to compare two important event detection techniques and 

evaluate their performances: the first involves the direct application of data to the LOF model, and the second 

involves reducing data dimensionality using autoencoders before applying it to the LOF. 

In this study, it has been used data from the 3W dataset, firstly published in Vargas [2]. In a recent update on 

July 25, 2024, various configurations were altered, resulting in the new version called 3W 2.0. This new version 

is divided into 2,228 instances of time series of oil well production. The instances are classified into operations 

under normal conditions and anomalies, with the latter now organized into nine categories. The anomalies are 

categorized according to their origin: historical real, simulated, or manually designed, covering 42 oil wells and 

27 variables, with data from sensors and valves over time. Table 1 presents the quantities of instances that make 

up the 3W dataset after its update. 

However, since the experiments in this study aim to evaluate the model's performance in real well cases, 

without any interference from simulated or manually designed data, as analyzed by Vargas [2], only historical real 

data were considered for training and testing the models, totaling 1,119 instances. 
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Table 1. 3W 2.0 dataset instances 

Instance Type Real Simulated Hand-Draw TOTAL  

0 - Normal Operation 594 0 0 594  

1 - Abrupt Increase of BSW 4 114 10 128  

2 - Spurious DHSV Closure 22 16 0 38  

3 - Severe Intermittence 32 74 0 106  

4 - Flow Instability 343 0 0 343  

5 - Rapid Productivity Loss 11 439 0 450  

6 - Rapid Restriction in CKP 6 215 0 221  

7 - Scaling in CKP 36 0 10 46  

8 - Hydrate in Production Line 14 81 0 95  

9 - Hydrate in Service Line 57 150 0 207  

TOTAL 1,119 1,089 20 2,228  

 

After the data collection and separation phase, preprocessing was carried out, which included exploratory 

data analysis. In this stage, visualizations were generated to identify patterns and eliminate missing values, 

ensuring the uniformity and representativeness of the database. Based on this initial analysis, it was decided to 

consider only 4 of the 27 sensors present in the well database for model training and testing: P_PDG, P_TPT, 

T_TPT, P-MON-CKP. Additionally, the feature CLASS was used to determine the performance metrics of fit on 

test results. This selection was made to simplify the model and reduce its computational time by avoiding the 

consideration of features not influencing the detection of unexpected events, which often remained constant. 

Although this study analyzes two different LOF-based approaches, the data preprocessing procedures were 

standardized for both cases, so that the model's categorization could detect deviations in well behavior. This 

standardization ensures a fair comparison since both approaches used the same data treatment. 

For both scenarios, 60% of the normal data from each instance was used for training, and the remaining 

normal data was used for validation. Anomalous periods were only used in the testing phase of the models. 

Additionally, a sliding window technique was employed solely during model validation, so that training was done 

with 60% of the normal data and validation occurred within temporal windows. 

The data was normalized using the MinMaxScaler, a preprocessing technique that adjusts the values of each 

feature to a specific range, typically between 0 and 1. The MinMaxScaler was applied using the scikit-learn 

(sklearn) library (Pedregosa et al. [10]), with fit_transform on the training set and the transform method was 

applied to the test set, using the same scaling parameters defined from the training set. Additionally, a noise value 

of 0.05% of the data mean was applied to eliminate potential artifacts or small fluctuations that could be incorrectly 

interpreted as anomalies, thereby contributing to the robustness and reliability of the anomaly detection model. 

3.1 Proposed approach 

Two scenarios were studied for analysis and comparison with other anomaly detection models present in the 

literature. 

● In Scenario 1, the 3W database was used after treatment and preprocessing, with the data being fed 

directly into the LOF detection model. 

● In Scenario 2, the dataset was initially applied to the convolutional autoencoder model with the goal 

of generating new reconstructed input data that closely resembles the original data but with reduced 

dimensions, which were then applied to the LOF. This approach allows the autoencoder to 

significantly reduce computational time and simplify the model by effectively lowering the data 

dimensionality.  

This approach aims to improve prediction results, as the combination of autoencoders with machine learning 

models has proven effective in identifying temporal patterns, as demonstrated by previously mentioned studies. 

The proposed model in this work for Scenario 1 is the LOF, a simplified model that mainly relies on the 

optimization of hyperparameters to achieve the best possible fit. After preprocessing the data, the Grid Search 

function from the scikit-learn library was applied, which performs cross-validation to evaluate the performance of 

each hyperparameter combination and select the best configuration. After analyzing the most relevant 

hyperparameters, shown in Tab. 2, the values that achieved the best results were adopted.  
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Table 2. Parameters analyzed using the Grid Search function by Pedregosa et al. [10] (best results in bold). 

Model N_neighbors Life_size Metric distance 

Local Outlier Factor 5; 15; 25; 50; 100 5; 10; 15; 20 Euclidean; Minkowski; 

Manhattan; Hamming 

 

Thus, the hyperparameters adopted for the model were defined as follows: n_neighbors as 25, metric as 

euclidean for distance calculation, with a sliding window of 10 seconds. 

Thus, after training the model (LOF) using the scikit-learn library, the testing phase was conducted. Each test 

instance was classified as 0 for normal instances and 1 for anomalies, based on the model's predictions. 

Subsequently, to verify the effectiveness of the model, its predictions were compared with the "CLASS" column 

present in the well database, which indicates its condition at each point in time. 

In constructing the second detection model, a convolutional autoencoder was employed. This convolutional 

autoencoder consists of two encoders layers, with 32 filters in the first layer and 16 in the second, each with a 

kernel size of 7, "same" padding to maintain dimensionality, and strides of 2 to reduce data dimensionality, using 

Rectified Linear Unit (ReLU) activation to capture the main features. The model then includes two decoder layers 

that reconstruct the data, reversing the convolution process, with the same filter and kernel size characteristics. 

However, the final layer uses a sigmoid activation to ensure that the reconstructed outputs remain within the same 

range as the input data. 

The model was trained with the Adam optimizer and the mean squared error (MSE) loss function for 50 

epochs, with a batch size of 32, employing an early stopping mechanism to avoid overfitting. After training, the 

encoding part of the autoencoder was used to extract reduced representations of the data. These latent 

representations serve as input for the training of the Local Outlier Factor algorithm, which uses this compact and 

essential representation of the data to identify anomalies, reducing the computational complexity of the process. 

Thus, autoencoders are used for data preprocessing and dimensionality reduction of the input variables, facilitating 

the subsequent application in the LOF, which shares the same characteristics as in Scenario 1. 

3.2 Evaluation indicators 

Performance metrics are highlighted and used as a benchmark to assess the effectiveness of classification 

algorithms in anomaly detection. Therefore, a set of metrics was applied to compare and evaluate the unsupervised 

machine learning algorithm studied in this paper, based on other authors in the literature who assess classification 

models for anomaly detection. To do this, data from the confusion matrix were used to summarize the models' 

performance based on their numbers of true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN), which range from 0 to the total number of observations, with higher TP and TN values indicating 

better performance. 

Thus, the performance metrics highlighted below were calculated from the confusion matrix: 

− Accuracy (ACC) takes into account all normal and faulty samples and ranges from 0 to 1. ACC can be 

calculated using eq. (1) as follows: 

 𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑛𝑡𝑜𝑡𝑎𝑙
.  (1) 

− Precision (PR) refers to the ratio of true positives to false negatives and ranges from 0 to 1. PR can be 

calculated using eq. (2) as follows: 

 𝑃𝑅 =  
𝑇𝑃

𝑇𝑃−𝐹𝑃
.  (2) 

− Sensitivity (S), also known as the true positive rate or recall, assesses the ability to correctly detect 

positive instances in a dataset. It can be calculated using eq. (3) as follows: 

 𝑆 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
.  (3) 

− The F1 score is a harmonic mean between S and PR, and can be estimated using eq. (4) as follows: 

 𝐹1 =  
2 × 𝑃 × 𝑆

𝑃+𝑆
.  (4) 

Based on the performance evaluation metrics applied by Vargas [2], the performance assessment of the 

detection model in this study will focus on precision and sensitivity. Thus, the F-Measure was chosen as the 
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primary performance metric for evaluating the models. 

4  Results and dissemination 

The following results are the evaluations of the two models proposed in this study using the public database 

provided by Vargas [2].  The models were evaluated based on their respective metric values for all 9 cases of 

anomalies present in the database.  

Additionally, the experiments were conducted following certain rules established in the benchmark for 

anomaly detection proposed by Vargas [2]: 

● Only instances with normality periods longer than 20 minutes were used in the experiment. As a 

result, classes 3-Severe Intermittence and 4-Flow Instability were not tested because they only 

contain periods of anomalies. 

● The number of training and testing rounds is equal to the number of instances, which, according to 

Tab. 2, resulted in approximately 150 cases of 7 anomalies. 

● In each round, the performance metrics of the models, including F1 Score, accuracy, and precision, 

were computed, and the average of these metrics is presented for model comparison and comparison 

with previous works. 

Thus, the two models studied and their respective results can be observed in Tab. 3 and Tab. 4, initially 

containing the values of F1 Score, accuracy, and precision, as well as the sum of False Positives (FP), False 

Negatives (FN), True Positives (TP), and True Negatives (TN) for each instance separated by anomalies. 

Subsequently, the average F1 Score for each instance of each anomaly is presented for comparisons with previous 

works presented in Tab. 5. 

Table 3. Performance metrics per model studied and per anomaly. 

Anomalies and Models TN TP FP FN F1 ACC PR Time  

1-Abrupt 

Increase of 

BSW 

LOF 145648 51749 471 23050 0.8148 0.8935 0.9910 91 min  

AE+ LOF 146560 71755 152 2297 0.9842 0.9889 0.9979 25 min 

2-Spurious 

DHSV Closure 

LOF 81863 103430 95 6935 0.9676 0.9634 0.9991 35 min 

AE+ LOF 77482 104286 4704 3170 0.9850 0.9585 0.9568 15 min 

5-Rapid 

Productivity 

Loss 

LOF 32048 114931 36 35113 0.8674 0.8070 0.9997 107 min 

AE+ LOF 32084 113318 0 36242 0.8621 0.8005 1.0000 39 min 

6-Rapid 

Restriction in 

CKP 

LOF 30208 0 0 18331 0.0000 0.6223 0.0000 20 min 

AE+ LOF 30174 14772 2109 2829 0.8568 0.9010 0.8751 4 min 

7-Scaling in 

CKP 

LOF 94392 116755 285 189561 0.5516 0.5266 0.9976 80 min 

AE+ LOF 80303 242534 14374 63304 0.8620 0.8061 0.9441 33 min 

8-Hydrate in 

Production Line 

LOF 245426 703968 986 14368 0.9892 0.9841 0.9986 491 min 

AE+ LOF 234888 671259 11524 46586 0.9585 0.9397 0.9831 194 min 

9 - Hydrate in 

Service Line 

LOF 72538 108331 197 14071 0.9382 0.9269 0.9982 50 min 

AE+ LOF 67649 70573 5086 51560 0.7136 0.7093 0.9328 22 min 

TOTAL 
LOF 702123 1199164 2070 301429 0.8877 0.8623 0.9983 874 min 

AE+ LOF 669140 1288497 37949 205988 0.9135 0.8892 0.9714 330 min 

 

The results of the two models analyzed in this study showed satisfactory performance in detecting important 

events for the seven classes present in the 3W database. 

The LOF model showed consistent results. In previous studies, LOF achieved an F1 score of 0.870 for the 

best instance in Fernandes Junior et al. [4] and 0.9969 for class 2 cases, as studied by Aranha et al. [9]. However, 

in this study, the LOF results were notable for the following anomalies: Anomaly 2 (Spurious DHSV Closure): F1 

score of 0.9676, Anomaly 8 (Hydrate in Production Line): F1 score of 0.9892, Anomaly 9 (Hydrate in Service 
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Line): F1 score of 0.9382, Anomaly 1 (Abrupt Increase of BSW): F1 score of 0.8148 e Anomaly 5 (Rapid 

Productivity Loss): F1 score of 0.8674. These results highlight the effectiveness of LOF in detecting important 

events. However, it showed moderate performance for Anomaly 7 (Scaling in CKP) with an F1 score of 0.5516 

and completely failed to detect anomalies in class 6 (Rapid Restriction in CKP), where it could not identify any 

abnormalities in the data. 

In contrast, the Convolutional Autoencoder + LOF model outperformed the LOF model in four of the seven 

studied anomalies, demonstrating robust and consistent performance. Its highest F1 score was observed for 

Anomaly 1 (Abrupt Increase of BSW), with a value of 0.9842. On the other hand, the LOF model achieved the 

best results in Anomalies 5 (Rapid Productivity Loss), 8 (Hydrate in Production Line), and 9 (Hydrate in Service 

Line), proving effective in detecting these specific classes of anomalies. 

However, another important metric in the event detection process is the computational time required for 

model processing. In this aspect, the Convolutional Autoencoder + LOF model significantly stood out. The total 

processing time for the autoencoder was 330 minutes, compared to 874 minutes for the LOF model, representing 

an approximate reduction of 62.22% in computational time. 

Additionally, the Convolutional Autoencoder + LOF model also showed a superior global F1 score for the 

seven anomalies, achieving 0.9135 compared to 0.8877 obtained by the LOF model. These results indicate that 

the Convolutional Autoencoder + LOF not only offers superior performance in terms of precision for various 

anomalies but is also more efficient in terms of computational time, making it a more effective choice for anomaly 

detection in complex databases 

Table 4.  Means and standard deviation of the metrics considered, by algorithm. 

Anomalies and Models Mean F1 STD 

1-Abrupt Increase of BSW 
AE + LOF 0.9845 0.0078 

LOF 0.8887 0.1569 

2-Spurious DHSV Closure 
AE + LOF 0.9572 0.0901 

LOF 0.9479 0.2069 

5-Rapid Productivity Loss 
AE+ LOF 0.8468 0.0766 

LOF 0.7397 0.7828 

6-Rapid Restriction in CKP 
AE+ LOF 0.6883 0.2116 

LOF 0.0000 0.0000 

7-Scaling in CKP 
AE+ LOF 0.7968 0.1250 

LOF 0.6980 0.3944 

8-Hydrate in Production Line 
AE+ LOF 0.9538 0.0344 

LOF 0.9865 0.0078 

9 - Hydrate in Service Line 
AE+ LOF 0.6578 0.1221 

LOF 0.9312 0.0661 

TOTAL 
AE+ LOF 0.8520 0.0954 

LOF 0.7417 0.2307 

Table 5. Comparison with related work. 

Author Analyzed event Model Best F1 score (STD) 

Vargas [2] All anomalies with mean and 

standard deviation of metrics 

Isolation Forest 0.727 (0.182) 

Fernandes Junior et 

al. [4] 

All anomalies with mean and 

standard deviation of metrics 

LOF 0.870 (0.14) 

Autoencoder 0.590 (0.14) 

This Paper All anomalies with mean and 

standard deviation of metrics 

LOF 0.9865 (0.0078) 

Autoencoder+LOF 0.9845 (0.0078) 
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According to Tab. 4 and Tab. 5, both the Local Outlier Factor (LOF) and the combined Convolutional 

Autoencoder + LOF models proposed in this study outperformed the models from previous works. The LOF 

achieved an F1 Score of 0.9865, while the Convolutional Autoencoder + LOF reached an F1 Score of 0.9845. 

These results are notably superior to those of the Isolation Forest by Vargas [2] and the autoencoder by Fernandes 

Junior et al. [4], indicating the effectiveness of the proposed models for anomaly detection in the analyzed classes.  

5  Conclusions 

This study conducts a quantitative comparative analysis of anomaly detection techniques in offshore oil 

production wells, using a public database provided by Vargas [2]. Two distinct scenarios for detecting significant 

events were investigated: the first using the single-class classifier, Local Outlier Factor, and the second combining 

Convolutional autoencoder with Local Outlier Factor. 

The experiments were conducted by applying these algorithms to the dataset, using seven different classes of 

anomalies for training and validating the models. The main evaluation metric was the F1 score, used to assess the 

effectiveness of the models in detecting anomalies. Statistical test results indicated that the Convolutional 

Autoencoder + LOF combination performed better compared to the model in scenario 1, which used only LOF. 

Specifically, the Autoencoder + LOF model achieved an average F1 score of 0.8520 across the seven anomaly 

classes and an F1 score of 0.9155 considering the total amount of data tested. 

These results suggest that the Convolutional Autoencoder + LOF model is more suitable in terms of precision 

for various anomalies and more efficient in terms of computational time, with a reduction of approximately 62.22% 

compared to scenario 1. Although scenario 1 presented slightly lower results, both models can be considered robust 

and efficient tools for the analysis and detection of anomalies in complex databases. 
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