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Abstract. Computational reservoir simulation is crucial for understanding fluid flow in geological formations,
relying on parametric relations such as relative permeability (Krel) for modeling multiphase flow in porous media.
These models often involve empirical parameters, necessitating parameter estimation and uncertainty quantifica-
tion. However, sensitivity and linear dependence analysis are often neglected, especially in core flooding exper-
iments. This study focuses on analyzing the reduced sensitivity coefficient of relative permeability parameters,
using the LET model, in unsteady-state core-flooding experiments under different conditions. The experiments
involve axial water injection into an oil-saturated plug, measuring the differencial pressure between the plug in-
let and outlet and accumulated volume of oil produced. Based on experimental data, computational simulations
were conducted using the Cydar® software to optimize the relative permeability and capillary pressure. The dy-
namic behavior of the relative permeability parameters’ local sensitivity is showcased, alongside their dimensional
comparison.
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1 Introduction

The development of advanced computational models enables the simulation of complex processes, providing
precise analysis in porous media. The application of computational simulation in reservoir engineering is crucial
for understanding reservoir geology and fluid flow analysis, enabling the development of advanced models and
accurate predictions of fluid behavior in porous media [1].

These simulations use parametric models to represent the complex dynamics of characteristics, emphasizing
the importance of relative permeability (Krel), a key rock-fluid parameter required for continuous-scale modeling
of multiphase flow dynamics in porous media. Although different empirical formulations exist to characterize the
water-oil relationship, the construction of these models generally relies on observations, theoretical reasoning, and
heuristic concepts [2] .

Therefore, it becomes necessary to quantify the uncertainty associated with relative permeability. However,
to achieve a satisfactory quantification of uncertainty, it is essential to investigate some aspects of these parameters,
particularly regarding linear dependence and sensitivity.

Local sensitivity analysis can be useful for a variety of applications. For example, improve understanding of
the relationships between input and output variables [3], determine which parts of the output variance are due to
different inputs through index estimation [4], obtain essential information about the model’s behavior, structure,
and response to changes in input variables [5], test the robustness of model results in the presence of uncertainty [6],
determine the influence of each parameter on the state variable and, consequently, its relevance in the optimization
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process [7] and to enhance decision-making processes [8].
Methods like local sensitivity analysis provide means to explore the variability of model outputs in response

to input factors, contributing to more reliable and precise results in petroleum reservoir modeling. In the afore-
mentioned context of Krel, the model proposed by Lomeland et al. [9] is quite relevant due to its usual application
on multiphase flow simulation in porous media. The LET model was developed to address the need to describe
relative permeability curves across the entire saturation range, encompassing both low and high water saturations.

In this context, this study aims to analyze the reduced sensitivity coefficient of Krel, parameterized using the
LET model, in unsteady-state core flooding experiments, taking into account multistep and single-step operating
conditions, as well as capillary pressure parameterized by Log(beta) function [10].

2 Methodology

In this section, one describe the methodology applied in this study, focusing on the local sensitivity analysis
method regarding the relative permeability parameters (Krel), considering experimental data including the pressure
differential between water inlet and oil and water outlet (∆P ), along with the cumulative production (NP), and
parameterized using the LET model. Additionally, the methodology takes into account the influence of capillary
pressure, also parameterized by Log(beta) function [10].

2.1 Solution model

Inverse modeling is a fundamental technique for parameter inference in complex systems. In the context of
two-phase flow, it allows the determination of reservoir properties, such as permeability and capillary pressure,
from production and pressure data [11] [12].

Two-phase flow equations are derived from the mass conservation laws for each phase and are complemented
by the generalized Darcy’s law for two-phase flow. The interaction between phases is governed by capillary pres-
sure and the relative permeability of each phase. For two-phase flow in porous media, these equations formulate
the volumetric flux vα(normalized by cross-sectional area) of phase where (α = {w, n}) for wetting w and non-
wetting phase n [12, 13], expressed as:

uw = −kkrw(S)

µw

∂pw
∂x

, uo = −kkro(S)

µo

∂po
∂x

(1)

where uw and uo represent the velocities of the wetting and non-wetting phases, respectively. The absolute per-
meability of the porous medium k determines the overall flow characteristics. The relative permeabilities krw(S)
and kro(S) for the wetting and non-wetting phases vary with saturation S. The dynamic viscosities µw and µo

correspond to the wetting and non-wetting phases. The pressures pw and po refer to the wetting and non-wetting
phases. This formulation does not account for gravity effects, which would require adding gravity to the pressure
gradient.

The continuity equation represents the conservation of mass, where changes in saturation over time t are
related to the divergence of the flow [14]. This relation is expressed as:

ϕ
∂Sα

∂t
+

∂vα
∂x

= 0 (2)

where ϕ stands for the porosity of the medium, Sα the saturation of phase α, and vα the volumetric flux of phase
α.

In the case of incompressible flow, the total flux vT = vw + vn is constant, and the sum of the wetting
and non-wetting phase saturations Sw + Sn = 1. Additionally, the pressure difference between the wetting and
non-wetting phases (pn − pw) is related to the capillary pressure:

Pc = pn − pw (3)

In this paper, the relative permeability and capillary pressure are functions of saturation only, i.e., kr,α ≡
kr,α(Sw) and pc ≡ pc(Sw) [15, 16]. The time evolution of Sw(x, t) can be computed by combining governing
Eqs. (1)–(3). In that process, the fractional flow fw is defined as:

fw =
λw

λw + λn
=

1

1 +
kr,n/µn

kr,w/µw

(4)

Combination of Eq. (1)-(4) leads to which describes the evolution of Sw(x, t) in space and time.

ϕ
∂Sw

∂t
+

∂

∂x
[fwvT ] +

∂

∂x

[
fwλn

∂pc
∂x

]
= 0 (5)
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In this work, Eq. (5) is solved numerically. From the numerical solution the production curve (Eq. 6)

Q(t) =

∫ L

0

Sw(x, t) dx (6)

can be computed by integrating the saturation profile over the computational domain in x, utilizing the concept of
mass conservation [15].

2.2 Relative permeability model

Lomeland et al. [9] proposed the concept of relative permeability being dependent on saturation functions, and
more recent studies have further refined these models, incorporating additional parameters to enhance predictive
capabilities [2, 9, 17]. Relative permeability is typically assumed to be a function of saturation kr,α(Sw). The
reduced saturation Ŝw is expressed as,

Ŝw =
Sw − Swi

1− Sor − Swi
(7)

where saturation Sw is re-scaled to the range between irreducible wetting saturation Swi and residual non-wetting
phase saturation Sor [17].

For water-oil flow, the proposed correlation is described by three parameters: Lw
o , Ew

o , Tw
o , where the sub-

script o denotes the oil phase, and the superscript w denotes the water phase. The correlation for oil and water
relative permeability with water injection is then given by:

kro(Sw) = kwro
(1− Ŝw)

Lw
o

(1− Ŝw)L
w
o + Ew

o Ŝ
Tw
o

w

, krw(Sw) = korw
Ŝw

Lo
w

Ŝ
Lo

w
w + Eo

w(1− Ŝw)T
o
w

(8)

where only the parameters Swi, Sor, korw, and kwro have physical meaning, while the parameters L, E, and T are
empirical and describe the lower part, slope, and upper part of the curve, respectively [9].

This model was developed to capture variations in behavior across the entire range of water saturation. Ex-
perimental results have demonstrated the model’s accuracy in interpreting data over a wide range of saturations
[2].

The LET model was used to parameterize the study, which included experimental data such as the NP and ∆P
between the water inlet and the oil/water outlet. In addition, the capillary pressure —which was also parameterized
using the LET model— was taken into account to optimize the core flooding data.

2.3 Datasets

The data analyzed in this study was obtained from a core-flooding experiment conducted under controlled
laboratory conditions, including atmospheric pressure, room temperature, and the use of mineral oil. The experi-
ment was performed in transient regime, where one fluid is displaced from the porous medium by injecting another
fluid at a constant flow rate or constant pressure. The dataset from the Sample BB1 described in Table 1.

Table 1. Summary of physical and wettability properties for Sample BB1

Parameter/Property Sample BB1 Unit Parameter/Property Sample BB1 Unit

Lithology Buff Berea - Oil density 0.850 g/cm³

Porosity 0.227 - Core length 4.84 cm

Absolute Permeability 602 mD Core diameter 3.82 cm

Water viscosity 1.480 cp Swi 18.71 %

Oil viscosity 4.800 cp Wettability regime Water-wet -

Water density 1.142 g/cm³
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2.4 Local Sensitivity Analysis Method

Sensitivity analysis is an essential technique for understanding how variations in a model’s parameters affect
its state variables. This analysis utilizes the Jacobian matrix, which consists of the partial derivatives of the state
variables with respect to the model parameters. The Jacobian matrix, J, is defined as,

Jij =
∂Wi

∂θj
(9)

where Wi represents the i-th state variable and θj represents the j-th parameter. This approach allows quantifying
the sensitivity of each state variable to changes in each parameter, providing valuable insights for model calibration
and robustness [18].

To assess the sensitivity of the state variable concerning the analyzed parameter, the reduced sensitivity
coefficient of relative sensitivity Xθj is calculated by differentiating the state variable with respect to the parameter
and multiplying this derivative by the parameter value. Equation 9 can be approximated using a central difference
scheme [19]. In this work, ϵ = 10−3.

Xθj = θj
∂W

∂θj
≈

Wi(θ1, θ2, . . . , θj + ϵθj , . . . , θNpar)−Wi(θ1, θ2, . . . , θj − ϵθj , . . . , θNpar)

2ϵ
(10)

The commercial software Cydar® [10]was used to optimized the relative permeability parameters using ex-
perimental data. These adjustments enabled a local sensitivity analysis of Sw(x, t), ∆P , and NP curves. The
objective was to assess the impact of each parameter on the final results, highlighting the relative significance of
each component in result variability. The resulting data were then analyzed about the computed sensitivity indices,
with particular attention to any potential correlations or differences between various sensitivity analysis techniques.

3 Results and Discussion

3.1 Relative Permeability Optimization via Cydar

The following visual representations in Fig. 1 were generated in Cydar® as a result of applying this method:

Figure 1. Optimization results using Cydar®: (a) Relative Permeability Curve, (b) Pressure differential between
water inlet and oil and water outlet (∆P ) (c) Cumulative production (NP), and (d) Water Saturation Curve.

Figure 1a shows the relationship between water saturation and the relative permeability of oil and water. As
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water saturation increases, the relative permeability of oil decreases, reflecting the progressive replacement of oil
by water in the reservoir pores [20]. Figure 1b details the pressure difference (∆P ) over time, where the “bumps”
represent stages of pressurization and stabilization. Each abrupt increase in pressure suggests the application of a
new injection phase or operational adjustment, aiming to maintain the efficiency of fluid displacement [21]. Figure
1c illustrates the cumulative production (NP), indicating a rapid initial increase followed by stabilization, common
in production processes where initial pressure drives high production that eventually balances out [22]. Finally,
Figure 1d shows the water saturation profile along the distance, indicating how the water advances through the
reservoir.

3.2 Reduced Sensitivity Coefficient Analysis

In this section, Figs. 2, 3, and 4 present the reduced sensitivity coefficients. On Figure 2 illustrates the reduced
sensitivity coefficients of Sw(x, t) at various dimensionless positions within the sample (X = 0.1, 0.5, 0.9). On the
other hand, Fig. 3 and 4 shows, respectively, the reduced sensitivity coefficients of NP and ∆P .

3.2.1 Reduced Sensitivity Coefficient of Water Saturation

On Fig. 2, an analysis of the reduced sensitivity coefficients of Sw(x, t) with regard to parameters Lw and
Lo is presented (Fig. 2a), Ew and Eo (Fig. 2b), and Tw and To (Fig. 2c). Considering the reduced sensitivity
coefficient of saturation at three dimensionless positions (X = 0.1, 0.5, 0.9), it can be observed that in Figure 2a, the
parameter Lw shows no significant sensitivity throughout the experiment duration. In contrast, Lo stands out due to
its maximum sensitivity variation at 25 minutes from the start of the experiment and maintains non-zero sensitivity
until the end, indicating its continuous importance throughout the process, albeit with reduced magnitude. In
Figure 2b, parameters Ew and Eo show maximum sensitivity variation at 25 minutes, both becoming insensitive
by 600 minutes, indicating that after a certain time, variations in these parameters have reduced or no impact on
Sw(x, t). In Figure 2c, similar to the behavior of Lo, Eo, and Ew, parameter To also shows maximum sensitivity
variation at the start of the experiment, becoming insensitive by 400 minutes, and the reduced sensitivity coefficient
for Tw shows irrelevant sensitivity throughout the experiment. It is worth noting that the positions at the end of
the samples exhibit higher sensitivity. Specifically, the X = 0.9 position, where water saturation is most sensitive
to the parameters under analysis, is followed by positions X = 0.5 and X = 0.1.

Figure 2. Reduced Sensitivity Coefficiente of Water Saturation

3.2.2 Reduced Sensitivity Coefficient of NP

On Figure 3, depicts an analysis of the reduced sensitivity coefficients of NP regarding the parameters Lw
and Lo (Fig. 3a), Ew and Eo (Fig. 3b), and Tw and To (Fig. 3c). Given the reduced sensitivity coefficient of
NP, in Figure 3a, parameters Lw and Lo stand out with maximum sensitivity variation at 10 and 25 minutes from
the start of the experiment, respectively. It is also noted that Lw becomes insensitive by 200 minutes, while Lo
maintains non-zero sensitivity until the end, indicating its continuous importance throughout the process, albeit
with reduced magnitude. In Figure 3b, parameters Ew and Eo similarly show maximum sensitivity variation at 25
minutes from the start of the experiment, becoming insensitive by 1000 and 1200 minutes, respectively. In Figure
3c, it is observed that parameter Tw exhibits a new maximum variation in sensitivity as the “bumps” occur (Fig.
1c), while parameter To shows maximum variation at 10 minutes and becomes insensitive by 200 minutes.
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Figure 3. Reduced Sensitivity Coefficiente of NP

3.2.3 Reduced Sensitivity Coefficient of ∆P

On Fig. 4, an analysis of the reduced sensitivity coefficients of ∆P is presented with respect to the parameters
Lw and Lo (Fig. 4a), Ew and Eo (Fig. 4b), and Tw and To (Fig. 4c). In Fig. 4a, parameter Lo shows a new
variation in sensitivity as “bumps” occur (Fig. 1c), with maximum variations at 800 minutes and again at 1000
minutes, while parameter Lw exhibits maximum variation in the early minutes of the experiment and becomes
insensitive at 50 minutes. Fig. 4b demonstrates that parameters Ew and Eo similarly show the influence of
“bumps” (Fig. 1c) on a reduced scale, remaining sensitive throughout the experiment. In Fig. 4c, it was found that
Tw and To have maximum variation at 25 minutes and become insensitive by 600 minutes.

Figure 4. Reduced Sensitivity Coefficiente of ∆P

4 Conclusions

This study investigated the sensitivity analysis of relative permeability parameters using the LET model in
unsteady-state water injection experiments. The methodology combined experimental data with computational
simulations to optimize relative permeability and capillary pressure. Optimization using Cydar® [10] showed
excellent agreement between experimental data and simulations. The reduced sensitivity coefficient of Sw(x, t)
at the three dimensionless positions considered (X = 0.1, 0.5, 0.9), four sensitive parameters were identified: Lo,
To, Eo, and Ew, which stood out due to the maximum variation in sensitivity at 25 minutes from the start of
the experiment. The remaining two parameters, Lw and Tw, did not show relevant sensitivity throughout the
duration of the experiment. It was observed that To, Eo, and Ew become insensitive at 400, 600, and 600
minutes, respectively, and that Lo exhibits non-zero sensitivity until the end of the experiment, albeit with reduced
magnitude.

Considering the reduced sensitivity coefficient of NP, the parameters: Lo, To, Eo, Lw, and Ew, have a
similar behavior to the reduced sensitivity parameters of saturation, which stand out due to the maximum variation
in sensitivity at 25 minutes into the experiment, except for the parameter Lw, which has its maximum variation
at 10 minutes from the start of the experiment. The sixth sensitive parameter, Tw, was observed to have a new
maximum variation in sensitivity as the “bumps” occur. It was observed that Lw, Ew, Eo, and To become
insensitive at 200, 1000, 1200, and 200 minutes, respectively, and that Lo exhibits non-zero sensitivity until the
end of the experiment.
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Throughout the experiment, it is observed that the reduced sensitivity of ∆P , indicates that the parameters
Lo, To, Eo, and Ew are more sensitive compared to the parameters Lw and Tw. For the parameter Lo, it is noted
that as “bumps” occur, there is a new variation in sensitivity, with maximum variations at 800 minutes and again
at 1000 minutes. The parameter Lw becomes insensitive at 50 minutes. On a reduced scale, the same behavior
is observed for the parameters Ew and Eo, which also show the influence of “bumps”, remaining sensitive all
through the experiment, although with non-zero sensitivity but of reduced magnitude. It was found that Tw and
To have maximum variation at 25 minutes and become insensitive at 600 minutes, indicating that after a certain
time, variations in these parameters have reduced or no impact on ∆P .

Thus, the proposed method for conducting reduced sensitivity coefficient analyses provided a detailed un-
derstanding of the behavior of LET parameters during core flooding experiments. The identification of the most
sensitive parameters allowed focusing on those with the greatest impact, optimizing the accuracy and efficiency
of the model. This method not only improves the reliability of experimental results but also has the potential to
reduce the time and resources needed for future experiments.
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