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Abstract. In engineering, professionals must understand the properties and performance of specific materials 
before exposing them to the conditions of a particular application. In this context, engineers and scientists have 
been seeking materials with unique properties that can withstand extreme adversities while responding with high 
performance to the imposed challenges. Heat transfer studies are essential and have been extensively explored due 
to their relevance in everyday life, such as thermal insulation systems and electronic device applications. The 
finite-volume theory was first introduced in 2003 using Cartesian coordinates. It establishes continuity and 
boundary conditions through the faces of the discretized analysis domain in a surface-averaging sense. The theory 
also satisfies flux balance equations in the subvolumes in a volume-averaged sense. Temperature fields are 
approximated by second-degree polynomials expressed in the local coordinates of the subvolumes. This work 
demonstrates the application of finite-volume theory to a two-dimensional thermal problem, using the 
FVT2DTHERMAL software to model heat transfer efficiently. The code closely matches analytical results, shows 
computational efficiency, and allows for adjustments in boundary conditions. 
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1  Introduction 

With technological advancements, heat transfer problems have gained prominence in engineering, as industrial 
processes often involve equipment that exchanges heat with the environment. Additionally, manufacturing 
industries, such as automotive and aerospace, require this knowledge to determine the best materials for developing 
components. Incropera et al. [1] state that one of the primary objectives of heat conduction analysis is to determine 
the temperature field within a medium due to the conditions imposed on its boundaries. In other words, the goal is 
to understand the temperature distribution, which represents how temperature varies with position within the 
medium. 

Aiming to understand how temperature behaves throughout a material, one can resort to laboratory experiments, 
analytical solutions, or numerical models. Although they provide precise data, laboratory experiments have 
disadvantages, such as cost and the inability to replicate the conditions the material will face in practice. Analytical 
solutions, on the other hand, require time for resolution, and, in many cases, the problems are governed by complex 
differential equations and boundary conditions, which makes the analytical solution impractical. In this context, 
engineers turn to numerical modeling, which closely approximates the expected results with considerable 
accuracy. Veronese et al. [2] state that numerical approximation techniques have gained ground over 
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Figura 1: Discretized analysis domain in rectangular subvolumes and local coordinate system of a generic subvolume. 

experimentation and analytical methods due to the increasing need for quick accurate solutions. Experimentation 
is almost always time-consuming and costly, and the expenses for acquiring and calibrating equipment are 
enormous for each new situation, while classical analytical methods have limitations. 

The finite-volume theory originates from higher-order theory for functionally graded materials. Bansal and Pindera 
[3] presented the reformulation of the Higher-Order Theory for functionally graded materials, simplifying domain 
discretization and implementing a new approach for local and global matrices assemblings. In 2007, Cavalcante 
et al. [4, 5] verified the efficiency of this new technique by analyzing its results in thermal and mechanical 
problems. However, despite the advantages presented by numerical methods, it is necessary to use computational 
resources that drastically reduce processing time, especially in models with many subvolumes that require a 
significant amount of time to present results, as illustrated by Araújo et al. [6]. 

This work employs the MATLAB® platform to present a tool based on the finite-volume theory for analyzing the 
temperature field in a two-dimensional domain. The process spans domain discretization to post-processing. The 
technique includes a modified symmetric thermal conductivity matrix and MATLAB® advanced resources, 
significantly reducing computational cost compared to previous conventional algorithms. Details about the 
implementation can be found here. 

2  The Finite-Volume Theory (FVT) 

This technique employs the volume average of the different fields that define the material/solid behavior and 
imposes boundary and continuity conditions between adjacent subvolumes in a surface-averaged sense. Moreover, 
the heat conduction equation is satisfied in an averaged sense in the subvolumes of the discretized analysis domain, 
and the subvolume's temperature field is modeled by second-order polynomials defined in local coordinates [7-9]. 

2.1 Discretization and displacement field representation 

The Figure 1 shows a rectangular solid subdivided in 𝑁௦ = 𝑁ఉ𝑁ఊ rectangular subdomains called subvolumes. 𝑁ఉ 
and 𝑁ఊ indicate the number of subdivisions corresponding to the intervals 0 ≤ 𝑥ଵ ≤ 𝐿 and 0 ≤ 𝑥ଶ ≤ 𝐻, 
respectively. Each subvolume can be denoted by a single index 𝑠 (1 ≤ 𝑠 ≤ 𝑁௦) or by a pair of indexes 𝛽 = 1, … , 𝑁ఉ 
and 𝛾 = 1, … , 𝑁ఊ, where 𝑠 can be evaluated from 𝛽 and 𝛾. The subvolume (𝛽,𝛾) occupies the position 𝛽 in the 
horizontal direction and the position 𝛾 in the vertical direction, or 𝑠 = 𝛾 + (𝛽 − 1)𝑁ఊ for the discretized domain 
of analysis. Here, we adopt the finite-volume theory for rectangular analysis domains discretized in rectangular 
subvolumes, as shown in fig. 1, and an incomplete quadratic temperature field representation in the subvolume 𝑠, 
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2.2 Local conductivity matrix 

The surface-averaged temperatures at the subvolume faces can be evaluated by the following expressions: 



D. T. Santos, M. A. A. Cavalcante, R. S. Escarpini Filho 

CILAMCE-2024 
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 
 

                                         𝑇ത (௦,) =
ଵ

ೞ
∫ 𝑇(𝑠)൫𝑥ଵ

(௦)
, ∓ ℎ௦ 2⁄ ൯

ାೞ ଶ⁄

ିೞ ଶ⁄
𝑑𝑥ଵ

(௦)
,  for  𝑝 = 1, 3                                                                                      (2) 

                                        𝑇ത (௦,) =
ଵ

ೞ
∫ 𝑇(௦)൫± 𝑙௦ 2⁄ , 𝑥ଶ

(௦)
൯

ାೞ ଶ⁄

ିೞ ଶ⁄
𝑑𝑥ଶ

(௦)
,  for  𝑝 = 2, 4                                                                                         (3) 

where 𝑇ത (௦,)

 
are the surface-averaged temperatures of a generic subvolume 𝑠. 

Employing the Fourier's law, the heat flux density vector of a generic isotropic subvolume 𝑠 can be expressed as 

shown: 
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where 𝜅௦ is the thermal conductivity and 𝜕𝑇(௦) 𝜕𝑥
(௦)

ൗ  is the temperature gradient for a generic isotropic subvolume 

𝑠.  

The normal surface-averaged heat flux densities occurring on the faces of a generic subvolume 𝑠 can be evaluated 

as follows: 
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The local system of equations of a generic subvolume can be expressed by: 
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of a generic subvolume 𝑠. The matrix 𝜿(ସ×ସ)
(௦)  is non-symmetric, fact that imposes a computational cost on the 

solution of the global system of equations employing the MATLAB® solver when compared to an approach based 

on the finite element method. Moreover, the surface-averaged temperatures are not associated with the normal heat 

fluxes occurring on the faces of the subvolume. This suggests viewing 𝜿(ସ×ସ)
(௦)  as a pseudo thermal conductivity 

matrix. A new local system of equations can be defined relating surface-averaged temperatures with the normal 

heat fluxes occurring on the faces of the subvolume 𝑠, as follows: 
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where 𝜿ഥ(ସ×ସ)
(௦)  = 𝑳(௦)𝜿(ସ×ସ)

(௦)  is the modified local thermal conductivity matrix, which is symmetric, resulting in a 

symmetric global thermal conductivity matrix, and 𝐿ଵ
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lengths of the subvolume 𝑠. 



An efficient Matlab code for two-dimensional heat transfer analysis applying the finite-volume theory. 

CILAMCE-2024 
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 
 

2.3 Global conductivity matrix assemblage 

The global thermal conductivity matrix is assembled considering the individual contribution of each subvolume 
of the discretized domain. If the solid is subdivided in 𝑁௦ = 𝑁ఉ𝑁ఊ subvolumes, the number of faces can be evaluate 

as 𝑁 = 𝑁ఉ൫𝑁ఊ + 1൯ + ൫𝑁ఉ + 1൯𝑁ఊ, which defines the size of the global system of equations. Based on the 
compatibility conditions for common faces, the expression that defines the global system of equations can be 
written as 

𝒒ഥ൫ே×ଵ൯ = 𝜿൫ே×ே൯𝑻ഥ൫ே×ଵ൯ (11) 

where 𝐓ഥ൫ே×ଵ൯ and 𝐪ഥ൫ே×ଵ൯ are the global surface-averaged temperature vector and the global normal surface-

averaged heat flux density vector, respectively, and the global conductivity matrix can be obtained by the following 

equation: 
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 are the temperature and normal heat flux compatibility matrices of the discretized 

analysis domain, respectively.  

The modified global system of equations can be written as: 
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(௦)  is the modified global conductivity matrix, obtained by 

summing the individual contribution of each subvolume of the discretized domain, where 𝑸൫ே×ଵ൯ is the global 

normal heat flux vector. 

3  Numerical Investigation 

The previous section presented the two-dimensional formulation of the finite-volume theory for the thermal 

problem. This section will introduce the classic problem to be investigated through an implementation in 

MATLAB® (FVT2DTHERMAL). The numerical investigation will focus on examining the convergence of the 

temperature field by comparing it with results obtained from an analytical solution. 

The convergence of the temperature field with mesh refinement was verified using a cross-sectional area in the 𝑥ଵ 

and 𝑥ଶ plane. The solid is homogeneous, with a thermal conductivity of 25 W/(m°C) (see Figure 2a), and is 

subjected to a uniform temperature of 100 °C on the bottom, top, and left edges. In contrast, the right edge is 

maintained at 200 °C. As illustrated in Figure 2b, the solid was discretized into a 50x50 mesh of subvolumes. The 

analytical solution for the temperature field was obtained by solving the Laplace equation using the standard 

Fourier series approach, as described by Zhong [10]. 

 

 

 

 

 

 

 

 

Figure 2: Problem definition: (a) investigated geometry and (b) discretization. 

Homogeneous Material 
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(a)                                                                                   (b) 
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The global temperature field in the plate was investigated with the boundary conditions described in Figure 2a. It 

was observed that meshes with small discretization did not provide satisfactory results; however, the discretization 

illustrated in Figure 2b resulted in a convergent solution with the analytical solution and a smooth temperature 

field. Figure 3a shows the global temperature field of the plate using the finite-volume theory, while Figure 3b 

presents the temperature field obtained through the analytical solution, which allows for verifying the quality of 

the obtained numerical result. Figures 4a-d illustrate the comparison between the analytical solution and the 

numerical results of the temperature field along cuts in the 𝑥ଵ and 𝑥ଶ directions. The temperature field along these 

cuts made in the plate matches perfectly with the analytical solution. Based on these results, it can be concluded 

that the heat transfer problem can be satisfactorily modeled and predicted using the finite-volume theory. 

 

Figure 3: Temperature field: (a) FVT with 50x50 mesh of subvolumes and (b) analytical solution. 

 

Figure 4: Comparison of the surface-averaged temperatures on the faces of the subvolumes with the results obtained from 
the analytical solution: (a) x2 = 0.50, (b) x2 = 0.78, (c) x1 = 0.50 and (d) x1 = 0.78. 

 

(a)                                                                           (b)                                                               

                            (a)                                                                            (b)                                                               

                            (c)                                                                            (d)                                                               
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4  Computational gain analysis using MATLAB® features 

The finite-volume theory has proven to be numerically efficient in obtaining the temperature field in two-
dimensional analyses. The algorithm developed in this work used the MATLAB® language and was initially 
composed only of basic programming commands. However, the goal is to provide an optimized code as an 
educational tool for the scientific community and students. In this regard, significant computational gains were 
observed in MATLAB® when advanced language features, such as vectorization and matrix sparsity, were 
incorporated into the algorithm, resulting in the code-named FVT2DTHERMAL. 

Initially, it was observed that the global thermal conductivity matrix was predominantly composed of null 
elements. The massive presence of zeros resulted in redundant operations that compromised the code's 
computational efficiency. The matrix sparsity technique was adopted to address this issue. The sparse command 
in MATLAB® allows for the compact definition of matrices, storing only non-zero elements and their respective 
positions. This approach optimizes memory usage and improves computational performance, especially for large 
matrices with a high proportion of zero elements. 

The FVT2DTHERMAL utilizes vectorization as a computational resource for code optimization. Instead of 
iterating over each node individually, the unique coordinates of the nodes are identified in a vectorized manner, 
allowing all points to be processed simultaneously and avoiding redundant calculations. The unique and 
accumarray functions efficiently accumulate the temperatures associated with each unique coordinate and 
calculate the average temperatures at the node. Vectorization reduces the need for explicit loops and 
simultaneously performs operations on entire vectors and matrices. This method simplifies the code and 
significantly improves computational performance, especially for large data sets, making the process faster and 
more efficient. Below is a code snippet that utilizes this resource: 

[coords_u, ~, dx] = unique(Tno(:, 1:2), 'rows', 'stable'); 

temperatures = accumarray(dx, Tno(:, 3), [], @sum); 

count = accumarray(dx, 1); 

m_temperatures = temperatures ./ count; 

Tno_M = [coords_u, m_temperatures]; 

The computational environment, in terms of programming language and machine, is defined as MATLAB® 
R2022b (64-bit) for Windows 11, with an Intel(R) Core(TM) 10th Gen i5-10210U 1.60 GHz processor and 16.0 
GB of DDR4 RAM. For the discretization illustrated in Figure 2b, the educational code FVT2DTHERMAL was 
evaluated regarding the time spent in the preprocessing, processing, and post-processing phases. The execution 
time for each of these phases is detailed in Table 1. 

Table 1. Computational performance in terms of execution times. 

Phase Execution time (s) 
Preprocessing 0.14 

Processing 0.72 
Post-processing 40.40 

Total time 41.26 

5  Conclusions 

This study developed and implemented an efficient MATLAB code for two-dimensional heat transfer analysis 
using finite-volume theory. The methodology involved discretizing the analysis domain, applying boundary 
conditions, and incorporating computational optimizations such as matrix sparsity and vectorization. The 
FVT2DTHERMAL code was tested against a classic heat transfer problem, and the results were compared with 
an analytical solution. The comparison revealed excellent agreement between the numerical and analytical results, 
confirming the proposed method's accuracy and the computational approach's robustness. 

Implementing advanced MATLAB features, particularly matrix sparsity and vectorization, significantly reduced 
the computational cost. This is especially notable in the processing of large-scale systems of equations, where the 
optimizations minimize redundant calculations and improve overall efficiency. As a result, FVT2DTHERMAL 
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proves to be an effective educational tool for learning heat transfer analysis and a practical and reliable option for 
professional applications. Its capability to manage complex boundary conditions and mesh refinement with 
minimal computational cost underscores its potential as a versatile tool for engineers seeking efficient solutions to 
thermal problems. 

Code availability. The authors are responsible for developing the code used in this work. The code can be accessed 
via the link: https://github.com/diogotiago04/FVT2D-THERMAL. The repository contains the instructions to 
replicate the two-dimensional heat transfer analysis described in this work. 

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the 
authorship of this work, and that all material that has been herein included as part of the present paper is either the 
property (and authorship) of the authors, or has the permission of the owners to be included here.  
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