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Abstract. This study introduces a new strategy for capturing the interface between water and the fouling layer
on heat transfer surfaces. This approach fits within moving boundary problems and is referred to as an Eulerian-
like Interface-Capturing Approach for Modeling the Fouling Process by Crystallization (ELICAFC). Fouling is
a prevalent industrial phenomenon characterized by the deposition of undesirable compounds on heat transfer
surfaces. Several mathematical models have been proposed in the literature to predict the average fouling growth
over time, with one of the key challenges being the tracking or capturing of the fouling layer’s interface. In
this context, capturing the fouling layer movement not only aids in estimating the increase in thermal resistance
but also in controlling heat transfer efficiency over space and time. The Finite Element Method is employed
within the ELICAFC strategy, utilizing the Bohnet model to estimate the net deposition rate resulting from the
crystallization process. The ELICAFC procedure is used to estimate temperature distribution, fouling growth, and
thermal resistance in an idealized fouling scenario. Numerical results align with the expected physical behavior
and verify the consistency of the ELICAFC approach.
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1 Introduction

Heat exchangers constitute prevalent devices in several industrial processes, facilitating efficient heat transfer
between two or more fluids. However, undesirable compounds deposited on the heat exchanger walls generate
the so-called fouling phenomenon, which has addressed new challenges regarding the evolution of the fouling-
liquid layer interface over space-time. These issues are studied within the field of moving boundary problems
(MBPs). According to Wörner [1], interface-tracking and interface-capturing methods represent a category of
MBPs, involving Lagrangian and Eulerian approaches, respectively. The MBPs can be conducted using the Finite
Element Method (FEM) or the Finite Volume Method (FVM). As Donea et al. [2] indicated, in the Lagrangian
scheme specific mesh nodes track each corresponding material particle during movement, which makes that pure
Lagrangian applications entail high computational costs because of the required mesh updating and remeshing
processes. From the Eulerian perspective, the interface is captured using a fixed grid, rendering the construction of
new meshes unnecessary as the interface evolves.

The Volume-of-Fluid (VOF) and the Level-set (LS) methods are widely used Eulerian techniques in MBPs,
primarily utilized to simulate the evolution of two-phase immiscible flows. Both techniques aim to solve a
convection-diffusion equation, where a parameter ϕ denotes a fluid volume fraction in the case of the VOF method,
with the interface being implicitly captured in the 0 < ϕ < 1. As mentioned by Malú Grave et al. [3], the LS
method advects a transport function ϕ and segregates two phases using signed distance functions (SDFs), with the
interface depicted by the zero level-set (ϕ = 0). In contrast, hybrid methods have been developed to integrate
both Lagrangian and Eulerian formulations. As presented by Donea et al. [2], the Arbitrary Lagrangian-Eulerian
(ALE) methods are the most popular hybrid alternatives for MBPs. These methods include mesh updating, mesh
adaptation, and node movements as the simulation unfolds. The fouling phenomenon encompasses a solid-liquid
interface, represented by the boundary Γfl. In this line, Kasper et al. [4] employed a Lagrangian-Eulerian approach,
where the fluid was treated as a continuum medium from an Eulerian reference frame, typically incorporating a
turbulence model. Moreover, the fouling particles are tracked from a Lagrangian viewpoint, considering drag, lift,
and gravitational forces. Hence, the VOF or LS methods are not commonly applied in fouling problems and pure
Lagrangian alternatives are often considered too computationally expensive. Hybrid methods have been useful for
tackling fouling problems, but commonly they also require remeshing.

CILAMCE-2024
Proceedings of the XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC
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In this work, we propose a straightforward numerical alternative that differs from the aforementioned strate-
gies in the following aspects: the interface is not captured by implicitly transporting it, as in VOF or LS meth-
ods, but rather by employing a crystallization model. In this case, fouling growth is estimated using the Bohnet
model, and the interface Γfl moves accordingly. Despite the movement of the mesh nodes due to fouling growth,
ELICAFC does not require remeshing. This alternative approach deviates from pure Eulerian methods due to
the dynamic movement of mesh nodes. We call this strategy as an Eulerian-like interface-capturing approach for
modeling the fouling process by crystallization (ELICAFC). Since the ELICAFC implementation incorporates
space-time interactions, it enables heat transfer analysis by providing estimates of thermal resistance and the con-
trol of heat transfer efficiency. The ELICAFC strategy is implemented in a proposed general scenario to assess its
feasibility from a numerical perspective and its alignment with expected physical behavior. The validation phase,
incorporating experimental data, is planned for future works. The temperature evolution of both the fouling-liquid
and fouling-wall interfaces along the pipe domain are analyzed, the fouling growth and the resistance of the foul-
ing layer are estimated. In section 2, we present the simulation methodology by integrating the heat and fouling
mathematical models, and outlining the computational implementation. The features and the procedure of the
ELICAFC strategy are detailed in section 3. In section 4, we discuss the results of the ELICAFC application.
Finally, conclusions and suggestions for future work are summarized in section 5.

2 Simulation methodology
The scenario of interest consists of hot and cold water flows outside and inside a cylindrical tube, respectively.

Figure 1 depicts the pipe domain from its axisymmetric view for a certain n-th time step. The domain Ω consists of
subdomains Ωw, Ωf , and Ωl, corresponding to the heat exchanger wall, the fouling layer, and the liquid water. Each
one has associated its corresponding boundary, where ∂Ωwl and ∂Ωwr correspond to the left and right boundaries
of the wall, ∂Ωfl and ∂Ωfr are the left and right boundaries of fouling, and ∂Ωl is the boundary of the water
subdomain. The internal boundaries Γfl and Γfw respectively represent the interfaces of the fouling-liquid layer
and the fouling-wall. The parameters rin and ro correspond to the inner and outer radii, respectively. The remaining
symbols in Fig.1 will be explained in subsequent sections. All thermophysical parameters involved within the heat
and crystallization models are summarized in Table 1.

Figure 1. An schematic view of the domain of the fouling problem, where r
(n)
f,zi

and δ
(n)
f,zi

are the radius and
thickness of fouling at position zi and time n

2.1 The heat transfer model

Let us consider Ω ⊂ R2 with an exterior normal vector n and T = (0, t∞] as the spatial and temporal
domains, respectively. The heat transfer problem involves finding the temperature distribution field θ(r, z, t) ∈
C2(Ω× T ), such that

DρCp
∂

∂t
(θ(r, z, t))− div (K∇θ(r, z, t)) = 0, in (Ωw ∪ Ωf )× T (1)

θ(r, z, 0) = θ∞, (r, z) ∈ Ω\∂Ωwb (1a)
θ(r, z, 0) = θwb, (r, z) ∈ ∂Ωwb (1b)

−(K∇θ(r, z, 0) · n = h(r
(0)
f,zi

(θfl))(θ(r, z, 0)− θ∞), (r, z) ∈ Γfw (1c)

θ(r, z, t) = θ∞, (r, z, t) ∈ Ωl × T (1d)
θ(r, z, t) = θwb, (r, z, t) ∈ ∂Ωwb × T (1e)

−K∇θ(r, z, t) · n = 0, (r, z, t) ∈ ∂Ωfrl × T (1f)

−(K∇θ(r, z, t)) · n = h(r
(n)
f,zi

(θfl))(θ(r, z, t)− θ∞), (r, z, t) ∈ Γfl × T. (1g)
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Equation (1) represents the governing heat transfer equation, while equations (1a) and (1b) denote initial con-
ditions. Specifically, eq. (1a) is imposed on entire domain excluding the boundary ∂Ωwb, while eq. (1b) is
imposed on ∂Ωwb. Equation (1c) represents an initial convection condition where the fouling-wall interface (Γfw)
interacts with water at t = 0. Equation (1e) represents a Dirichlet boundary condition, eq. (1f) represents Neu-
mann boundary conditions applied on the left and right boundaries of both fouling and wall subdomains, where
∂Ωfrl = (∂Ωfr ∪ ∂Ωfl ∪ ∂Ωwr ∪ ∂Ωwl). A Robin boundary condition is applied on the moving boundary Γfl as
described in eq. (1g). The model operates under the following assumptions: (1) the water temperature θ∞ will be
kept constant throughout the simulation. Consequently, the temperature values in Ωl and ∂Ωl are equal to θ∞, as
described in eq. (1d); (2) the thermal conductivity K, the density Dρ, and the specific heat Cp remains constant for
the wall and fouling subdomains,

K =

{
kw, in Ωw

kf , in Ωf

, Dρ =

{
ρw, in Ωw

ρf , in Ωf

, Cp =

{
cpw, in Ωw

cpf , in Ωf ;
(2)

(3) the left and right boundaries of both the pipe and fouling domains are considered insulated, as described in eq.
(1f). Regarding the fouling lateral boundaries, although they are in contact with water, they are treated as insulated
to prevent results that might perturb the temperature distribution on both sides, and (4) the flow is rotationally
symmetric in z-direction. This assumption has been assumed elsewhere, as considered by Babuška et al. [5].

In this model, θwb is the wall temperature at the outer heat exchanger case denoted by the ∂Ωwb bound-
ary. The convection heat transfer coefficient h(r(n)f,zi

(θfl)) depends on the fouling radius r(n)f,zi
(θfl), where θfl =

θ(r, z, t(n)), (r, z) ∈ Γfl. While the fouling radius depends on other parameters defined in the ensuing subsection,
only θfl varies over time. The Nusselt correlation proposed by Bhatti and Shah, as gathered by Rohsenow et al.
[6], is employed to estimate h(r

(n)
f,zi

(θfl)). This coefficient also depends on the friction factor, which is estimated
using the Haaland correlation gathered by Rohsenow et al. [6].

2.2 The crystallization fouling model

According to Bohnet [7], the rate of the total mass per unit area contained on a heat transfer surface at time
t(n), denoted as ṁ

(n)
f,zi

, is defined as the difference between the deposited ṁ
(n)
d,zi

and removed ṁ
(n)
r,zi , ṁ

(n)
f,zi

=

ṁ
(n)
d,zi
− ṁ

(n)
r,zi . The mass deposition rate is given by,

dm
(n)
d,zi

dt
= β(r

(n)
f,zi

(θfl))

β(r
(n)
f,zi

(θfl))

2η(θfl)
+ (cF − cs)−

√√√√β2(r
(n)
f,zi

(θfl))

4η2(θfl)
+

β(r
(n)
f,zi

(θfl))

η(θfl)
· (cF − cs)

 , (3)

where the parameters β, η, cF are respectively the mass transfer coefficient, the rate of reaction, and the bulk
concentration of CaCO3. The mass removal rate per unit area is estimated similarly to that defined in the Bohnet
model as

dm
(n)
r,zi

dt
=

1

P/K6
cd ρf

(
3

√
ρ2l µlg

)
δ
(n)
f,zi

(r
(n)
f,zi

(θfl))v
2, (4)

where the ratio P/K6 is the same defined by Bohnet [7] and v is the velocity of the water. The fouling thickness
δ
(n)
f,zi

(r
(n)
f,zi

(θfl)) is the difference between the inner and fouling radii at the n-th time step, δ(n)f,zi
(r

(n)
f,zi

(θfl)) =

rin−r(n)f,zi
(θfl). Finally, the average fouling radius is determined at each nodal value along z-direction, considering

the size of the time step ∆t as

r
(n)
f,zi

(θfl) =

√√√√(
r
(n−1)
f,zi

(θfl)
)2

−
2ṁ

(n)
f (r

(n−1)
f,zi

(θfl))∆t

ρf
. (5)

As the fouling layer increases, the thermal resistance to the heat transfer also increases. This effect is quantified
by the fouling factor R

(n)
f,zi

(r
(n)
f,zi

(θfl)) = (1/kf )(r
(n)
f,zi

(θfl))ln(rin/r
(n)
f,zi

(θfl)), and the average of the fouling

resistance R
(n)
f along z-direction is approximated by R

(n)
f = (1/N)

∑N
i=1 R

(n)
f,zi

, where N denotes the number of
discretized nodes in z-direction according to the computational mesh. In this model, the thermophysical properties
and the water velocity will be maintained constant.
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2.3 Computational implementation

The computational domain consists of a structured grid, with triangular elements used for the heat exchanger
wall and quadrilateral elements employed for the fouling-liquid region. Triangular elements were chosen for the
heat exchanger wall to reduce computational costs, as they require fewer operations than quadrilaterals. On the
other hand, quadrilateral elements were used for the rest of the domain (fouling and water) to facilitate control of
fouling growth, as detailed in section 3. All experiments were conducted utilizing the classical Galerkin method
with linear interpolation. The spatial and time variables were discretized using FEM and the backward Euler
method, respectively. The finite element mesh was generated using the ANSYS mesh generator, and has 9625 el-
ements with one degree of freedom. The implementation was executed using the Python programming language,
where sparse linalg (linear algebra) Python functions were used for solving the linear system of equations. Specif-
ically, a Super Incomplete LU factorization was employed as a preconditioner applying the conjugate gradient
method, as described in Barrett et al. [8]. The heat transfer model exhibits nonlinearity due to the convective heat
transfer coefficient in eq. (1g), which depends on the fouling radius over time. The nonlinear problem is solved
using the fixed-point iterative method. Spurious solutions can arise due to the boundary condition established in
eq. (1g), whose application varies spatially because of the Γfl movement. To mitigate these nonphysical solutions,
the Pearson method was implemented during the initial time step, as documented by Arruda et al. [9].

3 The ELICAFC strategy

The ELICAFC strategy aims to capture the Γfl interface by employing an Eulerian-like reference frame. This
is carried out using a background mesh, where the nodes linked to the Γfl interface are gradually moved according
to the increase of the fouling layer. Nodes not linked to the fouling layer have a prescribed value corresponding
to the water temperature at each time step, as defined in eq. (1d). In addition to the discretization of the wall
using triangular elements, the background mesh discretizing (Ωw ∪ Ωf ) consists of a × b elements along the z
and r directions denoted by Es

m, with m = 1, . . . , a and s = 1, . . . , b. Mesh nodes belonging to Γfl are moved
vertically to ensure that no mesh updating is necessary. This is implemented by defining a control parameter,
denoted by α

(n)
m , that indicates the number of elements in the m-th column of the mesh occupied by fouling at each

n-th time step. This control parameter is defined as α
(n)
m = ⌈Afm/Aref⌉, where ⌈·⌉ is the ceiling function. The

quadrilateral reference area is Aref = ∆z∆r and Afm is the accumulated area occupied by fouling at each m-th
column, approximated by Afm = ((dleftm +drightm )/2)∆z. Here, dleftm and drightm represent the accumulated fouling
thickness at the left and right sides of each m-th column, with dleftm = δ

(n)
f,zi

(r
(n)
f,zi

) and drightm = δ
(n)
f,zi+1

(r
(n)
f,zi+1

),
for each i-th discretized node along z-direction. Figure 2 summarizes an example of the ELICAFC process over
six time steps for a single m-th column, considering Aref = 1. For simplicity, it is assumed that the fouling
thickness grows uniformly along z-direction, dleftm = drightm . Quadrilateral elements associated with the fouling
layer and the water are respectively indicated in orange and blue. The moving nodes correspond to those situated
at the top face of the element in the pm-th position, associated with the r-direction, whose coordinates are denoted
by rTOP

pm,i .

Figure 2. Example of the ELICAFC strategy over six-time steps for a single m-th column of the background mesh

The position pm is determined by the α
(n)
m value, indicating the element of the backgound mesh whose top

nodes coordinates are changed to follow Γfl. At the initial time step α
(0)
m = 0, indicating that the Γfl interface is
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equal to the Γfw interface (left column in Fig. 2). Assuming that in the next step the Afm/Aref ratio is equal to 0.4,
α
(0)
m = ⌈0.4⌉ = 1, meaning that the fouling layer consists of one element (E1

m, pm = 1) whose top nodes rTOP
1,i

and rTOP
1,i+1 were moved to the fouling thickness, rTOP

1,i = rin − δ
(0)
f,zi

= r
(0)
f,zi

and rTOP
1,i+1 = rin − δ

(0)
f,zi+1

= r
(0)
f,zi+1

.

After two more time steps, α(3)
m = ⌈1.4⌉ = 2, so that the fouling layer now consists of two elements. This implies

that pm = 2 and the top face of E2
m is the current Γfl and their coordinates were moved to, rTOP

2,i = r
(3)
f,zi

and

rTOP
2,i+1 = r

(3)
f,zi+1

. Note that from n = 1 to n = 2, the top nodes of E1
m are moved up to track the increase of

drightm . In the subsequents two time steps, the displaced nodes correspond to the top nodes of E2
m and at n = 5,

α
(5)
m = pm = 3, with fouling layer encompassing E1

m , E2
m and E3

m. Algorithm 1 presents a pseudocode to
reproduce the ELICAFC strategy.

Algorithm 1 ELICAFC procedure

Initialization: r(0)f,zi
← rin,∀i = 1, . . . , a+ 1 ; α(0)

m ← 0, pm ← α
(0)
m ,∀m = 1, . . . , a ; nsteps ← t∞/∆t

for n = 1 to n = nsteps do
Find the temperature field θ(r, z, t)
θfl ← θ(r, z),∀(r, z) ∈ Γfl

η(θfl)← η0exp

(
− E

R θfl

)
Compute the deposition rate using η(θfl)

ṁ
(n)
f,zi
← ṁ

(n)
d,zi
− ṁ

(n)
r,zi

Compute the fouling radius r(n)f,zi
, the fouling thickness δ(n)f,zi

and the thermal resistance R
(n)
f,zi

Evaluate the average thermal resistance R
(n)
f

for m = 1 to m = a do

α
(n)
m ←

⌈
dleftm + drightm

2∆r

⌉
if α(n)

m = α
(n−1)
m then

pm ← pm
else

if α(n)
m > b then
pm ← b ▷ When fouling exceeds the mesh, pm must be equal to b

else
pm ← α

(n)
m

end if
end if
rTOP
pm,i ← r

(n)
f,zi

for all i-th discretized node associated to pm
end for

end for

4 Results and discussion

The numerical experiments were computationally conducted on a pipe heat exchanger constructed of stainless
steel (SS) type AISI 304, with inner diameter din = 10.0 mm, outer diameter do = 13.2 mm, the water velocity
v = 0.85 m/s, length of the pipe longitudinal-section xL = 20 mm, and the bulk concentration of CaCO3 in the
water cF = 0.2 kg/m3. A time step of ∆t = 10s was selected and the quadrilateral size element was ∆z = ∆r =
4/55 mm. The water temperature θ∞ = 27.92◦C, and the temperature of the heat exchanger wall were set as
θwb = 109.02◦C. The time domain encompasses a total of 100 hours (t∞), resulting in 36000 time steps. Table
1 summarizes all numerical parameters used in the models presented in Section 2. As the water temperature was
considered constant, the fouling layer is expected to grow uniformly along z-direction for each time step. The
thermophysical parameters remain unchanged at the given water temperature. Figure 3 shows the temperature at
the interfaces Γfl and Γfw over time comparing its evolution in z = 0 mm and z = 20 mm. There is no material
deposited on the heat exchanger walls at t = 0 h, leading to identical temperatures at both the interfaces Γfl

and Γfw (θ = 46.75◦C). The fouling thickness acts as an insulating layer, resulting in a gradual retreat of the
Γfl interface from the heat transfer surface as it thickens. Consequently, the temperature decreases over time, as
illustrated in Fig (3a), starting at θ = 46.75◦C and decreasing to approximately θ = 35.27◦C after 100 hours.
Simultaneously, the temperature of Γfw increases due to the insulating effect, which restricts heat transfer. The
temperature of Γfw rises to θ = 86.96◦C, as shown in Fig (3b). Due to the asymptotic pattern associated with
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fouling growth, the temperature difference diminished gradually between time steps in both scenarios, whether it
increased or decreased relative to the interface.
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Figure 3. Temperature behavior of the interfaces Γfl and Γfw over time: comparison at two specific points in
z-direction

Figure 4 illustrates the evolution of fouling growth over space and time. Specifically, Figure 4a shows the
increase in fouling thickness, reaching slightly over 0.405 mm after a 100-hour simulation. As expected, the
growing fouling layer increases resistance to heat transfer, as shown in Figure 4b, although the resistance eventually
reaches a limiting value. We observe that both the thickness and resistance of the fouling layer converge toward
asymptotic values as the deposition and removal rates become balanced over time, ṁ(n)

d,zi
≈ ṁ

(n)
r,zi . As a result, the

growth rate diminishes to zero. The average resistance R
(n)
f also correspond to the results depicted in Fig. 4b due

to the equivalence at each spatial point over time.
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Figure 4. Growth of fouling thickness over space and time

The Bohnet model aims to estimate the net average of deposited particles forming a fouling layer along a
heat transfer surface. In this context, the ELICAFC implementation captured the interface generated by these
net average deposited particles. ELICAFC did not require remeshing, unlike ALE methods or hybrid correlated
alternatives. While Eulerian schemes such as VOF or LS methods are not typically used in crystallization fouling
problems and capture the interface implicitly using interpolation formulas or signed functions, ELICAFC explicitly
captured the interface by directly applying the Bohnet model.

5 Conclusions

This work proposes an alternative strategy to capture the interface between a fouling layer formed by crystal-
lization and the flowing liquid. This strategy is called an Eulerian-like interface-capturing approach for modeling
the fouling process by crystallization (ELICAFC). A general scenario was suggested, where calcium carbonate
(CaCO3) is deposited on the heat exchanger walls forming a fouling layer structure. Specifically, the tempera-
ture of the fouling-liquid layer interface decreased over time, while the temperature of the fouling-wall interface
increased due to the fouling layer acting as an insulating barrier. The fouling resistance increased over time due to
the evolution of the fouling, and the fouling thickness reached a height of 0.4 mm. Overall, the ELICAFC results
consistently align with the expected physical behavior. In forthcoming works, the ELICAFC procedure will be
applied by considering the variation of water temperature and the breaking-off of calcium carbonate. Analyses of
experimental scenarios documented in the literature will be addressed in future works.
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Table 1. Parameters used in both the heat transfer and fouling models

Symbol Meaning Unit Value Reference

ϵ Roughness coefficient of the pipe or fouling surface [m] 2× 10−5 Babuška et al. [5]
cd Crystal diameter [m] 30× 10−6 Babuška et al. [5]
kw Thermal conductivity of SS [W/m◦K] 14.91811∗ Cengel and Ghajar [10]
ρl Thermal conductivity of the water [W/m◦K] 0.6116∗ Cengel and Ghajar [10]
ρw Density of SS

[
kg/m3

]
7900 Cengel and Ghajar [10]

ρl Density of the water
[
kg/m3

]
996.416∗ Cengel and Ghajar [10]

cpw Specific heat of SS [J/kg ◦K] 477.406∗ Cengel and Ghajar [10]
cpl Specific heat of the water [J/kg◦K] 4178.832∗ Cengel and Ghajar [10]
µl Dynamic viscosity of the water [kg/ms] 8.3668× 10−4 Cengel and Ghajar [10]
R Real gas constant [J/kmol ◦K] 8314.47 Cengel and Ghajar [10]
g Acceleration of gravity

[
m2/s

]
9.8 Cengel and Ghajar [10]

cpf Specific heat of CaCO3 [J/kg◦K] 838.1493∗ Jacobs et al. [11]
kf Thermal conductivity of CaCO3 [W/m◦K] 1.942 Müller-Steinhagen [12]
ρf Density of CaCO3

[
kg/m3

]
2705 Müller-Steinhagen [12]

θ∞ Reference temperature [◦K] 336 Müller-Steinhagen [12]
Dθref Reference diffusion coefficient

[
m2/s

]
1.1456× 10−9 Müller-Steinhagen [12]

θbo Temperature of boiling water [◦K] 373.15 Müller-Steinhagen [12]
η0 Proportionality constant

[
m4/kg s

]
9.8× 1011 Müller-Steinhagen [12]

cs Saturation concentration
[
kg/m3

]
0.005648436 Plummer and Busenberg [13]

E Activation energy [J/kmol] 122150 Müller-Steinhagen [12]
∗Values linearly interpolated at the water temperature θ∞ based on those reported in the associated reference.
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