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Abstract. Heat pipes are versatile, relatively easy to construct, and capable of exchanging large amounts of heat 

between small temperature differences, even without external pumping. On the other hand, these devices have 

complex equations, which usually complicates their development, generating more extended periods of research 

and expenses. Methods that use computational intelligence, such as Artificial Neural Networks (ANN), have the 

ideal characteristics for use in problems of this type. ANN are algorithms that can solve complex problems using 

only experimental data, even without knowledge about the physics of the problem, limited only by the quality of 

the data used and the available computational power. In many cases, the results found using ANN have lower error 

percentages than those obtained using conventional methods. The database used was generated from an 

experimental investigation of the thermal behavior of heat pipes with a wicked structure of axial grooves and using 

water as the working fluid. The results were used to train two different Artificial Neural Networks. The Neural 

Networks used were the Multi-Layer Perceptron (MLP) and the Extreme Learning Machine (ELM). Filling ratio, 

slope, and dissipated power were used as inputs to the networks, and as output, we have the expected thermal 

resistance of the heat pipe. The results show that both ANN were able to generalize the problem, presenting errors 

of less than 25%. It is also possible to note that the MLP presents better results, with an error of about 18%. These 

values show that ANN are viable as a tool to improve the development of grooved heat pipes. 
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1  Introduction 

Currently, the industry faces a significant challenge arising from the dependence on processes operated at high 

temperatures, which result in the loss of large amounts of energy in the form of heat during the processing of 

various products (Agathokleous et al. [1]). These losses are especially pronounced in fossil fuel-based processes, 

in which the loss of heat carried by combustion gases represents a large portion of the total energy loss, and in the 

production and transport of electrical energy, where the loss of thermal energy during transport and power 

conversion represents a significant portion of the energy produced. The disadvantages range from economic due 

to loss of efficiency to environmental impacts resulting from the greater need for energy production (Cullen & 

Allwood [2]). 

Heat exchangers play a crucial role in several industries requiring precise temperature controls, facilitating heat 

transfer between two fluids at different temperatures and separated from each other, as Bergman and Lavine [3] 

explained. The efficiency of these heat exchangers is directly related to the overall efficiency of the process. 

Therefore, optimizing and developing this equipment is extremely important to minimize the usable energy 

rejected. 
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1.1 Heat Pipe 

Heat pipes represent highly efficient passive heat transfer devices even for small temperature differences. A heat 

pipe operates through the principles of evaporation and condensation of its working fluid, which is usually 

surrounded by an airtight casing and maintained at controlled pressures. Inside the casing, there is also a capillary 

structure responsible for helping to move the working fluid and, consequently, the heat inside the heat pipe. This 

device can be divided into three main parts, as illustrated in Fig. 1: the evaporator, generally located at the bottom 

of the heat pipe and where the working fluid is accumulated in a liquid state. Upon contact with the hot source, the 

fluid evaporates and moves to the condenser at the top of the device, and in contact with the cold source, the 

working fluid loses heat, returning to the liquid state. Between these two parts is the adiabatic section, with no 

heat exchange (Mantelli [4]).  

Figure 1. Operation of a Heat Pipe 

The construction of a heat pipe involves the use of a hollow tube, usually made of metallic material due to its good 

thermal conductivity, necessary for heat to flow between the working fluid and the environment with the minimum 

possible thermal resistance, and also because these materials have good mechanical resistance, ideal for 

withstanding differences between internal and external pressure. The casing material must not react chemically 

with the working fluid to avoid unwanted effects. Working fluid selection is based on specific characteristics 

required for heat pipe design, such as thermal conductivity, vapor pressure, and critical point temperature. 

Furthermore, the filling ratio, which represents the proportion between the amount of working fluid and the volume 

of the evaporator, is an important parameter in heat pipe manufacturing (Zohuri [5]). 

The selection of the capillary structure in the heat pipe is an essential factor as it significantly impacts its operation. 

The various available capillary structures vary greatly in properties and results. However, the decision on the ideal 

structure is often unclear since the mathematical equations that govern their functioning within a heat pipe are very 

complex and sometimes have inaccurate results (Reay et al. [6]).  

In this context, using computational models, such as Artificial Neural Networks (ANN), can play an important 

role in reducing the main problems caused by the difficulty encountered in modeling these and other thermal 

devices. 

1.2 Artificial Neural Networks 

Artificial Neural Networks are computational models developed based on the nervous system of higher organisms, 

such as animals, with the aim of predicting different behaviors of complex problems without the need for in-depth 

knowledge about the theory behind it. The functioning of ANN is based on using previously obtained experimental 
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data. Therefore, it is possible to “teach” the Neural Network about the behavior of complex problems (Haykin [7]). 

These algorithms are formed by connecting small modules, usually called neurons, distributed in different layers, 

as represented in Fig. 2. These neurons simulate the behavior of organic neurons, receiving input data and 

performing simple mathematical operations to obtain new values that will be transmitted to the following layers 

until, finally, obtaining results from the output layer. 

Figure 2. Neural Network Architecture 

Multilayer Perceptron. The Multilayer Perceptron (MLP) is one of the most used ANN architectures. It can be 

defined as a Feedforward Multilayer Network with one or more hidden or intermediate layers in addition to one 

output and one input layer. The number of neurons in the intermediate layers directly impacts the mapping quality 

of the MLP network, and a reduced number of neurons can lead to an insufficient approximation of the desired 

function, generating high errors. In contrast, an excessive number of neurons can lead to another problem: 

overfitting. In this case, the network reduces its error relative to the training group. However, it has a lower 

generalization capacity, that is, to predict the behavior of new data, as it adapts excessively to the specific training 

group. Each neuron in the input layer receives one of the data applied to the network as input. Each hidden layer 

neuron will normally receive all data from the previous layer multiplied by its respective connection weight. These 

values are then added together with the bias value, which can be considered an input with value 1. The sum of the 

values is then applied to an activation function. Different functions, such as the hyperbolic tangent or the sigmoid 

function, can be used. The activation function’s resulting value is the neuron’s output, which is then passed to the 

next layer. For some functions, the network inputs must be normalized within the function’s valid range. Several 

algorithms have been developed for MLP training. Among them, the most used and well-known is the 

Backpropagation Algorithm, which is based on the error correction learning rule which consists of two phases: a) 

propagation: input data is applied to the network input, propagating through the following layers and producing a 

set of outputs. In this step, there is no change in weights; b) backpropagation: the response obtained in the 

propagation step is used together with the known output data to produce an error signal, which is then 

backpropagated through the network and used to modify the weights (Haykin [7]). 

Extreme Learning Machines. The Extreme Learning Machine (ELM) is a learning algorithm proposed by Huang 

et al. [8] for Feedforward Networks with only one hidden layer that uses constant random weights in the 

intermediate layer and an analytical method to determine the weights of the output layer, not needing iterative 

methods based on gradient descent. The analytical method utilized is the Moore Penrose inverse. The advantage 

of using this method in contrast with other ANN is its training speed, which, according to Huang et al. [9], can be 

thousands of times faster than training via Backpropagation, in addition to avoiding several other problems, such 

as convergence to local minima and overfitting. The most significant difference in ELM training is that the hidden 

layer is not adjusted, only the output layer, speeding up the training process. 
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2  Methodology 

The data used to train the Artificial Neural Networks used in this work were obtained from experimental work by 

Nishida et al. [10] referring to heat pipes with axial grooves. The heat pipes used were made using the wire 

electrical discharge machining (wire-EDM) process on copper tubes. With this, three different models of axial 

microgrooves were manufactured, which can be seen in Fig. 3.  

Figure 3. Axial grooved heat pipes tested for the database 

2.1 ANN Training 

Two different ANN were used to evaluate the heat pipes: the Multilayer Perceptron (MLP) and the Extreme 

Learning Machine (ELM). Each network was built from scratch using the Python® programming language, 

without pre-made libraries, to increase understanding of how each network works and to have more control over 

the parameters used.  

The data found in the experimental tests were used to train each of the ANN used. Training has different methods 

for each of the networks used. The MLP Network was trained following the methodology presented in Haykin [7] 

using Backpropagation for both layers. ELM training used the method proposed by Huang et al. [8]. 

In training each ANN, some variable parameters are usually found by testing a wide range of possibilities, such as 

the number of neurons used in the hidden layer. These properties were evaluated during training in an initial stage 

that used fewer training epochs to search for these parameters. The combinations of parameters that generated 

results with the lowest Mean Square Error (MSE) in relation to the test data were selected. Some important 

parameters used during ANN training are the number of hidden layers, the number of neurons in each hidden layer, 

and the activation functions used. The parameters of each Neural Network used are listed in Tab. 1. Each ANN is 

trained several times for each configuration, and the average value among all values obtained is the result to be 

evaluated. For the MLP, once the best combination of parameters for this case was found, the network was trained 

again using a greater number of epochs to obtain the final results. The number of epochs used was 1,000 for the 

initial training phase and 10,000 for the final phase. 

Table 1. Parameters used in training each ANN 

Model 
Number of 

Neurons 

Hidden 

layers 

Activation Function 

Hidden Output 

MLP 3 - 200 1-2 Logistic Linear 

ELM 3 - 200 1 Logistic Linear 

3  Results 

The comparison between values found by theoretical equations and experimental values for devices such as heat 

pipes is not frequently addressed in the literature. Thus, a value acquired based on experiments is used as a basis 

for evaluating the results obtained. The value used to define an acceptable result is 30% Mean Absolute Percentage 

Error (MAPE). Higher values represent a variation in the expected thermal resistance that generates significant 

losses from an experimental point of view. 

In addition to MAPE, where also used the Mean Absolute Error (MAE), which represents the average of the 



T.S. Pereira, Y.S. Tadano, H.V. Siqueira, T. Antonini Alves 

CILAMCE-2024 
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

absolute value of the errors found, and the Square Root of the Mean Square Error (RMSE), which is similar to the 

MAE, but is more punitive for larger values of absolute error. Different error assessment methods are important 

since, in many cases, just one metric cannot clearly express the results. Using different methods to understand the 

values obtained is essential in these cases. 

From the experimental database, the ANN were applied and generated the results presented in Tab. 2. The best 

result for the MAPE Error was obtained using the MLP Network, with an error percentage close to 18%. The ELM 

Network also has a great result, of around 24%, showing that the two Neural Networks adapted well to the problem. 

The values were obtained from the average of errors between 30 independent tests. 

Table 2. Results for each ANN 

Model NN 
Hidden 

layers 
MAE RMSE 

MAPE  

[%] 

MLP 6 1 0.232 0.323 18.3 

ELM 30 1 0.514 0.742 24.0 

 

The results show that the MLP and ELM Networks can generalize the problem, generating consistent errors 

between tests and within the expected levels. It is also possible to see that the MLP Network presents better results 

in relation to MAPE, RMSE, and MAE errors in this problem. The MAPE found for the MLP Network is around 

27% lower than that presented by the ELM Network. At the same time, the MAE is around 54% smaller, and the 

RMSE is 56% smaller. These values show a more stable result for the MLP that, besides having better average 

results, also has less absolute error, shown by the smaller MAE, and fewer outliers, shown by the smaller RMSE. 

Figure 4 shows the relationship between MAPE and the number of neurons in the hidden layer of the ELM 

Network. A clear trend can be noted, which begins in the region of 3 neurons where the error quickly drops until 

6 neurons when a trend of error growth begins. After this the error keeps increasing util 70-80 neurons where it 

stabilizes. The region of minimum can be clear seem and agrees with the information in Tab. 2 (6 neurons). 

Figure 5 shows the variation in MAPE about the number of neurons for the MLP Network in the region with the 

lowest error found. The results show that unlike the other ANN tested, there is a clear stability region between 3-

42 neurons where the error suddenly grows exponentially. It is also possible to notice a region with the smallest 

error between 21 and 36 neurons. The best result is found with 30 neurons. 

 

Figure 4. Variation of the average MAPE with the number of neurons for the MLP 
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Figure 5. Variation of the average MAPE with the number of neurons for the ELM 

Figure 6 and 7 compares the thermal resistances of the heat pipes obtained experimentally and the values 

obtained using ANN for one iteration. It is possible to see that, in addition to generating good average error values, 

the neural networks generate consistent results for the individual values obtained. It can be seen that most of the 

results obtained are within the 30% error range, in addition to being concentrated close to the central line for both 

networks, which represents the optimal values. In this case, both neural networks have similar behaviors, although 

the ELM Network presents some discrepant points (outliers).  

 

Figure 6. Experimental X Predicted thermal resistance MLP 
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Figure 7. Experimental X Predicted thermal resistance ELM 

4  Conclusions 

In this work, an experimental investigation of the thermal performance of a copper heat pipe with axial grooves 

wick structure under different inclinations using water as the working fluid and cooled through forced air 

convection was used. The heat pipe was tested at inclinations of 0, 45, and 90° to the horizontal, with thermal load 

dissipation between 5 and 50W, with a step of 5W. The data of the thermal resistance of the heat pipes, which, 

together with the heat pipe properties, were used as a database for the training of two Artificial Neural Networks: 

Multilayer Perceptron (MLP) and the Extreme Learning Machine (ELM). After training the ANN, their results 

were compared with those obtained experimentally. The results showed that the Neural Networks were able to 

generalize the proposed problem, achieving results with less than 24% for both ANNs and error close to 18% for 

the MLP Network. With the values obtained, it is possible to conclude that Artificial Neural Networks can be used 

to aid in the process of developing heat pipes with axial grooves and, most likely, other types of wick structures. 

It is also necessary to point out the need for new experiments to confirm the results acquired. The small number 

of samples, although sufficient for use in initial work, limits the quality of the results. It is also essential to evaluate 

the use of different methods, such as other Machine Learning Methods, more modern versions of the applied 

networks, and analytical results for comparison. 
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