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Abstract. In this work, a mixed stabilized finite element formulation with continuous velocity and descontinuous
pressure interpolations is used to approach pseudoplastic materials with yield stress, that is, nonlinear viscoplastics.
Here, Herschel-Bulkley model and regularized ones for the apparent viscosity are considered. This formulation is
based on two well succeeded stabilized methods, separately, one for pseudoplastic problems (nonlinear) without
yield stress, and the other for linear problems with yield stress (ideal plastic) which are modeled by linear constitu-
tive equations with inequality restriction. Regularized generalized alternatives (based on simple, Papanastasiou and
Bercovier-Engelman schemes) are presented to deal with the discontinuity of the constitutive relations and results
are presented showing their limitations. They are compared with the proposed stabilized formulation which allows
obtaining stable results even with same interpolations, without the necessity of regularizations, applied directly to
the Herschel-Bulkley constitutive relation.
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1 Introduction

Pseudoplasticity is one of the most encountered effect in non-Newtonian fluids and is characterized by a non
linearity between shear stress and shear rate tensors and the most commonly used constitutive relation for this is
a power-law equation, by its relative simplicity. Defining an apparent viscosity, it is possible to introduce it in the
context of the generalized fluid theory and generate, for non convective case, a kind of generalized Stokes model,
Bortoloti and Karam [1]. Due to the nonlinear character of this models, analytical solutions are very limited and
the alternative is to use numerical methods. An additional difficulty, also present in the linear case, is the incom-
pressibility constraint that can generate instabilities when using classical methods. To overcome these difficulties,
Karam and Loula [2] proposed a stable mixed finite element method for the linear problem, accommodating equal
order interpolations for the velocity and the pressure and Bortoloti and Karam [1] generalized it for pseudoplastic
fluids, obtaining mathematicaly the range of stability by a discrete version of the Scheurer thorem Scheurer [3],
which is a generalization of the Brezzi [4] one. Fluids that start to move when a critical value is reached are called
fluids with yield stress, to which two regions can be possible: a flowing one (Newtonian or non-Newtonian) and a
rigid one (moving or not) Skelland [5]. The oldest constitutive model to viscoplastics is the one by Bingham [6],
having a discontinuity when the shear rate is zero. A common approach is to use a modified regularized function
for the viscosity. However, several practical problems have properties that fit more to the Herschel-Bulkley model
Skelland [5] which, differently from the Bingham one, takes into account pseudoplastic behaviour (nonlinear) after
the yield limit. Herschel-Bulkley fluids present all the difficulties presented by pure pseudoplastics. In this work,
based on the method of Bortoloti and Karam [1] for pseudoplastics, it is presented a stabilized formulation for
the Herschel-Bulkley model, with the introduction of some regularizations into the apparent viscosity function.
Numerical results are presented to show that this formulation accommodate equal order interpolations for velocity
and pressure, comparing four regularization functions considered.

2 Model Problem

Let Ω be a domain in Rn with smooth boundary. We consider the incompressible and stationary creeping
flow problem governed by: −div σ = f in Ω, where σ is the Cauchy stress tensor, f is the body force vector. The
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governing equation is subjected to the incompressibility constraint: div u = 0 in Ω, where u is the velocity field.
Here, we are interested in pseudoplastic materials, with the constitutive equation given by the Herschel-Bulkley
model [7].

2.1 Herschel-Bulkley model

The Herschel-Bulkley model describes certain non-Newtonian fluids and has a nonlinear stress-rate depen-
dence in the flow region. This constitutive model predicts that a minimum level of shear stress is required to start
flowing. This is a generalization of the Bingham model taking into account the changes in apparent viscosity with
the rate of deformation by means of a Power-law behavior. It can be thought of as a hybrid between Bingham and
Power-law models. Thus, we have the following Herschel and Bulkley model

τ(u) = τy +KH γ̇(u)α−1, if |τ(u)| > τy, (1)
γ̇(u) = 0, if |τ(u)| ≤ τy. (2)

Thus, there is a nonlinear relation between shear stress and shear rate, and apparent viscosity, µa(γ̇(u)), given by

µa(γ̇(u)) =
τy
γ̇(u)

+KH γ̇(u)α−2, if |τ(u)| > τy, (3)

where τy is the yield stress, KH is the consistency parameter and α is the power-law index. It is worth mentioning
that |τ(u)| ≤ τy the viscosity µa(γ̇(u)) → ∞ and direct calculations are not possible. Therefore, the reduced
stress tensor can be rewritten as: τ (u) = τyI + µa(u)ϵ(u), with µa(u) obtained from:

τ (u) =
�

τy
|ϵ(u)|

+KH |ϵ(u)|α−2
�
ϵ(u) = µa(u)ϵ(u), (4)

where I ∈ Rn × Rn is the identity tensor, ϵ(u) = (∇u + ∇T u)/2 the symmetric part of ∇u. We recall that for
α = 2 the fluid is newtonian and when 1 < α < 2, power-law it is Pseudoplastic.

2.2 Generalized Stokes Problem for Herschel-Bulkley

From the above consideration, the Generalized Stokes problem in the context of pseudoplastic flows using
the Herschel-Bulkley model is obtained as:

Problem PG. Let f and u given, find {u, p} such that

−div (µ(u)ϵ(u)) +∇p = f in Ω, (5)
div u = 0 in Ω, (6)

u = u on Γ. (7)

where u is the value of u on the boundary; p is the hydrostatic pressure; ϵ(u) is the strain rate tensor; µa(u) = µ(u)
is the apparent viscosity. For this fluids when |τ(u)| < τy there is no flow, meaning that the system has infinite
viscosity. The behavior of Bingham or Herschel-Bulkley materials near the yield stress is not at all smooth and
differential in a mathematical sense, with a singularity that is also a difficult to be solved. These problems can lead
to inconsistencies in the numerical modeling in complex geometries, and difficulties in defining the boundaries
between the non-deformable “solid” zone and the flowing “liquid” zone. Alternatives to avoid the singularity are
the methods of viscosity regularization, although they do not solve alone in case of classical numerical methods.

3 Regularized Models

Currently, viscosity regularization methods are probably the most popular for linear and nonlinear vis-
coplastic fluid flows. These methods replace eq. (4) by an approximation of the following form: τ(u) =
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µη(γ̇(u))γ̇(u) with η < 1, where η is the regularization parameter, such that µη (γ̇(u)) −→ µa (γ̇(u)) when
η −→ 0 and µη (γ̇(u)) is well defined when (γ̇(u)) −→ 0 for all η > 0 fixed, approximating the viscosity to a
finite value even when the strain rate tends to zero. There is a multitude of adaptable functions for regularizing the
viscosity. Probably the simplest one is the following, called Simple Model,

µη(u) = KH(γ̇(u))n−2 +
τy

η + γ̇(u)
. (8)

Another two of the most popular have been the Bercovier-Engleman Model, [8],

µη(u) = KH(γ̇(u))n−2 +
τy√

η2 + γ̇(u)2
, (9)

and the Papanastasiou Model, [9],

µη(u) = KH(γ̇(u))n−2 +
τy
γ̇(u)

(1− e−γ̇(u)/η). (10)

Bercovier and Engleman [8] proposed this model based on the mathematical studies of Glowinski et al. [10], and
Papanastasiou [9] approximated the experimental results observed in simple experiments with rheological fluids.

Figure 1 below shows the graphs of shear stress and apparent viscosity by shear rate for eqs. (8), (9), (10).
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Figure 1. Regularized models compared with the Herschel-Bulkley model for τy = 1.0 and η = 0.01

It can be seen that when γ̇ −→ 0, the regularized models tend towards the Herschel-Bulkley model, Fig.(a),
and the viscosity takes on finite values, Fig.(b). In all cases, our simulations considered η < 1, since the aim is
to approximate the Herschel-Bulkley model. It is worthy to mention that non of these regularization work with
classical method for equal order interpolation for u and p.

4 Variational Formulation

To generate the proposed finite element method, the following definitions will be used. Let the spaceL2(Ω) =§
u|u measurable and

∫
Ω

|u|2 dΩ <∞
ª
, with the usual inner product (u, v) =

∫
Ω

uv dΩ, ∀u, v ∈ L2(Ω). Let

the space H1
0 (Ω) =

{
u ∈ H1(Ω); u = 0 on Γ

}
, with H1(Ω) =

{
u ∈ L2(Ω) | ∇u ∈ L2(Ω)

}
and usual norms.

Let V and W be the spaces for velocity and pressure defined by: V =
{
v ∈ H1

0 (Ω)×H1
0 (Ω)

}
and W ={

p ∈ L2(Ω), (p, 1) = 0
}

, with their respective norms, ∥v∥V = ∥v∥1 and ∥p∥W = ∥p∥0. Let Ω be a polygonal
domain discretized by a classical uniform finite element mesh with Ne elements. Let Sk

h(Ω) be the finite element
space of continuous polynomials in Ω of degree k, classC0, andQl

h(Ω) is the finite element space of discontinuous
polynomials in Ω of degree l, classC−1, we define the approximation spaces, Vk

h = (Sk
h(Ω)∩H1

0 (Ω))
n and Wl

h =
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Ql
h(Ω) ∩ L2(Ω), for the velocity uh with continuous interpolations and for the pressure ph with discontinuous

interpolations, respectively.
Thus, based on the stabilized formulation of Bortoloti and Karam [1] for the nonlinear Stokes problem without

yield stress and the regularization models, we have constructed the following consistent regularized stabilized
discontinuous variational formulation for the nonlinear model problem with yield stress:
Problem PGhb: Given f in the dual space of H1(Ω), find {uh, ph} ∈ Vk

h × Wl
h such that

(Ah (Uh) , Vh) +Bh (ph, vh) = Fh(Vh) ∀ {vh, qh} ∈ Vk
h × Wl

h, (11)

Bh (qh,uh) = 0 ∀ qh ∈ Wl
h, (12)

where (Ah (Uh) , Vh) = (µ(uh)ϵ(uh), ϵ(vh)) + δ2ϑ (divuh, divvh)

+
δ1h

2

ϑ
(−∆µuh +∇ph,−∆µvh +∇qh)h , (13)

Bh (qh,uh) = − (qh, divuh)h, Fh(Vh) = f(vh) +
δ1h

2

ϑ
(f,−∆µvh +∇qh)h , (14)

with (ψ, ϕ)h =
∑Ne

i=1

∫
Ωi ψ · ϕ dx, where Ne is the number of mesh elements, h the mesh parameter, δ1 and δ2

positive constants as stability parameters and ϑ a dimensional parameter. The norm induced by the inner product
(·, ·)h will be defined as ∥·∥h. Note that when δ1 = δ2 = 0 the Problem PGhb is reduced to the Galerkin formulation
which can exhibit velocity locking and spurious pressure oscillations. For Galerkin’s method, k and l must have
different orders, Fortin [11], Hughes [12]. To easely fulfil the LBB condition, Brezzi [4], the discontinuous pressure

can be rewritten as: ph = p∗h + ph, with p∗h ∈ W∗l
h =

§
p∗h ∈ L2(Ω):

∫
Ωe

p∗h dΩ
e = 0; ∇peh = ∇pe∗h

ª
, where

W∗l
h is the pressure subspace with null mean in each element and ph ∈ Wl

h =
{
ph ∈ L2(Ω): ∇peh = 0,

peh =

∫
Ωe

peh dΩe/

∫
Ωe

dΩe
}
, where Wl

h is the subspace of the piecewise constant function, where peh is the

restriction of ph on the element Ωe. Thus, we can write the Problem PG∗
hb:

Problem PG∗
hb: Given f ∈ V′, find {uh, p

∗
h, ph} ∈ Vk

h × W∗l
h × Wl

h, such that

(A∗
h (U

∗
h) , V

∗
h ) +Bh (ph, vh) = F ∗

h (V
∗
h ) ∀ {vh, q

∗
h} ∈ Vk

h × W∗l
h , (15)

Bh (qh,uh) = 0 ∀ qh ∈ Wl
h, (16)

where (A∗
h (U

∗
h) , V

∗
h ) = (µ(uh)ϵ(uh), ϵ(vh)) +Bh (p

∗
h, vh) + δ2ϑ (divuh, divvh) +Bh (q

∗
h,uh)

+
δ1h

2

ϑ
(−∆µuh +∇p∗h,−∆µvh +∇q∗h)h , (17)

Bh (p
∗
h, vh) = − (p∗h, divvh)h , Bh (ph, vh) = − (ph, divvh)h , (18)

F ∗
h (V

∗
h ) = f(vh) +

δ1h
2

ϑ
(f,−∆µvh +∇q∗h)h , (19)

with (ψ, ϕ)h =
∑Ne

i=1

∫
Ωi ψ · ϕ dx, h the mesh parameter, δ1, δ2 > 0 as stability parameters and ϑ a dimensional

parameter. To simplify the notation, the following definition was used: ∆µu = div(µ(u)ϵ(u)), where µ(u) is
not constant. Note that, again, when δ1 = δ2 = 0 the Problem PGhb is reduced to the Galerkin formulation
which can exhibit velocity locking and spurious oscillations of the pressure. For Galerkin’s method, k and l must
have different orders, Fortin [11]. The non-linearity of this problem is introduced by the viscosity law given by a
continuous and limited function, µ : R+ −→ R+, com µ∞ ≤ µ(s) ≤ µ0, where µ0 and µ∞ are positive reals that
limit the apparent viscosity at low and high shear rates, respectively.

5 Numerical Results

The numerical results below show the behaviour of the formulation for a Herschel-Bulkley fluid with the
regularizations. The example used was the cavity problem in a unit square domain with u(x, 1) = (1, 0) for
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x ∈ [0, 1] and u = 0 on the other boundaries. We adopted a uniform mesh with 17 × 17 nodes and continuous
biquadratic interpolation functions for velocity and discontinuous biquadratic interpolation functions for pressure.
For the regularized models, the parameter was η = 0.1, the values used were τy = 1.0 Pa and τy = 5.0 Pa as
shown in the figures. The following graphs show the velocity field and pressure rises obtained with the stabilization
parameters set as δ1 = 1.0 and δ2 = 10.0 for the Herschel-Bulkley models with regularizations in the viscosity
term of the following types: Simple, Bercovier-Engleman and Papanastasiou.
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Figure 2. Velocity and pressure fields for the cavity problem using discontinuous pressure for τy = 1.0

The graphs in Fig. 2 and Fig.3 show results for a stabilized mixed finite element formulation for solving
pseudoplastic fluid flow problems with yield stress, where regularization was considered in the apparent viscosity
term. Although the discontinuous interpolations resulted in greater accuracy of the results, even in regions of
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Figure 3. Velocity and pressure fields for the cavity problem using discontinuous pressure for τy = 5.0

higher pressure gradients, we found that as the value of the yield stress increases, the solutions lose stability. Three
regularized constitutive models were compared: the Simple, the Bercovier and the Papanastasiou models. When
η → 0, regularization methods invariably have the same computational problems as pure the Herschel-Bulkley
model. It is necessary to associate a small finite value of η for the computational calculations and, in order to select
it in a consistent way, one must understand whether and how the solution of the regularized problem converges to
the exact problem.

Remark 1. As expected, as τy increases the velocities at the core are smaller (greater velocity gradients relative to
the upper boundary), since the resistance to flow is bigger for the same kinetic energy applied on the boundary.
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Remark 2. Above the 17× 17 mesh presented, no variations have been obtained in the results, in all the cases.

Remark 3. τy = 1.0 and 5.0 (Pa) correspond to dilute and more concentrated carbopol in water solution, respec-
tively.

Remark 4. Since only the velocity is prescribed on the boundaries, of course the pressures on the boundaries vary
as a function of the yield stress and other data.

6 Conclusions

This paper presents a stabilized and regularized mixed finite element formulation, with continuous interpo-
lation for velocity and discontinuous interpolation for pressure, for a stationary incompressible nonlinear flow
problem that models pseudoplastic fluids with yield stress governed by the constitutive relations of the Herschel-
Bulkley model (nonlinear viscoplastic). The main mathematical difficulties, apart from the complexity of non-
linearity, that are present in such flows are: the inequality constraint of the Herschel-Bulkley constitutive model,
which makes it challenging to obtain stable solutions; and the internal incompressibility constraint, which makes
it impossible to use some interpolations when classical methods are applied. To avoid these difficulties, the formu-
lations were built based on the method used in [1], where a stabilized mixed formulation for nonlinear problems
without boundary stress with discontinuous interpolation for pressure was able to deal with incompressibility and
allowed interpolations of the same order for velocity and pressure. Numerical results are presented comparing four
regularization functions considered and even the cases where this stabillized formulation is stable when applied
directly to the Herschel-Bulkley constitutive relation without the need of regularizations.
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