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Abstract. This article aims to compare the different trajectories of a 155 mm artillery shell when changing the 

angle of its trailing edge, also known as boattail. To this end, an iterative numerical analysis computer program 

was developed where the differential equations of the projectile trajectory are solved with 4 degrees of freedom, 

that is, through the modified point-mass method. When solving the system of differential equations, the 4th order 

Runge-Kutta method is used. The trailing edge angle is a geometric characteristic that is directly related to the 

base drag force experienced by the ammunition. Furthermore, the magnitude of the drag force has a great influence 

on the firing range and this, in turn, is of great relevance for the development of a projectile. The aerodynamic 

coefficients are obtained using a ballistic analysis software. It generates the aerodynamic coefficients for each 

boattail angle as a function of Mach number. These values are then used as input data in the source code and thus 

the simulation can be performed. The results obtained are validated by existing data in the literature and highlight 

variations in trajectories, showing that the maximum range can be obtained by determining an ideal boattail angle. 

Keywords: ballistics, aerodynamics, modified point-mass trajectory, Runge-Kutta method. 

1  Introduction 

According to Sor [1], a conventional 155 mm projectile’s body generally begins with a streamlined nose and 

terminates using a boattail base for aerodynamic efficiency. It was popularized during the World War II era and, 

since then, modifications to the projectile design have been minimal. The 155 mm artillery shell is not a self-

propelled projectile and thus, given the propellant charge used and the howitzer configuration, its fire range 

depends on its geometry characteristics. 

Once in flight, the projectile is subjected to aerodynamic forces and moments in addition to gravitational 

acceleration. The aerodynamic drag force acts in the opposite direction of the projectile’s velocity and makes a 

significant contribution to reducing the fire range. Sahu [2] proposed that the total drag force be divided into three 

components: pressure drag (excluding the base), viscous drag (skin friction), and base drag. The latter has a 

magnitude that can account for up to 50% of the total drag. 

Base drag is caused by the wake formed in the projectile’s afterbody due to the flow separation. Various 

techniques can be used to reduce it on a projectile in flight. The one that will be the focus of this paper is the 

boattail. It consists of a profile with a base diameter smaller than the body-cylinder diameter that creates a boattail 

angle 𝜃𝑏𝑡 – Fig. 1 –. Suliman [3] remarks that using boattail is intended to reduce the vortex area behind the base 

so the strong vortex will be replaced by a smaller and a weaker one, and the low pressure will increase. 
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Figure 1. Geometry of a 155 mm artillery shell 

The wave drag is a component of pressure drag due to compressibility effects. Although the boattail technique 

decreases the base drag, it increases the wave drag on the configuration. Therefore, an optimum boattail 

configuration results from balancing the increase in wave drag with the reduction of base drag [4]. Thus, this 

optimum configuration should give the longest range possible. 

2  Methodology 

2.1 Modified point-mass trajectory 

There are several methods for formulate the equations of a projectile’s trajectory, for example: the vacuum 

trajectory, the flat-fire point mass trajectory, the point-mass trajectory, etc. However, the six-degrees-of-freedom 

(6-DOF) trajectory stands out among the others for its precision. According to McCoy [5], the numerical 

integration of the 6-DOF differential equations of motion gives the most accurate solution possible, for the 

trajectory and flight dynamic behavior of a rotationally symmetric, spinning or non-spinning projectile, provided 

that all the aerodynamic forces and moments, and the initial conditions, are known to a high degree of accuracy. 

Although the 6-DOF trajectory is very precise, the computational time required for numerical solution of the 

system of differential equations is large. This is due to the small integration time step required for the numerical 

solution to yield the high frequency epicyclic pitching and yawing motion of the projectile. A simpler formulation 

that has good accuracy and requires less running time is the modified point-mass trajectory (MPM). It considers 

this motion small everywhere along the trajectory, which is true for rotationally symmetric projectile, except in 

the region near the apogee for very high elevation angle of fire. 

The yaw of repose is an important ballistic phenomenon that is worth explaining. The projectile axis is not 

perfectly aligned with its velocity vector during flight. The angle between them is called total yaw angle. Its 

variation with time can be understood as a sum of two movements: the first one is the yaw of repose, a quasi-

steady state movement of the projectile axis off center from the trajectory direction. A spinning projectile tends to, 

steadily and predictably, align its axis to the yaw of repose; the second one is the epicyclic movement discussed 

in the previous paragraph.     

The orthogonal coordinate system adopted by McCoy [5] for the movement of the projectile is used – Fig. 2 

–. Its origin is placed at the gun muzzle and the axes are labeled as 1, 2 and 3. The 1 axis points downrange, the 2 

axis points vertically upward and the 3 axis points to the right, when looking downrange. In addition, consider the 

unit vector, �⃗�, that passes through the projectile’s axis of rotational symmetry, directed positive from tail to nose, 

and the total yaw angle 𝛼𝑡, which is the angle between the projectile velocity vector �⃗� and �⃗�. 
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Figure 2. Coordinate system for the MPM trajectory [5] 

In that way, the trajectory can be described as in the Eq. (1) to Eq. (4). 

𝑑�⃗⃗�

𝑑𝑡
= −

𝜌𝐴𝑟𝑒𝑓𝐶𝐷

2𝑚
𝑣�⃗� +

𝜌𝐴𝑟𝑒𝑓𝐶𝐿𝛼
2𝑚

𝑣2𝛼𝑅⃗⃗ ⃗⃗ ⃗ +
𝜌𝐴𝑟𝑒𝑓𝑑𝐶𝑁𝑝𝛼

2𝑚
𝑝𝑥(�⃗� × 𝛼𝑅⃗⃗ ⃗⃗ ⃗) + �⃗� + 𝛬                                       (1) 

𝑑𝑝𝑥
𝑑𝑡

= −
𝜌𝐴𝑟𝑒𝑓𝑑

2𝑣

2𝐼𝑥
𝑝𝑥𝐶𝑙𝑝 +

𝜌𝐴𝑟𝑒𝑓𝑑𝑣
2

2𝐼𝑥
𝛿𝐹𝐶𝑙𝛿                                                                    (2) 

𝛼𝑅⃗⃗ ⃗⃗ ⃗ =
2𝐼𝑥𝑝𝑥

𝜌𝐴𝑟𝑒𝑓𝑑𝑣
4𝐶𝑀𝛼

(�⃗� × �⃗�)  ;   �⃗� = �⃗⃗� − �⃗⃗⃗⃗�  ;   𝐴𝑟𝑒𝑓 =
𝜋𝑑2

4
                                          (3) 

𝑋1(𝜏) = ∫ 𝑉1(𝑡)𝑑𝑡  ; 
𝜏

0

𝑋2(𝜏) = ∫ 𝑉2(𝑡)𝑑𝑡
𝜏

0

  ;  𝑋3(𝜏) = ∫ 𝑉3(𝑡)𝑑𝑡
𝜏

0

                                    (4) 

where 𝑚 is the mass of the projectile, 𝑡 is the time variable, 𝜌 is the air density, 𝐼𝑥 is the projectile axial moment 

of inertia, 𝑑 is the projectile reference diameter (𝑑 = 0.1547 m), 𝐴𝑟𝑒𝑓 is the projectile reference area, �⃗⃗� is the 

vector velocity of the projectile with respect to the earth fixed coordinate system, �⃗⃗⃗⃗� is the wind velocity relative 

to the earth fixed coordinate system, �⃗� is the vector velocity of the projectile with respect to the air, 𝑣 is the 

magnitude of �⃗�, 𝑝𝑥 is the axial spin of the projectile, 𝛼𝑅⃗⃗ ⃗⃗ ⃗ is the vector yaw of repose, 𝐶𝐷 is the drag force coefficient, 

𝐶𝐿𝛼 is the lift force coefficient, 𝐶𝑁𝑝𝛼 is the Magnus force coefficient, 𝐶𝑙𝑝 is the spin damping moment coefficient, 

𝐶𝑙𝛿 is the rolling moment due to fin cant, 𝐶𝑀𝛼  is the pitching moment coefficient, 𝛿𝐹 is the fin cant angle, �⃗� is the 

vector acceleration due to gravity, Λ⃗⃗⃗ is the vector Coriolis acceleration, 𝑋1 is the component of the projectile’s 

displacement in the 1 direction, 𝑋2 is the component of the projectile’s displacement in the 2 direction, 𝑋3 is the 

component of the projectile’s displacement in the 3 direction and τ is the elapsed time since the projectile left the 

muzzle (𝑡 = 0).  

2.2 Considerations for the system of equations 

The 155 mm artillery shell is spin-stabilized, therefore the second term on the right side of Eq. (2) is equal to 

zero. The Coriolis term is very small in comparison with the acceleration of gravity, except in long range artillery 

fire, which is not the case in the present work, therefore Λ⃗⃗⃗ = 0. The only non-null component of the vector �⃗� is 

𝑔2 = −9.81 m/s2. The wind velocity is assumed to be zero, therefore �⃗⃗⃗⃗� = 0. By doing the substitutions on the 

Eq. (1) to Eq. (3) and decomposing the vectors into components (𝑉1, 𝑉2 e 𝑉3), the system of differential equations 

for the MPM trajectory can be written as in the Eq. (5) to Eq. (8).  
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𝑑𝑉1
𝑑𝑡

= −
𝜌𝐴𝑟𝑒𝑓𝐶𝐷

2𝑚
𝑉𝑉1 +

𝐼𝑥𝑔2𝐶𝐿𝛼
𝑚𝑑𝐶𝑀𝛼𝑉

2
𝑝𝑥𝑉3 −

𝐼𝑥𝑔2𝐶𝑁𝑝𝛼
𝑚𝐶𝑀𝛼𝑉

4
𝑝𝑥
2𝑉1𝑉2                                         (5) 

𝑑𝑉2
𝑑𝑡

= −
𝜌𝐴𝑟𝑒𝑓𝐶𝐷

2𝑚
𝑉𝑉2 +

𝐼𝑥𝑔2𝐶𝑁𝑝𝛼
𝑚𝐶𝑀𝛼𝑉

4
𝑝𝑥
2(𝑉1

2 + 𝑉3
2) + 𝑔2                                              (6) 

𝑑𝑉3
𝑑𝑡

= −
𝜌𝐴𝑟𝑒𝑓𝐶𝐷

2𝑚
𝑉𝑉3 −

𝐼𝑥𝑔2𝐶𝐿𝛼
𝑚𝑑𝐶𝑀𝛼𝑉

2
𝑝𝑥𝑉1 −

𝐼𝑥𝑔2𝐶𝑁𝑝𝛼
𝑚𝐶𝑀𝛼𝑉

4
𝑝𝑥
2𝑉2𝑉3                                         (7) 

𝑑𝑝𝑥
𝑑𝑡

=
𝜌𝐴𝑟𝑒𝑓𝑑

2𝐶𝑙𝑝
2𝐼𝑥

𝑉𝑝𝑥                                                                            (8) 

where 𝑉 = √𝑉1
2 + 𝑉2

2 + 𝑉3
2 is the magnitude of the vector V⃗⃗⃗.  

2.3 Aerodynamic coefficients 

The MPM trajectory equations features five aerodynamic coefficients: 𝐶𝐷, 𝐶𝐿𝛼, 𝐶𝑁𝑝𝛼, 𝐶𝑙𝑝 and 𝐶𝑀𝛼 , being 𝐶𝐷 

given by a combination between the zero-yaw drag coefficient 𝐶𝐷0  and the yaw drag coefficient 𝐶𝐷
𝛿2

 – Eq. (9). 

All of them are functions of the free-stream Mach number and had its values tabulated by the PRODAS ballistic 

analysis software. In it, it’s possible to modify the boattail angle and get the changes in the aerodynamic 

coefficients as well as the projectile’s mass and moments of inertia.  

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝛿2
𝑠𝑒𝑛2𝛼𝑡                                                                           (9) 

2.4 Atmospheric modeling 

According to the standard model of the atmosphere adopted by the International Civil Aviation organization 

(ICAO) [6], the atmosphere can be divided in layers where the temperature and pressure can be modeled through 

equations. This study approaches the fire of a howitzer. Therefore, two layers are important: ground level up to 

11000 m and 11000 m up to 20000 m. Equations (10) and (11) give the equations for temperature and pressure 

respectively. 

𝑇 = {
𝑇0 + 𝛽𝐻,                                                                        𝐻 < 11000 𝑚
216.65,                                                           11000 𝑚 ≤ 𝐻 ≤ 20000 𝑚 

                         (10) 

𝑃 =

{
 
 

 
 
𝑃0 [1 +

𝛽

𝑇0
𝐻]

−
𝑔0
𝛽𝑅

,                                                     𝐻 < 11000 𝑚

𝑃𝑏𝑒𝑥𝑝 [−
𝑔0
𝑅𝑇

(𝐻 − 11000)] ,                11.000 𝑚 ≤ 𝐻 ≤ 20000 𝑚 

                          (11) 

where 𝐻 is the altitude, 𝑃 = 𝑃(𝐻) is the atmospheric pressure, 𝑇 = 𝑇(𝐻) is the atmospheric temperature, 𝑇0 and 

𝑃0 are the standard temperature and pressure at sea level (𝑇0 = 288.15 K and 𝑃0=101325 Pa), 𝑅 is the ideal gas 

constant for air (𝑅 = 287.05 J/kg∙K), 𝛽 is the temperature gradient (𝛽 = −0.0065 °C/m), 𝑃𝑏  is the pressure at 

11000 m of altitude (𝑃𝑏 = 22632 Pa) and 𝑔0 is the gravitational acceleration (𝑔0 = 𝑔2 = −9.81m/s2). 

Those equations are necessary to solve the MPM trajectory. This is because 𝜌 = 𝜌(𝑇, 𝑃); in addition, the 

Mach number 𝑀 = 𝑀(𝑇, 𝑃) determines the aerodynamic coefficients – Eq. (12) –. 

𝜌 =
𝑃

𝑅𝑇
  ;   𝑀 =

𝑉

√𝐾𝑅𝑇
                                                                        (12) 

where 𝐾 is the adiabatic expansion factor. 

2.5 Runge-Kutta method 

Solving the MPM trajectory requires numerical analysis. The well-known 4º order Runge-Kutta method is 

applied to the system of linear first order Ordinary Differential Equations presented in Eq. (5) to Eq. (8). It consists 
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of simple mathematic expressions and has good precision. The system of equations can then be rewritten as in Eq. 

(13), where the dot notation is used to represent the time derivative. 

{
 
 

 
 �̇�1 = 𝑓𝐾(𝑉1, 𝑉2, 𝑉3, 𝑝𝑥)

�̇�2 = 𝑓𝐿(𝑉1, 𝑉2, 𝑉3, 𝑝𝑥)

 �̇�3 = 𝑓𝑀(𝑉1, 𝑉2, 𝑉3, 𝑝𝑥)

 �̇�𝑥 = 𝑓𝑁(𝑉1, 𝑉2, 𝑉3, 𝑝𝑥)

                                                                        (13) 

Equations (14) to (21) show how each variable can be calculated through iterative process. 

{
 
 
 

 
 
   𝑉1(𝑖+1) = 𝑉1(𝑖) +

1

6
[𝐾1 + 2(𝐾2 + 𝐾3) + 𝐾4]

𝑉2(𝑖+1) = 𝑉2(𝑖) +
1

6
[𝐿1 + 2(𝐿2 + 𝐿3) + 𝐿4]

     𝑉3(𝑖+1) = 𝑉3(𝑖) +
1

6
[𝑀1 + 2(𝑀2 +𝑀3) + 𝑀4]

   𝑝𝑥(𝑖+1) = 𝑝𝑥(𝑖) +
1

6
[𝑁1 + 2(𝑁2 +𝑁3) + 𝑁4]

                                                  (14) 

𝐾1 = ∆𝑡𝑓𝐾(𝑉1(𝑖), 𝑉2(𝑖), 𝑉3(𝑖), 𝑝𝑥(𝑖))

𝐿1 = ∆𝑡𝑓𝐿(𝑉1(𝑖), 𝑉2(𝑖), 𝑉3(𝑖), 𝑝𝑥(𝑖))

𝑀1 = ∆𝑡𝑓𝑀(𝑉1(𝑖), 𝑉2(𝑖), 𝑉3(𝑖), 𝑝𝑥(𝑖))

𝑁1 = ∆𝑡𝑓𝑁(𝑉1(𝑖), 𝑉2(𝑖), 𝑉3(𝑖), 𝑝𝑥(𝑖))

                                                               (15) 

𝐾2 = ∆𝑡𝑓𝐾 (𝑉1(𝑖) +
𝐾1
2
, 𝑉2(𝑖) +

𝐿1
2
, 𝑉3(𝑖) +

𝑀1

2
, 𝑝𝑥(𝑖) +

𝑁1
2
)

𝐿2 = ∆𝑡𝑓𝐿 (𝑉1(𝑖) +
𝐾1
2
, 𝑉2(𝑖) +

𝐿1
2
, 𝑉3(𝑖) +

𝑀1

2
, 𝑝𝑥(𝑖) +

𝑁1
2
)

𝑀2 = ∆𝑡𝑓𝑀 (𝑉1(𝑖) +
𝐾1
2
, 𝑉2(𝑖) +

𝐿1
2
, 𝑉3(𝑖) +

𝑀1

2
, 𝑝𝑥(𝑖) +

𝑁1
2
)

𝑁2 = ∆𝑡𝑓𝑁 (𝑉1(𝑖) +
𝐾1
2
, 𝑉2(𝑖) +

𝐿1
2
, 𝑉3(𝑖) +

𝑀1

2
, 𝑝𝑥(𝑖) +

𝑁1
2
)

                                           (16) 

𝐾3 = ∆𝑡𝑓𝐾 (𝑉1(𝑖) +
𝐾2
2
, 𝑉2(𝑖) +

𝐿2
2
, 𝑉3(𝑖) +

𝑀2

2
, 𝑝𝑥(𝑖) +

𝑁2
2
)

𝐿3 = ∆𝑡𝑓𝐿 (𝑉1(𝑖) +
𝐾2
2
, 𝑉2(𝑖) +

𝐿2
2
, 𝑉3(𝑖) +

𝑀2

2
, 𝑝𝑥(𝑖) +

𝑁2
2
)

𝑀3 = ∆𝑡𝑓𝑀 (𝑉1(𝑖) +
𝐾2
2
, 𝑉2(𝑖) +

𝐿2
2
, 𝑉3(𝑖) +

𝑀2

2
, 𝑝𝑥(𝑖) +

𝑁2
2
) 

𝑁3 = ∆𝑡𝑓𝑁 (𝑉1(𝑖) +
𝐾2
2
, 𝑉2(𝑖) +

𝐿2
2
, 𝑉3(𝑖) +

𝑀2

2
, 𝑝𝑥(𝑖) +

𝑁2
2
)

                                        (17) 

𝐾4 = ∆𝑡𝑓𝐾(𝑉1(𝑖) + 𝐾3, 𝑉2(𝑖) + 𝐿3, 𝑉3(𝑖) +𝑀3, 𝑝𝑥(𝑖) + 𝑁3)

𝐿4 = ∆𝑡𝑓𝐿(𝑉1(𝑖) + 𝐾3, 𝑉2(𝑖) + 𝐿3, 𝑉3(𝑖) +𝑀3, 𝑝𝑥(𝑖) +𝑁3)

𝑀4 = ∆𝑡𝑓𝑀(𝑉1(𝑖) + 𝐾3, 𝑉2(𝑖) + 𝐿3, 𝑉3(𝑖) +𝑀3, 𝑝𝑥(𝑖) + 𝑁3)

𝑁4 = ∆𝑡𝑓𝑁(𝑉1(𝑖) + 𝐾3, 𝑉2(𝑖) + 𝐿3, 𝑉3(𝑖) +𝑀3, 𝑝𝑥(𝑖) + 𝑁3)

                                           (18) 

𝑋1(𝜏) = 𝑋1(𝑖=𝑛) =
∆𝑡

2
[𝑉1(𝑖=1) + (2∑𝑉1(𝑖)

𝑛−1

𝑖=2

) + 𝑉1(𝑖=𝑛)]                                          (19) 

𝑋2(𝜏) = 𝑋2(𝑖=𝑛) =
∆𝑡

2
[𝑉2(𝑖=1) + (2∑𝑉2(𝑖)

𝑛−1

𝑖=2

) + 𝑉2(𝑖=𝑛)]                                          (20) 

𝑋3(𝜏) = 𝑋3(𝑖=𝑛) =
∆𝑡

2
[𝑉3(𝑖=1) + (2∑𝑉3(𝑖)

𝑛−1

𝑖=2

) + 𝑉3(𝑖=𝑛)]                                          (21) 

where ∆𝑡 is the time step size for the iterations and the displacement is calculated by integration through the 

trapezoidal rule, being 𝑛 the number of iterative steps from 𝑡 = 0 until 𝑡 = τ. 
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3  Results 

3.1 Initial conditions  

The origin of the coordinate system is placed at the gun muzzle, hence X1(𝑡 = 0) = X1(i=1) = 0, 

X2(𝑡 = 0) = X2(i=1) = 0 and X3(𝑡 = 0) = X3(i=1) = 0. In order to know the components of �⃗⃗�(0), it is necessary 

to define the initial orientation of the projectile when leaving the muzzle (which, for the purpose of this work, is 

the same as the gun tube orientation). The angles of the gun tube from the plane 1-3 (φ0) – elevation angle – and 

from the plane 1-2 (𝜃0) are defined. Thus, the components of �⃗⃗�(0) can be written as in Eq. (22).  

𝑉1(0) = 𝑉(0) 𝑐𝑜𝑠(𝜑0) 𝑐𝑜𝑠(𝜃0)

𝑉2(0) = 𝑉(0) 𝑠𝑖𝑛(𝜑0) 𝑐𝑜𝑠(𝜃0)

𝑉3(0) = 𝑉(0) 𝑠𝑖𝑛(𝜃0)

                                                                 (22) 

where 𝑉(0) = 207.3 m/s, φ0 = 46.3° and 𝜃0 = 0°. The initial condition for the 𝑉 components is, then, calculated: 

𝑉1(0) = 143.22 m/s, 𝑉2(0) = 149.87 m/s and 𝑉3(0) = 0 m/s. 

Equation (23) shows how to calculate the initial axial spin rate of the projectile 𝑝𝑥(0). 

𝑝𝑥(0) =
2𝜋𝑉(0)

𝑟𝑑
                                                                              (23) 

where r is the rifling twist rate (r = 20 calibers/revolution). This gives px(0) = 420 rad/s.  

3.2 Script routine validation 

Once the system of ODE is complete, a script routine can be written in MATLAB R2023b to solve the MPM 

trajectory. However, it is necessary to validate the script before solving it. This is done by comparing the script 

output with the PRODAS output and with the 155 mm projectile firing table data. Both, the software PRODAS 

and the firing table, fix the muzzle velocity magnitude and projectile range (Δ𝑋1) to calculate φ0. Then, 𝑉(0) and 

φ0 are used as input in the MATLAB script so the range can be calculated. The muzzle velocity magnitude is fixed 

at 𝑉(0) = 207.3 m/s. The boattail angle is the standard for the 155 mm M107 (𝜃𝑏𝑡 = 8.51°). The results are shown 

in Tab. 1. 

Table 1. Projectile range (Δ𝑋1) calculated through MATLAB script routine  

 

PRODAS FIRING TABLE 

𝛗𝟎 

(degrees) 

𝚫𝑿𝟏 (m) ERROR 

(%) 

𝛗𝟎 

(degrees) 

𝚫𝑿𝟏 (m) ERROR 

(%) DATA MATLAB DATA MATLAB 

3.3 500 500.5 0.10 3.3 500 500.5 0.10 

6.8 1000 1001.4 0.14 6.8 1000 1002.2 0.22 

1.4 1500 1501.8 0.12 10.4 1500 1504.0 0.27 

14.3 2000 2002.3 0.11 14.4 2000 2004.9 0.24 

18.7 2500 2502.9 0.12 18.8 2500 2505.9 0.24 

23.9 3000 3003.3 0.11 23.9 3000 3004.8 0.16 

30.6 3500 3504.0 0.11 30.6 3500 3501.4 0.04 

42.0 3900 3905.6 0.14 41.0 3900 3893.2 0.17 

46.3 3900 3906.6 0.17 47.6 3900 3890.6 0.24 

57.7 3500 3512.4 0.35 57.8 3500 3501.4 0.04 

64.3 3000 3022.6 0.75 64.2 3000 3034.8 1.15 

69.3 2500 2540.8 1.61 68.7 2500 2607.2 4.11 

 It can be seen from Tab. 1 that the errors associated with the MATLAB script output are less than 1 % for 

most of φ0, the exception being at the very high elevation angles of fire, as expected for MPM trajectory. The 

results validate the script routine so the trajectory can be calculated. 
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3.3 Trajectory 

The MPM trajectory is calculated for eight different boattail geometries. The boattail length remains the same 

for all cases (𝐿𝑏𝑡 = 70.1 mm) while the boattail angle varies from 𝜃𝑏𝑡 = 0° (no-boattail) to 𝜃𝑏𝑡 = 12° with 2° 

jumps. The standard boattail angle is also included for comparison (𝜃𝑏𝑡 = 8.51°). The iterative process stops when 

the projectile reaches the same height as the muzzle 𝑋2(𝑡) = 0 (it should be noted that the ground is flat, with no 

elevations). The time step size, for good accuracy, is ∆𝑡 = 0.001 s, given that computing time is not very large for 

this problem. Figures 3 shows the results.  

Figure 3. MPM trajectories for variable 𝜃𝑏𝑡  

 Figure 4 highlights the trajectories at the end of it. 

Figure 4. MPM trajectories highlights 
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4  Conclusion 

The trajectories show an improve in range of 174.7 m (4.67 %) from the no-boattail configuration to a boattail 

angle of 𝜃𝑏𝑡 = 6°. It can also be noted that there is no significant difference in range from 𝜃𝑏𝑡 = 6° to 𝜃𝑏𝑡 = 8.51°. 

This agrees with McCoy [5] who states that for boattail angles between 5° and 9°, the drag coefficient (as well as 

the others aerodynamic coefficients) vs 𝜃𝑏𝑡 curve is relatively flat. The fact that the standard angle (𝜃𝑏𝑡 = 8.51°) 

does not give the best range possible can be explained by the existence of other requirements in projectile design 

that were not considered in this work, however, the deviation is negligible (0.1%). The results agree with the 

literature on the subject. 
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