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Abstract. To reduce engineering costs, the search for more efficient materials and design concepts leads to slender
structures. Consequently, the need for geometrically nonlinear analysis which accounts for local inelastic instabil-
ities becomes more evident, specially when dealing with structural components with cross-sections composed of
slender plates and shells. The present work proposes an efficient geometrical nonlinear beam finite element model,
developed for the analysis of slender section steel frames, accounting for local buckling. The finite element is
locally formulated as the traditional linear Euler-Bernoulli beam element. A co-rotational description of motion is
then employed to account for large displacements and rotations. The local buckling phenomenon is taken into ac-
count by a lumped damage model, which concentrates the effects at damage-plastic hinges. A predictor-corrector
algorithm is employed at element level, whereas the Newton-Raphson method solves the global nonlinear equi-
librium equations. To assess the accuracy of the proposed model, the numerical results obtained in this study are
compared against available responses. The preliminary numerical results are reasonable, which corroborates that
the proposed model might be used in further investigations.

Keywords: Co-rotational description of motion, Lumped damage model, Local buckling

1 Introduction

The nonlinearities that occur in the analysis of frame structures are mainly triggered by two sources: geomet-
rical and material. With regard to the nonlinear geometric analysis, it can be efficiently handled by the co-rotational
formulation [1–5]. The fundamental idea of such a formulation is to decompose the large motion of the element
into rigid body and pure deformation parts, through the use of a local system which continuously rotates and
translates with the element. The deformation is captured at the level of the local reference system, whereas the ge-
ometric nonlinearity induced by the large rigid-body motion is incorporated in the transformation matrices relating
local and global displacements. The main interest is that the pure deformation part can be assumed as small and
can be represented by a linear or a low order theory. Avoiding the nonlinear relationship between the strain tensor
and the displacement gradient makes the co-rotational approach very attractive to deal with geometrical nonlinear-
ity. With respect to the nonlinear material analysis of beams and frames, it can be distinguishable placed into two
branches: the continuum inelasticity theories [4, 6] and the lumped inelasticity theories [7–9]. Herein, the latter
one is adopted due to its efficiency in engineering practices. The so-called Lumped Damage Mechanics (LDM)
is a theory based on concepts from classic plastic hinges and continuum damage mechanics. The local buckling
phenomenon can be taken into account in LDM models by an internal damage variable, which is incorporated into
plastic hinges. The works from [10–13] are examples where the LDM was successfully applied for the analysis
of steel components considering local buckling. None of the works, however, considered a geometric nonlinear
description of motion.
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In the present work, a co-rotational finite element model is developed to analyze planar slender section steel
frames, accounting for geometric nonlinearity and local buckling. The constrained nonlinear system of equation
of the discrete constitutive problem at the element level is solved with the Newton-Raphson method, whereas
a classical displacement-control procedure solves the global nonlinear equilibrium equations. An example with
reference solution is presented to demonstrate the robustness of the proposed formulation.

2 Co-rotational finite element lumped damage model

A co-rotational model is adopted to describe the motion of the element from an initial configuration C0 to
the current configuration Cn. The rigid body motion is identified by an intermediate configuration C0n such that
the motion between the intermediate configuration and the current configuration involves all the deformation of
the element, under small strains assumption. Thus, the equilibrium equations of the element refereed to C0n

can be obtained based on the Euler-Bernoulli beam linear theory [6]. The co-rotational model relates the total
displacements of the element, i.e., from C0 to Cn, with the displacements involved in the motion from C0n to Cn.

2.1 Equilibrium refereed to C0n

The co-rotational displacement fields of the Euler-Bernoulli linear element with inelastic hinges can be rewrit-
ten in matrix notation as. ū

v̄

 = Φe(x̄)ue +Φp(x̄)up ue =
⌊
0 θ̄e1 ūe

2 θ̄e2
⌋T

up =
⌊
ūp
1 θ̄p1 ūp

2 θ̄p2
⌋T

(1)

where ue is the elastic nodal displacement vector, up is the plastic nodal displacement vector of the plastic hinges,
Φe(x̄) is the matrix of approximation functions related to the elastic nodal values and Φp(x̄) the matrix of approx-
imation functions related to the inelastic nodal values. The total co-rotational displacement vector u can be written
in terms of ue and up as: u = ue+Mup, where M is a matrix of zeros and ones. More details of the co-rotational
model and the approximation functions Φe(x̄) and Φp(x̄) can be found in [14]. From the approximations, the
generalized strain fields ε0 = dū/dx̄ and κ = d2v̄/dx̄2 can be represented as ε0

κ

 =

 εe0

κe

+

 εp0

κ

 = B
e
(x̄)ue +B

p
(x̄)up (2)

in which the matrices B
e
(x̄) and B

p
(x̄), derived from Φe(x̄) and Φp(x̄), can also be found in [14]. Using the

Principle of Virtual Displacements, it is possible to establish the equilibrium equations of the element referred to
C0n

−
∫ L0

0

 δε0

δκ


T  N

M

 dx̄+ δuT r+

∫ L0

0

 δū

δv̄


T  qx̄

qȳ

 dx̄ = 0 (3)

where r = ⌊Fx̄1 Mz̄1 Fx̄2 Mz̄2⌋T are the co-rotational reactions forces, N = EAεe0,M = EIκe are the
(elastic) axial force and bending moment, r is the nodal reactions, qx̄ and qv̄ are the distributed forces on element.
The substitution of the approximations (1) for the virtual displacements into the last integral in the L.H.S. of (3)
allows to reduce this term to δuTp, in which p =

⌊
pū1 pθ̄1 pū2 pθ̄2

⌋T
are consistent equivalent nodal forces.

Replacing the approximations (2) for the virtual strains into the first integral in the L.H.S of (3), one obtains

−
∫ L0

0

 δε0

δκ


T  N

M

 dx̄ = −δueT f − δupT f
p

(4)

where

f =



N1

M1

N2

M2


=

∫ L0

0

B
eT

 EA 0

0 EI

B
e
dx̄ue =

E

L0


A 0 −A 0

4I 0 2I

A 0

sym 4I





ū1

θ̄1 − θ̄p1

ū2 − ūp

θ̄2 − θ̄p2


(5)
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and f
p
= ⌊N1 −M2 N2 M1⌋T , with ūp = ūp

1 + ūp
2 (see details in [14]). Once, by construction, ū1 is null in

the co-rotated frame, the displacements ue,up,u can be redefined as

ue ←
⌊
θ̄e1 ūe

2 θ̄e2
⌋T

up ←
⌊
θ̄p1 ūp θ̄p2

⌋T
u←

⌊
θ̄1 ū2 θ̄2

⌋T
= ue + up. (6)

the same applied to the vectors r, p, f
p
:

r← ⌊Mz̄1 Fx̄2 Mz̄2⌋T p←
⌊
pθ̄1 pū2 pθ̄2

⌋T
f
p ← ⌊−M2 N2 M1⌋T , (7)

and to f :

f ←


M1

N2

M2

 =


4EI
L0

0 2EI
L0

EA
L0

0

sym 4EI
L0




θ̄1 − θ̄p1

ū2 − ūp

θ̄2 − θ̄p2

 = k
e {u− up} (8)

Following the work by [15], rewriting Eq. (8) in terms of flexibility allows for the introduction of inelastic rotations
due to damage, using concepts analogous to strain equivalence from classical damage mechanics. Then, rewriting
it again in terms of stiffness results

f ←


M1

N2

M2

 =


12(1−d1)EI

(3−d1d2+d1+d2)L0
0 − 6EI(1−d1)(1−d2)

(3−d1d2+d1+d2)L0

EA
L0

0

sym 12(1−d2)EI
(3−d1d2+d1+d2)L0




θ̄1 − θ̄p1

ū2 − ūp

θ̄2 − θ̄p2

 = k {u− up} (9)

in which di are damage variables for the hinges i = 1, 2. The stiffness matrix k now considers the influence
of the damage variables, and reduces to k

e
when d1 = d2 = 0. Replacing (6),(7) and (9) into (3) yields:

δueT
{
−f + r+ pe

}
+δupT

{
−fp + r+ pp

}
= 0. Since the virtual displacements δu are arbitrary, it is possible

to choose a virtual displacement field completely elastic. Supposing that δup = 0 then

−f + r+ pe = 0 ⇒ k {u− up} = r+ pe (10)

which represents the equilibrium of the element refereed to C0n. Notice that the system (10) has more unknown
than equations, requiring thus additional equations provided by the evolution laws of the internal variables.

2.2 Equilibrium refereed to C0

The equilibrium equations of the element referred to C0 can be obtained returning the rigid body motion
that occurs from C0 to C0n to the element, i.e., identifying the relationship between u =

⌊
θ̄1 ū2 θ̄2

⌋T
and

u = ⌊u1 v1 θ1 u2 v2 θ2⌋T . Such relationship can be established in a differential form as (see [16] for
details)

δu =
∂u

∂u
δu = Tδu T(u) =


∂θ̄1
∂u1

∂θ̄1
∂v1

· · · ∂θ̄1
∂θ2

∂θ̄2
∂u1

∂θ̄2
∂v1

· · · ∂θ̄2
∂θ2

∂ū2

∂u1

∂ū2

∂v1
· · · ∂ū2

∂θ2
.

 (11)

Since the virtual work realized by nodal reactions r, internal nodal forces f and equivalent nodal forces p are
invariant with respect to changes in the coordinate system, it is possible to obtain the equilibrium equations of the
element referred to C0 by pre-multiplying (10) by TT

TT
{
−f + r+ p

}
= 0 ⇒ Ψ(u) = −f + r+ p = 0. (12)

The previous relation forms a system of nonlinear equations, which can be solved by the Newton-Raphson proce-
dure. To calculate Ψ(u) and ∂Ψ/∂u it is necessary to obtain f (and up ) from u. The computation of f from u is
described in section 2.4.
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2.3 Evolution laws

Plasticity evolution laws

The evolution laws of the plastic displacements ūp
1, ū

p
2 and plastic rotations θ̄p1 , θ̄

p
2 of the inelastic hinges can

be written as a function of the nodal internal forces N1,M1 and N2,M2 [17]. Let the respective yield functions for
the hinges i = 1, 2 be represented by fi = fi (Ni,Mi) ≤ 0. The evolution laws of the plastic displacements ūp

i and
plastic rotations θ̄pi are given by the associative normality rule: ∆ūp

i = ∆λi ∂fi/∂Ni and ∆θ̄pi = ∆λi ∂fi/∂Mi.
Recording that ūp = ūp

1 + ūp
2, one writes

∆ūp = ∆ūp
1 +∆ūp

2 = ∆λ1
∂f1
∂N1

+∆λ2
∂f2
∂N2

, (13)

where λi is the plastic multiplier of the plastic hinges i . The evolution laws of λi are

∆λi = 0 if fi (Ni,Mi) < 0; fi (Ni,Mi) = 0 if ∆λi > 0. (14)

Analytical expressions for the yielding functions fi depends on the cross-section geometry and on the constitutive
model of the material. Suitable empirical expressions for symmetric cross-sections and elastic-plastic materials
are given by [14]. Replacing the bending moments Mi with the effective bending moments M̄i = Mi/(1 − di)
in the yield function from [14] allows to obtain the yielding functions for damage-plastic material [7], which are
adopted herein

fi (Ni,Mi) =

[(
Ni

Ny

)e

+

(
Mi

My (1− di)

)e]1/e
− 1 ≤ 0, (15)

where My is the yield moment of the cross-section without axial forces, Ny produces the total plasticization of the
element when there is no bending moments and the constant e is a cross-section dependent parameter.

Damage evolution laws

The evolution laws for the damage variables d1 and d2 were proposed by [7] to address local buckling prob-
lems and are given by: di = km

〈∣∣θ̄pi ∣∣− pcr
〉
+

, where pcr is the critical plastic rotation that initiates the local
buckling, km is the slope of the damage evolution line and ⟨⟩+ indicates that only positive values are taken. Under
the assumption of monotonic loading, in which

∣∣θ̄pi ∣∣ is a monotonically increasing variable, the damage evolution
laws can also be presented as

fdi = cdili = 0, (16)

in which li = di − km
(∣∣θ̄pi ∣∣− pcr

)
, and cdi are constant related to the damage state of a particular hinge i = 1, 2,

which assumes the values cpi = 0 or cpi = 1 depending on the conditions
∣∣θ̄pi ∣∣ − pcr < 0 or

∣∣θ̄pi ∣∣ − pcr ≥ 0,
respectively.

2.4 Discrete constitutive equations

The constitutive equations of the element with hinges, i.e., the elasticity equations (9) and the evolution laws,
allows the computations of the internal force vector f from a given displacement vector u. To accomplish this task,
the evolution laws must be presented in a discrete form and combined with (9). Let up

0 be the vector of plastic
displacements jumps of a previous known solution u0. Let cpi and cdi be constants related to the plasticity and
damage states, respectively, of a particular hinge i (i = 1, 2). The constants cpi assumes the values cpi = 0 or
cpi

= 1 depending on f∗
i < 0 or f∗

i 0, in which f∗
i is the yield function of the hinge i and evaluated for the elastic

prediction f
∗
= k

e
(u− up

0). Assuming the plastic displacements up as small, one decomposes up in the additive
form

up = up
0 +∆up, (17)

where, from the plastic displacements and rotations evolution laws

∆up =
[
∆θ̄p1 ∆ūp ∆θ̄p2

]T
=

⌊
cp1∆λ̄1

∂f1
∂M1

cp1∆λ̄1
∂f1
∂N1

+ cp2∆λ̄2
∂f2
∂N2

cp2∆λ̄2
∂f2
∂M2

]T
. (18)

Based on the equations (9) and (17), one writes
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Maceió, Alagoas, November 11-14, 2024



D.C. Nardi, S.G.F. Cordeiro, D.L.N.F. Amorim

f + k∆up = k {u− up
0} . (19)

From the definition of k = k(d1, d2), one writes

k {u− up
0} = k

d {u− up
0}+ k

e {u− up
0} , (20)

where k
e

is the elastic stiffness matrix defined in (8) and k
d
= k

d
(d1, d2) is a damage correction stiffness matrix,

defined as

k
d
=


12(d1−1)EI

(d1d2−d1−d2−3)L0
− 12EI

3L0
0 − 6EI(d1−1)(d2−1)

(d1d2−d1−d2−3)L0
− 6EI

3L0

0 0

sym 12(d2−1)EI
(d1d2−d1−d2−3)L0

− 12EI
3L0

 (21)

Thus, (19) can be rewritten as

f + k∆up − k
d {u− up

0} = f
∗
, (22)

where f
∗
= k

e {u− up
0} is the elastic prediction, which assumes up

0 = 0 and d = ⌊d1, d2⌋T = 0. A nonlinear
system of equations arises from (22), resulting

g (x) = f + k∆up − k
d {u− up

0} − f
∗
= 0, (23)

in which x =
⌊
f ,∆λ1,∆λ2, d1, d2

⌋T
. Notice that the system (23) has three equations and seven unknowns.

In order to make (23) solvable, the plasticity constraining equations: cp1f1 = 0, cp2f2 = 0, and the damage
constraining equations: cd1l1 = 0, cd2l2 = 0 are added into it:

g (x)←



g (x)

cp1
f1 (N1,M1, d1)

cp2
f2 (N2,M2, d2)

cd1 l1 (∆λ1, d1)

cd2 l2 (∆λ2, d2)


−



f
∗

0

0

0

0


. (24)

Once assumed values for the constants cpi and cdi, the above non-linear system of equations can be solved numer-
ically by the Newton-Raphson method. The converged solution obtained for the provisional values of cpi and cdi
must satisfy the constrains to be consistent with the damage-plasticity constitutive model. If the constraints are not
satisfied, a new prevision must be made for the constants cpi and cdi, and the local problem (24) must be solved
again for the new constants.

3 Numerical results

The effectiveness of the proposed co-rotational finite element was verified with an example of a bi-clamped
beam subjected to an asymmetrical concentrated load, as illustrated in Figure 1. The validation was performed by
the results obtained with the developed formulation with the elastic-plastic solutions from Alhasawi et al. [8] and
Tasinaffo et al. [14]. The inelastic hinges activated during the analysis are also presented in Fig. 1.

The example was analyzed in [8, 14] with an elastic perfectly plastic hinges models. It is worth to emphasize
that [8, 14] adopted the yield functions defined in 15, but with di = 0 as damage was not considered in their
analysis. The dimensions of the problem are L = 720 cm, a = L/3 and b = 2L/3. The beam cross-section is of
type HEB 220 , with a plastic modulus of zy = 827.19 cm3. The damage-plastic material has a Young modulus
E = 210GPa and a yield stress σy = 355MPa. From zy and σy it is possible to obtain My = 29365.25kN.cm
and Ny = 3230.50kN. The critical plastic rotation and the the slope of the damage evolution, adopted only in the
present work analysis, are set as pcr = 0.15rad and km = 4.0. The example is analyzed with 2 elements. The
tolerance for the convergence of the global Newton-Raphson procedures is equal to 10−3 for both dimensionless
displacement increments and forces, while the tolerance for the convergence of the local Newton-Raphson proce-
dures is equal to 10−3 for dimensionless internal forces and 10−6 for damage-plasticity laws restrictions. The load
P = 1200kN is applied in 20 load steps. Figure 2 shows the load-displacement results at the point of application
of the concentrated load, as well as the damage evolution for hinges 1 and 2.
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Figure 1. Bi-clamped beam subjected to an asymmetrical concentrated load.

Figure 2. Load-dsiplacement and damage evolution results.

Notice that the damage-plasticity load-displacement results starts to differ from the elastoplastic response
from [8, 14] when the damage variable of the hinge 1 is activated, resulting a less stiff response. The numerically
computed damage evolution also agrees with the imposed ones.

4 Final remarks

In this paper, a co-rotational model was developed to analyze planar slender section steel frames, accounting
for geometric nonlinearity and local buckling. The local buckling phenomenon is taken into account by a lumped
damage model, which was consistently incorporated into the co-rotational model. Both the constrained nonlinear
system of equation of the discrete constitutive problem at element level and the nonlinear global equilibrium
equations are solved by full Newton-Raphson procedures. A bi-clamped beam example with an available elastic-
plastic reference solution was presented to validate the developed formulation. The results were consistent with
the expected, as discussed in the numerical results section.
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