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Abstract. This paper presents a lumped damage model to analyse local buckling in steel Square (SHS) and 

Rectangular Hollow Section (RHS). In this model, the nonlinear and damage effects of the planar frame element 

are concentrated in plastic hinges located at the ends of the element, significantly reducing the computational cost 

of the analysis. Thus, plasticity effects are represented by the formation of plastic hinges, while local buckling is 

described by adding a damage variable to these hinges. The analysis adopts a step-by-step procedure to consider 

geometric nonlinearity, solving the problem sequentially, and considering the structural elements' geometry 

change. To evaluate the model's accuracy, the numerical results were compared with experimental results, in which 

steel SHS were subjected to compressive axial force with monotonic bending moment loading. The results indicate 

that the numerical model presents satisfactory behaviour in relation to the experimental results. 
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1  Introduction 

Square (SHS) and rectangular hollow section (RHS) columns are widely used in steel building construction, 

especially in regions subject to seismic activity, due to their strength and rigidity in both directions. However, 

during high-magnitude earthquakes, local buckling may occur in these columns, potentially leading to the collapse 

of the entire structure [1]. Thus, several studies have been developed to understand and describe the local buckling 

behaviour in steel SHS and RHS [2-6]. 

Among the various numerical methods available, Lumped Damage Mechanics (LDM) stands out for its 

simplified implementation and computational efficiency. In this method, it is assumed that all nonlinear and 

damage effects of a finite element are lumped in inelastic hinges at the ends of the element. This approach 

significantly reduces the computational cost of the analysis, allowing its application in reliability analyses [7-8] 

and in several practical engineering problems, such as local buckling [9-13]. 

Thus, the main objective of this paper is to present a geometrically nonlinear lumped damage model to 

analyse local buckling in steel square and rectangular hollow sections. 

2  Lumped damage mechanics 

Consider a planar frame element b  between nodes i  and j , as illustrated in Fig. 1a. The element has six 

degrees of freedom: horizontal and vertical displacements, and rotations at each node ( u , w  and  , respectively). 
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Thus, the matrix of generalised displacements of the finite element is defined as: 

    
T

i i i j j jb
u w u w =q  (1) 

where the superscript T  means ‘transpose of’. 

Analogously, the matrix of internal forces of the element b  is given by: 

    
T

ui wi i uj wj jb
Q Q Q Q Q Q =Q  (2) 

where the first index means the direction and the second one is the node where it is applied, e.g. 
wjQ  is the internal 

force at the GZ -axis direction applied on node j . 

 

Figure 1. Planar frame element: (a) generalised displacements and deformations and (b) lumped damage model 

for steel 

The notation used in this paper is based on the one proposed by Powell [14], where the rigid body movement 

is separated from the frame deformation. Thus, the deformed shape of the element b  can be described by the 

matrix of generalised deformations: 

    
T

i j bb
  =  (3) 

where i  and 
j  are the relative rotations at the respective nodes, and b  is the elongation of the element (Fig. 1a).  

The matrix of generalised deformations is conjugated to the matrix of generalised stresses, given by: 

    
T

i j bb
m m n=  (4) 

where im  and 
jm  are the bending moments at the respective nodes, and bn  is the axial force (Fig. 1a). 

The relation between displacements and generalised deformations of the finite element is established by the 

kinematic equation, described by:  

   ( )  
b bb

d d=   B q q  (5) 

where ( )
b

  B q  is the kinematic transformation matrix [15], expressed by:  

 ( )

sin cos sin cos
1 0

sin cos sin cos
0 1

cos sin 0 cos sin 0

b b b b

b b b b

b b b b

b
b b b b

b b b b

L L L L

L L L L

   

   

   

 
− − 

 
 

= − −    
 
 − −
 
 

B q  (6) 
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being b  the angle of inclination between the axis of the finite element and the reference coordinate system and 

bL  is the current length of the element. 

Thus, the matrix of internal forces can be related to the matrix of generalised stresses as follows: 

   ( )  
T

b bb
=   Q B q   (7) 

In LDM, the damage variable is incorporated into plastic hinges, which are generically called inelastic hinges. 

It is assumed that the plasticisation of the steel structure and discontinuity due to local buckling are concentrated 

at the ends of the element. Thus, the plasticisation of the structural element is represented by forming a plastic 

hinge. In contrast, the local buckling at the end of the element is described by the damage variables ( id  and 
jd ) 

added to the hinges, as illustrated in Fig. 1b. 

According to the deformation equivalence hypothesis [15], the matrix of generalised deformations can be 

expressed as: 

        e p d= + +     (8) 

where  e  is the elastic part of the matrix of generalised deformations,  p  is the matrix of plastic generalised 

deformations, and  d  is the part due to damage. Considering that plastic elongations can be neglected, the matrix 

of plastic generalised deformations is given by: 

    0
T

p p p

i j =  (9) 

Thus, the constitutive law relates the matrix of generalised deformations  
b

  to the matrix of generalised 

stresses  
b

  as follows: 

   ( )  p

bbb
d− =   F    (10) 

where ( )
b

d  F  is the flexibility matrix of the damaged frame element [15], described by: 

 ( )

( )

( )

0
3 1 6

0
6 3 1

0 0

b b

b i b

b b

b
b b j

b

b

L L

EI d EI

L L
d

EI EI d

L

EA

 
− 

− 
 
 = −    −
 
 
 
 

F  (11) 

where bEI  and bEA  are, respectively, the flexural (Young’s modulus multiplied by moment of inertia of the cross-

section) and axial (Young’s modulus multiplied by the area of the cross-section) rigidities. 

The analysis was performed sequentially to consider the nonlinear effects due to the change in the geometry 

of the structural elements. Thus, the kinematic, equilibrium and constitutive equations were formulated using the 

same variables but expressed as a function of time, i.e.   ( ) t=q q ;   ( ) t=  ;   ( ) t=Q Q ;   ( ) t=   

for 0 t T  . Therefore, the kinematic equation can be rewritten as: 

   ( )  1 1 1t t t t tb bb− − −= −  B q q q −   (12) 

The nonlinear behaviour of the elastic-plastic regime was described using the following relations as yield 

functions for the inelastic hinges i  and j : 

 

( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

1
, 1 1 exp 0;

1

1
, 1 1 exp 0

1

i p

i i u y i

i y y y

j p

j j u y j

y yj y

m n
f m n M n M n

d M N M

m n
f m n M n M n

N Md M





  = + − − − − −    −

  = + − − − − −    −

 (13) 
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where   is a material constant, ( ) ( )1y y yM n n N M= −  and ( ) ( )( )2

1u y uM n n N M= − . 

Thus, the plastic evolution laws for both hinges are given by: 

 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

0      if , 0 hinge  is locked

, 0       if 0 hinge  is active

0      if , 0 hinge  is locked

, 0       if 0 hinge  is active

p

i i i

p

i i i

p

j j j

p

j j j

d f m n i

f m n d i

d f m n j

f m n d j









 = 


= 

 = 


= 

 (14) 

Since the damage variable was introduced into the constitutive law and yield functions with local buckling, 

it is necessary to insert a new equation into the model, called the damage evolution law, which numerically 

establishes the evolution of local buckling, represented by the damage variable. This paper adopts the following 

damage evolution law for ductile materials [16], which has also been applied in the analyses via LDM performed 

by [9-10, 12-13]: 

 p

i m i crid k p
+

= −  (15) 

where crip  is the critical plastic rotation that initiates the local buckling, mk  is the slope of the damage evolution 

line and 
+

 indicates that only values greater than zero are taken. The parameters crip  and mk  can be obtained 

experimentally. 

To estimate the value of the parameter crp  without the need for experiments, this paper used the following 

expression based on the stress and strain distributions in a cross-section: 

 
yu

cr p

NAu NAy

p L
z z

 
= − 
 
 

 (16) 

where 
y  is the elastic limit strain, u  is the ultimate strain, 

NAyz  is the neutral axis in the elastic limit, NAuz  is the 

neutral axis associated with the ultimate strength stress, and 
pL  is the plastic hinge length, which represents the 

length of the zone of the element that is subject to plastic deformations. 

The ultimate strain u  for SHS and RHS can be determined using the following equation [17]: 

 0u y  =  (17) 

where the strain ductility factor ( 0 ) can be determined as [17]: 

 ( )0 8.7 1.2 0.19 1 2.62  = −    (18) 

 ( )
2

y b t =  (19) 

being b  and t  the width and thickness of the cross-section, respectively. 

3  Results 

To evaluate the performance of the lumped damage model, numerical simulations were performed to compare 

the results obtained with the experiments carried out by Kazuya [18]. The experimental campaign was conducted 

with the aim of investigating the resistance capacity and deformation properties of SHS subjected to axial 

compression and monotonic bending moment. Table 1 presents the values of Young’s modulus ( E ), yield stress 

( yf ), width ( b ), thickness ( t ), area ( A ), moment of inertia ( I ), plastic section modulus ( pZ ) and plastic moment 

( pM ) of the SHS 125x125x6 mm and 150x150x9 mm used in the experiments. 
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Table 1. Mechanical properties and geometric dimensions of cross-sections. Adapted from Kazuya [18] 

Cross-section 
E  yf  b  t  A  I  pZ  

pM  

(N/mm²) (N/mm²) (mm) (mm) (mm²) (x 104 mm4) (x 103 mm3) (kN.m) 

125x125x6 201800 405.2 125.0 5.827 2707 632.4 119.9 48.58 

150x150x9 211200 386.7 150.2 8.667 4713 1540 246.5 95.32 

According to the ANSI/AISC 360-22 [19], the cross-sections 125x125x6 mm and 150x150x9 are classified 

as compact for the flexural design of SHS. Thus, it is considered that the nominal flexural strength is equal to the 

plastic moment ( pM ). However, this approach may result in more conservative estimates of the ultimate moment 

( uM ), as it neglects the additional resistance capacity due to hardening, which may occur before local buckling. 

Tayyebi et al. [20] experimentally investigated the behaviour of SHS and RHS under bending conducting tests on 

twenty-two specimens, eleven of which were compact sections. For these compact sections, the estimates of 

flexural strength based on plastic moments were conservative, with an average ratio between experimental ultimate 

moments and plastic moments of 1.20. Therefore, considering that equality between the ultimate moment and 

plastic moment can lead to conservative predictions, this paper performed numerical simulations adopting 

1.20u pM M= . 

In Kazuya’s experiments [18], an axial compression force was applied using a hydraulic jack positioned on 

the west side of the specimen. Simultaneously, a monotonic bending moment was applied on the east side of the 

specimen using the binary force generated by auxiliary bars, as shown in Fig. 2. The value of the bending moment 

was determined by multiplying the binary force by the distance between the bar and the rotation axis. The load on 

the auxiliary bars was applied until the specimen could no longer support the compression force or until reaching 

the maximum rotation of the experiment, approximately 0.30 rad. 

 

Figure 2. Experimental test from Kazuya [18]: (a) plan view and (b) boundary condition. Adapted from [18] 

Since the aim of this paper was to present a lumped damage model for analysing local buckling in steel SHS 

and RHS, only Kazuya’s experimental results [18] with collapse mode determined by local buckling (LB) and 

geometric nonlinearity along with local buckling (GN + LB) were numerically analysed. Table 2 presents the 

analysed experimental results. The numbers following the terms “B”, “bt”, “ny”, and “L” in the specimen’s name 

indicate, respectively, the nominal width of the cross-section, nominal width-thickness ratio, axial force ratio 

( 
yN N ), and length of the specimen, being yN  the yield axial force. Additionally, Tab. 2 provides information 

on the applied axial load ( N ), the maximum experimental bending moment (
exp

maxM ), the corresponding rotation 

at the maximum bending moment (
exp

max ) and the collapse mode of the specimen. 



Local buckling in SHS/RHS via Lumped Damage Mechanics 

CILAMCE-2024 

Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 

 

Table 2. Experimental results from Kazuya [18] 

No. Specimen’s name 
L   

y

y

N
n

N
=   

N   
exp

maxM   exp

max   Collapse 

mode (mm) (kN) (kN.m) (rad) 

1 B125bt21ny30L1800 1800 0.30 329.0 52.73 0.0891 LB 

2 B125bt21ny40L1800 1800 0.40 438.7 45.41 0.0750 GN + LB 

5 B125bt21ny20L2100 2100 0.20 219.4 56.58 0.1133 LB 

6 B125bt21ny30L2100 2100 0.30 329.0 50.87 0.0935 GN + LB 

9 B125bt21ny20L2400 2400 0.20 219.4 54.20 0.1198 LB 

14 B150bt17ny20L2900 2900 0.20 366.4 102.3 0.1210 GN + LB 

According to Kazuya [18], in the specimens where the collapse mode was determined by GN + LB, local 

buckling was observed near the position 0.80x L= . Thus, to adequately capture the behaviour of this collapse 

mode, the finite element mesh was discretized into two elements, with an intermediate node strategically 

positioned at 0.80x L= . Additionally, convergence tests were performed for the parameters   of the yield 

function and mk   of the damage evolution law, where the best numerical results were obtained with values of 100 

and 5, respectively. 

Figure 3 presents the comparison between numerical results and Kazuya’s experiments [18]. The numerical 

models satisfactorily reproduced the trend observed in experimental curves, adequately representing the elastic 

and elastic-plastic behaviours. Additionally, the numerical models demonstrated the capability of capture 

geometric nonlinearity. However, despite the satisfactory approximation after local buckling, the numerical 

models were unable to describe the nonlinear behaviour of stiffness degradation due to the linear consideration of 

the damage evolution law. 

 

Figure 3. Experimental [18] and numerical 𝑀 vs. 𝜃 curves of SHS: (a) No. 1, (b) No. 2, (c) No. 5, (d) No. 6, (e) 

No. 9 and (f) No. 14 (see Tab. 2) 

4  Conclusions 

The numerical results indicated that the model satisfactorily captures the behaviour observed in the 

experimental curves. However, experiments exhibit a characteristic nonlinear curve after the onset of local 
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buckling. Thus, due to the linear consideration of the damage evolution law, the numerical models were unable to 

accurately describe this behaviour. 

Therefore, it is recommended for future work to propose a nonlinear damage evolution law, aiming to 

improve the numerical response of the model and more adequately reproduce the structural behaviour. 
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