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Abstract. This work deals with numerical simulation of the mechanical behaviour of concrete using a 
homogenised damage model based on the concept of Representative Volume Element (RVE). The RVE is 
composed of phases with different mechanical behaviours leading to heterogeneous characteristics on the 
microstructure level. We adopt a simple damage model capable to simulate the behaviour of the mortar and 
transition zone while the aggregates are modelled as linear elastic material. To perform the numerical analysis, a 
based homogenisation technique is used to obtain a damage model that represents the macromechanical behaviour 
of the material. Results show the capabilities of the model to capture complex phenomena including a comparison 
with experiments tests performed in concrete specimens. 
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1  Introduction 

This work presents a numerical approach recently developed in Borges and Pituba [1] to model the 
mechanical behaviour of concrete at mesoscopic level leading to macroscopic homogenised response of the 
material. For this propose, the main dissipative phenomenon studied here is the damage process that occurs in 
interface transition zone (ITZ) and mortar. Nowadays, many works deal with the modelling of quasi-brittle 
materials, particularly the concrete. It can be cited some works which used or developed different numerical 
approaches based on homogenisation concepts, as example, Guo and Zhao [2], Storm, Qinami and Kaliske [3], 
Moumen, Kanit and Imad [4] and Borges and Pituba[5]. The incorporation of damage processes in the modelling 
of the ITZ and mortar lead us toward on more accurately understanding of the mechanical response of quasi-brittle 
materials. As a result, the approach taking into account the damage process becomes a proper tool for the analysis 
of concrete structures under diverse application scenarios. 

Therefore, this work deals with damage process at mesoscopic level of concrete using a computational 
homogenisation technique based on Representative Volume Element (RVE) concept. For details, see Borges and 
Pituba [5]. So that, a constitutive law has been assigned to each material phase within the RVE. Linear elastic 
behaviour has been adopted to the aggregates. The damage model proposed by Mazars [6] has been used for the 
mortar and ITZ. As a result, this paper presents the development and application of a based damage 
homogenisation macroscopic model to consider local damage using the concepts of the multiscale approach [5] 
and Continuum Damage Mechanics (CDM). 

2  Homogenisation Approach based on RVE concept 

The homogenisation approach used in this work is presented in detail by several authors, Giusti et al. [7] and 



Homogenised damage model for concrete 

CILAMCE-2024 
Proceedings of the joint XLV Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Maceió, Brazil, November 11-14, 2024 
 

Fernandes, Pituba and Souza Neto [8] and Borges and Pituba [5]. The RVE is assumed as a continuous medium 
in this approach, which preserves the validity of stress concepts at the microscale. In this approach, the RVE is 
identified with a sub-index 𝜇, where the volume of the RVE is denoted by 𝑉ఓ, the domain is given by Ωఓ, and its 

boundary is given by 𝜕Ωఓ. The RVE domain comprises of a solid part denoted by Ωఓ
ௌ, which contains the coarse 

aggregates and mortar. 
Each material point 𝑥 in the macroscale body with domain Ω is associated with an RVE. The RVE comprises 

two parts: the mortar part, denoted by Ωఓ
௠, and the inclusion (coarse aggregate) part, denoted by Ωఓ

௜ . The domain 

of the RVE is denoted by Ωఓ, and its boundary by 𝜕Ωఓ . The definitions of the domains are given by: 

 Ωఓ = Ωఓ
௠ ∪ Ωఓ

௜   (1) 

 𝜕Ωఓ
௠ = 𝜕Ωఓ ∪ 𝜕Ωఓ

௜   (2) 

The symbol 𝜕 denotes the boundary of the domain. In order to simplify the method, inclusions were not 
allowed on the boundary of the RVE. Figure 1 shows the geometric characteristics of the multiscale modelling, 
where the macroscale is continuous, and each material point 𝑥 in the body with domain Ω is associated with an 
RVE. 

 

Figure 1. Macro and micro domains 

At time instant t, the macroscopic strain tensor 𝛆 = 𝛆(𝑥, 𝑡) and macroscopic stress tensor 𝛔 = 𝛔(𝑥, 𝑡) at a 
specific point x in the macroscale body are calculated as the average volume of their respective microscopic fields 
𝛆ఓ = 𝛆ఓ(𝑦, 𝑡) or 𝛔ఓ = 𝛔ఓ(𝑦, 𝑡) over the RVE associated with the point x at any given time t: 

 𝛆(𝑥, 𝑡) =
ଵ

௏ഋ
∫

ஐഋ
𝛆ఓ(𝑦, 𝑡)𝑑𝑉 (3) 

 𝛔(𝑥, 𝑡) =
ଵ

௏ഋ
∫

ஐഋ
𝛔ఓ(𝑦, 𝑡)𝑑𝑉 (4) 

where 𝑉ఓ is the volume of the RVE, Ωఓ is the domain of the RVE, and 𝑑𝑉 represents the volume element. Equations 

(3) and (4) describe a homogenisation technique that uses volumetric averaging to obtain macroscopic strain (𝜺) 
and stress (𝝈) from microscopic counterparts (𝜺ఓ and 𝝈ఓ) over the RVE. The microscopic strain can be expressed 

in terms of the RVE’s microscopic displacement field 𝒖ఓ as 𝜺ఓ(𝑦, 𝑡) = ∇ௌ𝒖ఓ(𝑦, 𝑡), where ∇ௌ denotes the 

symmetric gradient. Meanwhile, the microscopic stress can be determined as 𝝈ఓ(𝑦, 𝑡) = 𝑓௬(𝜺ఓ(𝑦, 𝑡)), where 𝑓௬ is 
the constitutive functional that can be defined by the Mazars’ model [6] when the material starts to present damage 
process, or by Hooke’s law for other cases. The microscopic displacement field is given by: 

 𝒖ఓ(𝑦, 𝑡) = 𝜺(𝑥, 𝑡)𝑦 + 𝒖෥ఓ(𝑦, 𝑡) (5) 

The component 𝜺(𝑥, 𝑡)𝑦 varies linearly with respect to 𝑦. The field 𝒖ఓ is referred to as the fluctuating 
displacement field and represents the strain variation of the RVE, which is considered null in this case since 
uniform microscopic strains 𝜺ఓ are assumed. Therefore, the microscopic strain field can be decomposed into the 
following sum: 

 𝜺ఓ(𝑦, 𝑡) = 𝜺(𝑥, 𝑡) + 𝜺෤ఓ(𝑦, 𝑡) (6) 

In this work, the Finite Element Method (FEM) formulation is used to solve the equilibrium problem. The 
variables and parameters of the RVE are distinct from those of the material in the macrocontinuum, and these 
characteristics are defined based on a standard RVE that is extrapolated to all RVEs in the macroscopic structure. 
The solution of an RVE involves calculating the homogenized displacements, internal forces, stresses and 
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constitutive matrix, which are obtained when the convergence of the equilibrium problem is achieved considering 
an adopted tolerance. However, to solve this equilibrium problem, it is necessary to define the boundary conditions 
to be imposed on the RVE, and the response obtained may vary depending on the boundary condition adopted. 

The choice of the 𝑉ఓ space must be appropriate according to the kinematic constraints of the RVE. Therefore, 

the equilibrium of the RVE involves finding a field 𝒖෥̇ఓ ∈ 𝑉ఓ  for each instant t given a macroscopic strain tensor 𝜀. 
With the finite element domain discretization of the RVE, the microscopic equilibrium incremental equation 
should be valid for a time load increment Δ𝑡𝑛 = 𝑡(௡ାଵ) − 𝑡௡. Discretizing h in the domain allows one to find the 

displacement fluctuation field 𝒖෥ఓ(௡ାଵ) = 𝒖෥ఓ೙
+ Δ𝒖෥ఓ೙

. 

 𝐺௛
௡ାଵ = ∫

ஐഋ
೓ 𝐵்𝑓(𝜺௡ାଵ + 𝑩𝒖෥ఓ

௡ାଵ)𝑑𝑉 = 0 (7) 

where B is the global strain-displacement matrix and Ωఓ
௛ indicates the discretized domain of the RVE. The 

described RVE formulation is completed by choosing an appropriate 𝑉ఓ space, which involves selecting the 
kinematic constraints to be imposed on the RVE. This leads to different classes of multiscale models and, 
consequently, to different numerical results. In this work, the Periodic boundary conditions model is adopted. 

3  Damage Homogenisation Macroscopic Model 

A based damage homogenisation model was proposed in [1]. The proposed model starts from the relationship 
between stress and strain tensors on the macroscale: 

 𝝈(𝑥) = 𝑪𝒉(𝑥)𝜺(𝑥) (8) 

where 𝝈(𝑥) is the stress tensor on the macroscale, the 𝑪𝒉 (x) is the homogenised constitutive tensor of the material 
and 𝜺(𝑥) is the strain tensor on the macroscale. The homogenised constitutive tensor can present characteristics of 
an anisotropic or isotropic tensor depending on the imperfections, phase debonding, microcracking and dissipative 
process that occurred in the microstructure and captured by constitutive models applied in each phase. In your 
turn, Ch (x) depends on the damage constitutive model used in the mortar and ITZ.  

Following Pituba and Fernandes [9], the way that the damage tensor acts in the constitutive tensor can change 
the characteristics of the Ch for anisotropic ones induced by damage, if the damage tensor is anisotropic and the 
Ch is initially isotropic. On the other hand, if the damage tensor is isotropic, then when applied in the Ch, this last 
one remains isotropic or anisotropic depends on its initial characteristic. Considering the Continuum Damage 
Mechanics (MDC) and Pituba and Fernandes [9], the following relation on macroscale is valid: 

 𝑪𝒉(𝑥) = (𝑰 − 𝑫(𝑥))𝑪(𝑥) (9) 

where the C(x) is the homogenized elastic constitutive tensor of the material, e. g., this tensor represents the elastic 
properties of the homogenized material when dissipative process is not activated yet. In Equation (9), 𝑰 is the 
identity tensor. Considering the concepts of volumetric average and the Equation (4), the relation (9) follows: 

 (𝑰 − 𝑫(𝑥))𝑪(𝑥) =

భ

ೇഋ
∫ಈഋ

𝝈ഋ(௬)ௗ௏

𝜺(௫)
 (10) 

Considering the stress-strain relationship for damaged microstructure as follows: 

 𝝈ఓ(𝑦) = (𝑰 − 𝒅(𝑦))𝑪௬(𝑦)𝜺ఓ(𝑦) (11) 

where 𝑪௬(y) is the elastic constitutive tensor at point y at the microscale and 𝒅(𝑦) is a damage tensor related to 
the point y at the microscale. Using the Equation (11) in Equation (10) gives: 

 (𝑰 − 𝑫(𝑥))𝑪(𝑥) =

భ

ೇഋ
∫ಈഋ

(𝑰ି𝒅(௬))𝑪೤(௬)𝜺ഋ(௬)ௗ௏

𝜺(௫)
 (12) 

After mathematical manipulations, it is found: 

 𝑫(𝑥) = 𝑰 −

భ

ೇഋ
∫ಈഋ

(𝑰ି𝒅(௬))𝑪೤(௬)𝜺ഋ(௬)ௗ௏

𝑪(௫)𝜺(௫)
 (13) 

The Equation (13) represents the damage state of the point x of the macrocontinuum arising from the 
homogenized microstructure through a multiscale approach. It shows that the macroscopic strain state cannot be 
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obtained directly as a volumetric average of the microscopic strain when there are microcracks, as noted by Ren 
et al. [10]. 

 In this work, it is adopted an isotropic damage behaviour for the damaged phases at microstructure level, 
therefore 𝒅(𝑦) is a scalar damage related to the point y at the microscale (𝒅(𝑦) = 𝑑(𝑦)) following the Mazars´ 
damage model described in [6] and it can be assumed that 𝑫(𝑥) = 𝐷ு  and it is called homogenized damage. 

On the other hand, in the case of homogeneous material in the RVE, it has only one material in the 
microstructure that it is the same for the macrostructure (C(x)=Ch(x)), and it has that 𝑪௬ is constant (𝑪𝒉(𝑥) = 𝑪௬), 
as the damage process has the same state at any point in the RVE and, therefore, the Equation (13) is expressed as 
follows: 

 𝑫(𝑥) = 𝑰 −

భ

ೇഋ
∫ಈഋ

(𝑰ିௗ(௬))𝑪೤𝜺ഋ(௬)ௗ௏

𝑪𝒉(௫)𝜺(௫)
 (14) 

Besides, the damage process is the same over the RVE leading to a constant value d(y) in any y of the RVE 
and therefore: 

 𝑫(𝑥) = 𝑰 −

భ

ೇഋ
∫ಈഋ

𝜺ഋ(௬)ௗ௏

𝜺(௫)
+

೏(೤)

ೇഋ
∫ಈഋ

𝜺ഋ(௬)ௗ௏

𝜺(௫)
 (15) 

Considering Equation (3), Equation (15) gives: 

 𝑫ு = 𝑑௬ (16) 

Therefore, it is concluded that in the case of homogeneous material, a constitutive model can be used directly 
in the macrocontinuum. 

On the other hand, each phase of the constituent material contributes to the effective properties of the 
composite. These contributions can be dependent only on the volumetric fraction of each constituent materials. 
Also, the models for obtaining homogenized elastic properties only allow approximate estimative. There are 
several models to predict the elastic properties of composite materials that can be classified into analytical and 
numerical methods. In this work, the multiscale approach is used as a numerical method to obtain the elastic 
properties. For this, an elastic analysis of the RVE is performed and with the stiffness matrix (Equation 7), it is 
compared with the expression of the relationship between stress and strain in the plane stress state in the cases 
discussed in this work in order to obtain the elastic parameters of the material. 

4  Numerical Application 

In this section, experimental test in concrete specimens performed by Delalibera [11] was used to show the 
potentialities and limitations of the based damage homogenisation model. It deals with the comparison between 
stress x strain curves obtained by an experimental uniaxial compression test performed by Delalibera [11] and the 
one by the based damage homogenisation model. The RVE is assumed to be composed of two kinds of materials: 
coarse aggregates dispersed in a mortar. Besides, for better discretization of the concrete geometry, an ITZ region 
has been adopted around the aggregates with adopted stiffness characteristics equal to 50% of the mortar. In this 
case, the proposed RVE has 2678 finite elements, with 1142 finite elements representing the mortar following the 
Mazars’ damage model [6], 872 finite elements representing coarse aggregates with linear elastic behaviour 
characteristics and 664 finite elements representing ITZ using Mazars’ model. The coarse aggregates volumetric 
fraction is equal to 39.19% (see [11]) and ITZ volumetric fraction is equal to 9.47%. The geometric arrangement 
of the aggregates was distributed randomly following [12] and considering the requirements for the concrete given 
by [11]. Figure 2 shows the RVE adopted. 

 

Figure 2. RVE adopted for the analysis 
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The parameters used for the RVE are the same ones used in the Silva et al. [12]. So, for the Young’s Modulus 
and Poisson’s Coefficients for coarse aggregates (E=35 GPa and 𝜈=0.3). Besides, it was adopted the Mazars´ 
model for the mortar (E=24 GPa, 𝜈=0.2, Reference Deformation (𝜀ௗ଴) = 0.0002, AC=0.3, AT=0.7, BC=200 and 
BT=2000). For the ITZ, it has assumed a reduction factor of 50% of the Young’s Modulus related to the mortar 
and 𝜈=0.2 following the works [13], [14] and [15]. 

Figure 3 shows the homogenised stress in x direction versus imposed macroscopic strain in the same direction 
curves obtained by the multiscale approach using Mazars´ damage model and the based damage homogenisation 
model compared to the experimental test [11]. In this example, there is a similarity between the responses of the 
experimental model and the numerical models up to 90% of the peak stress region. The evidenced loss of rigidity 
is caused by the damage processes in the ITZ and mortar. 

 

Figure 3. Numerical and experimental responses 

In this analysis, the stress values are constrained due to the presence of damaged elements within the RVE 
approaching the limit (D =1). Near this threshold, the obtained results become inconsistent presenting convergence 
issue since that the model is not capable to capture the damage localization process and consequent crack 
nucleation leading to softening regime. The corresponding damage values are depicted in Figure 4. 

 

Figure 4. Damage distribution on the RVE and damage scale from 0 to 0.9 
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5  Conclusions 

This paper presents a recently proposed based damage homogenisation model using the concept of RVE. In 
order to evidence the potentialities and limitations of the homogenised damage model, a numerical analysis has 
been presented comparing the numerical and experimental response in concrete specimen. The result shows the 
good agreement between the experimental and the based damage homogenisation model responses. However, it 
has been evidenced that when damage localization occurs, the homogenised damage model is not capable to 
reproduces the response presenting softening behaviour. 

In future works, the authors intend to expand the homogenised damage model to take into account the crack 
nucleation using the Strong Descontinuity Approach (SDA) to be able to perform numerical analysis considering 
softening regime. On the other hand, the homogenised damage macroscopic model will be used in concurrent 
multiscale analysis with commercial software to model the mechanical behaviour of solids with complex 
geometries subject to complex loading conditions. 
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