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Abstract. The oil and gas industry is constantly motivated to implement strategies focusing on cost management
and operational optimization to maximize productivity. Rate of Penetration (ROP) serves as a key performance
metric, reflecting the speed at which a drilling bit penetrates subsurface formations. Increasing ROP can minimize
costs by reducing drilling time. ROP prediction models aid drilling optimization plans since accurate models are re-
quired to find ideal controllable parameters to increase ROP using optimization algorithms. Drilling characteristics
that significantly influence ROP include bit type, formation properties, and operation parameters, such as Weight
on Bit (WOB) and Rotations per Minute (RPM) of the drill bit. The number of significant parameters makes it
difficult to develop analytical expressions for predicting ROP. The present work investigates the applicability of
Artificial Neural Networks (ANN) for ROP prediction using public data from three wells extracted from the Volve
oil field in the North Sea. The adopted strategy is to learn from offset wells, which means using data from two
wells to predict the ROP for the third. This approach helps to address a practical scenario where historical data are
used to make predictions for a new well in a close region. This study uses MLP (Multilayer Perceptron) networks
with WOB, RPM, Torque, Fluid Flow rate, and Delta-T Compressional as features, and the training process is
conducted using the GridSearchCV method for hyperparameter tuning, comparing different model architectures to
improve results. To assess the final performance of the model, metrics such as Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) are applied to the tested well. The results show that the developed model can
capture ROP patterns without requiring any data stratification of the two wells regarding lithology information.
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1 Introduction

In the oil and gas industry, the pursuit of efficiency and safety in well construction is necessary to overcome
the high investments and risks involved in the exploration and extraction of oil. The well drilling process is complex
and, according to Elmgerbi et al. 1], the effective "bit on bottom™ action accounts for approximately 20% to 30%
of the total time and cost of well construction. Therefore, any advancement in improving the efficiency of this
process can lead to significant cost reductions for the industry.

The Rate of Penetration (ROP) is one of the main indicators considered in the drilling efficiency analysis. The
ROP is defined as the speed at which the drill bit removes rock material and penetrates the formation. Operational
parameters such as Weight on Bit (WOB), Rotations per Minute (RPM) of the drill bit, and drilling fluid Flow
Rate (FR) are some of the controllable parameters during the operation that most affect the ROP [2] [3]]. As
mentioned by Hossain and Al-Mejed [2], among the uncontrollable parameters in the operation, the most important
corresponds to the properties of the rock formation. The industry is interested in implementing methodologies to
optimize controllable parameters, allowing to safely reach a technical limit for increasing ROP. Strategies for
ROP modeling often involve using traditional regression techniques and empirical expressions to relate the main
drilling parameters to the ROP. Models capable of reasonably predicting the ROP enable the simulation of scenarios
and testing different operational parameters aiming drilling optimization. New strategies incorporating machine
learning have been applied to this problem, taking into account the increasing amount of data collected from
monitoring systems during drilling operations. These data significantly contribute to studies on future wells.

Barbosa et al. [4] and Najjarpour et al. [3] conducted literature reviews on a large number of empirical
models and those employing traditional techniques, as well as machine learning models applied to ROP prediction
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and optimization. Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Random Forests (RF)
are some of the main strategies employed in this problem [5]. The use of machine learning strategies with data
from offset wells (existing wells in the same oil field) allows learning the complex ROP pattern using historical
data, enabling practical application for the planning of future wells.

In this work, a Multilayer Perceptron neural network (MLP) is used to predict the ROP of a well using data
from two wells in the same region. This case study addressed the use of techniques such as the appropriate selection
of well data, representative predictors, neural network regularization, and hyperparameter tuning to reduce the
prediction error of ROP in the test well. The errors obtained are compared with those from other works that
employed different techniques to predict the ROP in this same well. The analyzed wells belong to the Volve field,
located in the North Sea, and the data were made public by Equinor [6]. It is hoped that the techniques employed
in this work can be used to improve ROP prediction using the learning strategy with data from offset wells.

2 Artificial Neural Network

Artificial Neural Networks (ANNs) are a class of machine learning algorithms initially developed with the
motivation of replicating the biological functioning of neural networks in the brain. The so-called perceptron,
formally described by Rosenblatt [7]], defines a mathematical model of an artificial neuron with a well-defined
learning process. The network architeture known as MLP consists of coupling perceptrons in one or more hidden
layers. This model is a nonlinear estimator that can be applied to learn complex patterns [8].

The goal of training an MLP is to optimize the weights in order to minimize the cost function (typically
involving absolute and quadratic metrics). The most commonly used approach for training models is the application
of the traditional gradient descent method combined with a backpropagation strategy, which is an efficient method
developed to allow the estimation of the components of the gradient vector. The neurons in an MLP are the
processing units responsible for receiving multiple input signals, summing them, and computing an output based
on a nonlinear transformation. This transformation is achieved through the activation function, which allows
generalization for estimating complex patterns in the network by adding nonlinearity to the model. Figure
represents the scheme of a two-layer MLP architecture, indicating two possible activation functions used in neural
networks.
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Figure 1. A MLP with two layers and two possible activation functions: ReL.U and ELU

As mentioned in Ashena [9], this is the most widely applied network model in the oil industry. The number
of neurons, the number of layers, the learning rate, and the activation function are common hyperparameters,
meaning they control the model’s architecture and are not adjusted during training. The ideal hyperparameters
depend on each problem, so the effort to fine-tune hyperparameters is essential. As noted by Najjarpour et al. [3]]
and Barbosa et al. [4], the most commonly used machine learning model for the ROP prediction problem is the
MLP with one layer and using backpropagation. Furthermore, there is a trend to simplify predictive models for
ROP by using fewer predictors, with the most common number being between 5 and 8. As also highlighted by
Najjarpour et al. [3], some studies mention that including petrophysical properties that characterize the formation,
along with operational predictors, improves model performance.

3 Methods and Methodology

This section provides details on the data employed in this study, the selected predictors, the preprocessing
methods applied, the training process, and the details of using MLP networks for ROP prediction.
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3.1 The Dataset
The public data released by Equinor [6] contain data from various wells in the Volve oil field. Given the
availability of operational data from the so-called geophysical logs, which include data on the properties of the

drilled rock formation, the highlighted wells in red, shown in Fig. 2] are investigated in this work.

Selected Wells in Volve Oil Field
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Figure 2. Location of the three analyzed wells in the Volve oil field and ROP histogram

The FO5 well is the target. In Tunkiel et al. and also in Ferro et al. [11]], results are presented for ROP
prediction in this well, in both cases employing ensemble methods and different data sets and features. As shown in
Fig. 2| wells F14 and FO4 are drilled in a region close to well FO5, and the data from these wells are used for training
the MLP. These wells were chosen due to their proximity to well FO5 and the distribution of the ROP, as they have
similar amplitudes and means, which are higher than those of the other wells shown in Fig. [2| Additionally, these
data correspond to drilling performed with the same type of drill bit, the Polycrystalline Diamond Compact (PDC).
The dataset for well F14 contains 5457 points, for well FO4, it contains 4474 points, and 5459 points for the target
well FOS. Although these three wells are close to each other, they have distinct lithologies profiles along depth.

3.2 Feature Selection and Preprocessing

The selection of predictors used as input data in the neural network should consider domain knowledge about
their influence on the resulting ROP. ROP follows complex relationships and nonlinear interconnections with other
parameters, making it typically challenging to select all relevant parameters in a predictive model. Najjarpour et al.
(3] mentions WOB (Weight on Bit), RPM, Depth, Flow Rate, Mud Weight, Torque on the Bit, Bit Wear, Drilling
Fluid Viscosity, and UCS (Unconfined Compressive Strength) as relevant drilling variables.

In this work, five predictors were chosen: Weight on Bit (WOB), RPM, Flow Rate (FR), Torque, and Delta-T
Compressional (DTC). The first four are the main operational parameters, and DTC measurement is related to the
transit time of waves transmitted to the formation by instruments in the drill string. It was chosen because it is used
to estimate important formation properties such as UCS (Unconfined Compressive Strength) and pore pressure
through empirical correlations. Figure 3] presents the correlation matrix between the predictors used in the training
set (data from wells F14 and F04).

Rate of Penetration m/h
Weight on Bit kkgf
Mud Flow In L/min

Average Rotary Speed rpm - 0.3493

Average Surface Torque kN.m - 0.3778
Delta-T Compressional us/ft - 0.5192
' ' i
Rate of Penetration m/h Weight on Bit kkgf Mud Flow In L/min Average Rotary Speed rpm Average Surface Torque kN.m Delta-T Compressional us/ft

Figure 3. Heatmap showing the correlations between the drilling variables

As observed, there are no predictors with a highly linear correlation with each other (Pearson coefficient
between 0.7 and 1.0), which could indicate the addition of variables that do not contribute to the model due to
multicollinearity. Additionally, the relationship between the predictors and the target variable shows low positive
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and negative correlations, which is expected since ROP has a nonlinear relationship with these variables and
exhibits both positive and negative interactions. Higher values of DTC indicate less dense formations, and the
moderate positive correlation with ROP suggests that in these cases, it is associated with an increase in ROP.

As noted by Géron [12], many machine learning algorithms do not perform well when numerical attributes
have very different scales, as is the case with ANNs. The convergence of the gradient descent training process, for
example, is affected by the difference in scale of the predictors. Therefore, it is necessary to perform preprocessing
to equalize the scale of the predictors. The Eq. [I)is the transformation employed.

Xnorm = % v 1
Xma:c - Xmin ( )

Equation [T]is known as Min-Max scaling, which is a type of normalization used to ensure that the predictors
have the same order of magnitude. Predictors on a scale from O to 1 is appropriate, since all predictors are positive
values. More details about the data extraction and treatment appears in Ferro et al. [[11] e Tunkiel et al. [10].

3.3 Model Design and Training Process

In this work, Keras, a high-level API for training and executing neural networks, was used. MLP networks
with the same number of neurons in each layer and the same activation function for all neurons were chosen.
As indicated in [12], this configuration performs very well in most cases and reduces the hyperparameters to be
adjusted in a MLP. Regarding the architecture of the networks, hyperparameter tuning was employed to compare
different combinations. The cost function in the models is defined as the Mean Squared Error (MSE), common
in regression problems, which showed good results compared to other common metrics. The minimization of the
cost function in the training process is performed using Stochastic Gradient Descent (SGD) using backpropagation
with the technique known as Nesterov Momentum, where the weight adjustment is made iteratively following the
opposite direction of the gradient, calculating a step ahead in this direction and employing a numerical value known
as momentum, which adds inertia to the iterations using a momentum parameter, chosen as 0.9. These strategies
help reduce oscillations and avoid local minima.

The adopted training process corresponds to the use of Cross Validation (CV) on the dataset from the two
wells (F14 and F04) using 5-Fold CV. The models are trained with data from 4 folds and evaluated on the partition
not used in training (7944 training instances and 1987 validation instances), with the validation partition replaced
in each iteration. This division is essential to mitigate the overfitting phenomenon, where the model captures noise
and trends present in the training set and performs poorly on data not used in training. The evaluation result of the
model is conducted with the average of the folds.

3.4 GridSearchCV and Hyperparameter Tuning

One of the simplest strategies for finding optimal hyperparameters is the GridSearchCV. This method involves
a brute-force comparison of models with different hyperparameters within the cross-validation framework. Once
the model is selected, the generalization error can be determined on the test set. Table [I] presents the compared
hyperparameters.

Table 1. Search options in GridSearchCV

Hiperparameters Analyzed Values

Number of Layers 1,2
Number of Neurons 5,10, 15, 20
Activation Functions RelLU, ELU

Learning Rate 10—3,10~¢

The ReLU activation function is one of the most commonly used in deep networks, and ELU, as indicated
in Géron [12]], is a strong alternative to ReLU. The initialization of neural network weights was not considered a
hyperparameter in this work, as it is often recommended for ReL.U and its derivatives, like ELU, the He initializers,
such as the uniform one [12]]. Similarly, the number of epochs, one of the most significant hyperparameters, was
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not treated as a hyperparameter because the early stopping technique was applied. In early stopping, a portion of
the data is set aside during training as a validation set, and the validation data is periodically used to monitor the
prediction error of the trained network at each epoch. If the error begins to increase, training is halted. In this
work, 200 epochs were adopted, with a value of 10 for the number of epochs without improvement to stop the
training. A separate validation set is used to monitor this training, with 85% of the data used for training and 15%
for validation (considering the cross-validation split, this results in 6752 effective instances for network training
and 1192 for validation in each training partition). The L2 regularization was also applied to reduce the occurrence
of overfitting, with « = 0.01 (based on trial and error experiment). The batch size used in training was 200.

3.5 Model Performance Evaluation

The correct evaluation of the model’s performance should be done using data that were not used in the training
of the models. This evaluation helps provide an idea of the generalization error. Equation [2] and 3 are the some of
the main metrics for assessing the model’s performance in regression problems, which share the same units as the
response variable (ROP).

N
1
MAE = 75 :— hy 2
N 2 \vi— hil 2)
=1
N
1
RMSE =VMSE = |+ E (yi — hi)? 3)
=1

Where h; indicates the predictions, and y; indicates the measured value (ROP), and N indicates the number
of data in the test set. The Mean Absolute Error (MAE) indicates the average absolute error of the model for new
data. This metric shares the same unit as the ROP and is less sensitive to the presence of outliers in the data. The
Root Mean Square Error (RMSE) is derived from the Mean Squared Error (MSE) and, by initially considering the
squared errors, is more influenced by outliers. The RMSE also shares the same unit as the MAE and is generally
larger. The differences between the MAE and RMSE increases in the presence of extreme values [5] [12].

4 Results and Discussions

Figure [ illustrates the result of the GridSearchCV with the training data. The network with the best per-
formance on the validation set (obtained with MSE) is highlighted in green, corresponding to a network with two
layers, 15 neurons, and a ReLU activation function with a learning rate of 10~3. It is possible to identify signifi-
cant performance differences related to the various architectures, and even subtle changes in hyperparameters can
result in this differences. Thus, this observation emphasize the importance of including a thorough hyperparameter
tuning in ANNs models in order to improve prediction performance.

Activation learning_rate n_Layers n_Neurons  train.epoch_learning_rate train.epoch_loss  validation.epoch_loss
- (0] :004100; 50
- 48,
relu 0.00090 1-/9 h e 000090 > 45
0.00080 8 ” 0,00080 A 46—
0,00070 7 > 0.00070 5 e
16 14/ 42
0.00060 0.00060 | o ————
15 ” ﬂ
0.00050 — T Q.00050 — 38 4
1.4 < 38
- = |
000040 13 10 0.00040 P
0.00g30 \ o | . 0280830 3{‘\; 0]
i 000029 1,\1 | \ 0200020, % /32/—
304
_W‘m - 0001 J 30

Figure 4. Architectures compared in GridSearchCV with the best architecture highlighted
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Figure 5] shows the model’s prediction for the test data. This allows for the evaluation of the model’s results
in comparison to the measured data along the depth of the well FOS5. It can be observed that the model captures the
pattern of the ROP, indicating that the trained model successfully learned the relationship between the ROP and
the chosen predictors using data from two offset wells, without making any additional data selection considering
information related to lithology, for example. It is also noted that the model underestimates the higher ROP values
present in this well.

Well FO5 - MAE = 7.77 | RMSE = 9.44
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Figure 5. ROP prediction of the MLP model versus measured ROP along depth

As observed in Fig. [2] the wells used for training have a lower range, with few instances above 40 m/h,
which may make it difficult to estimate higher ROP values in the FO5 well. Including training data with examples
of higher ROP values could help improve the results. It is worth noting that high values may be associated with
specific behaviors in this well and also undesirable events, such as excessive vibration. However, capturing the
ROP pattern along the depth enables the model to assist in scenario simulation and facilitate the optimization of
operational parameters, allowing for better drilling control. Figure [f] shows a comparison between the predicted
and actual ROP in each of the wells.
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Figure 6. Comparison of measured ROP and predicted ROP for the three wells

The highlighted line at 45° in Fig. [6]is a reference to indicate perfect correlation. It can be seen that for wells
FO04 and F14, the data points aligns more closely with the slope of the line, with less tendency for the actual ROP
values to be higher than those predicted by the model. The MAE obtained for wells FO4 and F14 are 3.49 m/h and
3.89 m/h, respectively, while the result obtained in Fig. [5] corresponds to 7.77 m/h. The results demonstrate good
model adherence for all three wells. Table 2 compares the results of different error metrics found in the literature
regarding the prediction of the FO5 well, with the types of models used being referenced, where Bourgoyne &
Young is a traditional model that employs empirical relationships in a multivariate linear regression.

The results in Tab. 2] demonstrate that the model developed in this study performs better on the test set than
models from the literature, using the same data from the FO5 well as the test set. The best performance among
other studies was an MAE of 10.90 m/h, achieved by Tunkiel et al. [10], who used 11 features and data from 6
wells. These findings indicate that by carefully selecting data, employing proper modeling practices, and choosing
representative features, it is possible to enhance the accuracy of ROP prediction.
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Table 2. Comparison of results related to ROP prediction in the FO5 well from literature

Models MAE (m/h) RMSE (m/h)
Bourgoyne & Young (Ferro et al. [[11]]) 18.93 22.83
Random Forest (Ferro et al. [[11]]) 12.45 14.73
Random Forest (Tunkiel et al. [[10]) 19.70 -
AdaBoost (Tunkiel et al. [[10]) 10.90 -
Results from this work 7.77 9.44

5 Conclusions

This work presents a study using MLP for ROP prediction with data from offset wells. This type of approach
enables practical applications in cases where historical drilling data from wells in an oil field are used to make
predictions for a new well in that field. With an accurate model, it is possible to simulate scenarios and develop
strategies for optimizing operational parameters. Thus, presenting strategies to improve the performance of predic-
tive models in this problem is necessary, and the present study shows results with improvements in ROP prediction
in a case investigated in other works in the literature. Employing hyperparameter tuning, proper selection of pre-
dictors and wells for training the neural networks are relevant approaches. Improvements in performance can be
made by further exploring hyperparameter tuning and selecting more representative data from offset wells.
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