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Abstract. In this study, an analytical and computational procedure were developed for determining the 

critical buckling load. The analytical solution was based on the Rayleigh method and the computational 

one on the finite element method (FEM). Rayleigh method preconize that one equation named as shape 

(or trial) function should be defined to represent the vibrational movement of the system. Therefore, the 

result obtained by this method is entirely conditioned to the correct choice of this equation. Different 

equations even respecting the boundary conditions of the problem can lead to different results. Four 

mathematical expressions as shape function were used in the present study: a trigonometric, two 

polynomials and a potential equation. All these functions obey to the boundary conditions of the problem 

and were valid in the whole domain. Therefore, the integrals obtained by the Rayleigh method were 

solved considering the structural geometry. With comparative purpose the results obtained on the 

analytical procedure were compared with those yielded by computational modelling using a finite 

element modal analysis. The structure analyzed was a 46-m-high reinforced concrete pole, including its 

foundation, which has geometry and reinforcement arrangement varying along its length. For both 

solutions, three important items were considered: the geometric nonlinearity, due to the slenderness of 

the system; the material nonlinearity and the creep of the concrete. The last one aspect was introduced 

into the analysis by means of Eurocode criteria. Significant differences on the absolute value of the 

critical load were found in comparison with the adopted procedures, being possible to observe that the 

potential equation led to results too distant from the other equations. Analysis considering an elapsed 

time of 4000 days revealed an average decreasing of 22% on the intensity of the critical buckling load. 

The FEM presented the biggest percentual difference, 28%. 

Keywords: Buckling load, Modal analysis, Rayleigh method, Shape functions, Analytical solution, 

Finite element method. 
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1  Introduction 

 Designing slender structures has been a permanent challenge for structural engineering, because 

involves the equilibrium of mechanical systems. Even after the advent of modern digital computers and 

their diffusion as a working tool among engineers, analytical solutions continue to attract the interest of 

scientist and practitioners. In particular, the elastic buckling of slender columns has been the object of 

constant study since the first formulations presented by Euler in 1744 [1], who developed a solution 

based on the static equilibrium of a bended section. Import to mention that Euler had difficulty to initially 

include the self-weight of the column, being this problem solved later by another mathematician, points 

out Timoshenko [2]. A column represents a continuous structural member that can be subjected to 

different types of compression loads; a conservative load (Euler’s load) is one type of load affirm Uzny 

[3]. 

 Although analytical solutions are usually taken as a reference for computational results, it is 

very difficult to apply them to complex systems with variable geometry and with large degrees of 

freedom. According to Cook [4], Courant was the first researcher to create a numerical model for 

structural analysis using the principle of stationary potential energy by interpolating a triangular region 

to the Saint-Venant torsion problem [5]. He assumed a linear distribution of functions for distortion on 

these elements, whose approximation extends to the Rayleigh-Ritz (RR) model. 

 Rayleigh studied vibration problems and presented his postulates in 1877 [6]. In that book there 

are many examples of calculating the fundamental natural frequencies of free vibration of continuous 

systems (strings, bars, beams, membranes and plates). The fundament used by Rayleigh is the principle 

of conservation of energy, in which the maximum potential and kinetic energy generated by the vibratory 

movement is assumed, considering that it has a well-known and mathematically defined aspect. This 

procedure became known as the "Rayleigh Method”. Rayleigh used his technique to solve a limiting 

problem, calculating the solution with a linear approximation of the basic functions, within the 

denominated variational calculus, whose objective was to minimize a special class of functions, called 

functional or "trial functions", which might to satisfy the boundary conditions of the problem, besides 

being differentiable in its domain. Therefore, it is evident that the result obtained by this method is 

conditioned to the correct choice of these functions. Different equations that meet the boundary 

conditions of the problem can even so lead to different results. 

 For comparative purposes, four mathematical expressions as shape (or trial) function were used 

in the present study: a trigonometric, two polynomials and a potential equation. These functions satisfied 

the boundary conditions of the problem and were valid throughout the domain of the structure, being 

the integrals obtained by the Rayleigh method solved within the limits defined in its geometry. In order 

to evaluate the results obtained for that analytical procedure, the values for the critical load of buckling 

were compared with those yielded by computational modelling using a modal analysis by finite element 

method (FEM), considering a nonlinear formulation based on geometric stiffness. 

 The structure analyzed was a real 46-meter-high concrete pole, including its foundation, which 

had geometry and reinforcement arrangement varying along its length. For both solutions, three 

important nonlinear aspects were considered: the geometric nonlinearity, due to the slenderness of the 

system; the material nonlinearity and the creep of concrete. The last one was considered by means of 

the existing criterium in Eurocode [7]. To the analytical and computational procedure, the ground was 

modeled as a set of springs distributed along the foundation, being the critical buckling load defined for 

modal analysis for different instants of time. 

2  Description of the analyzed system 

 The evaluated problem involves calculating the critical buckling load of a slender reinforced 

concrete pole with variable geometry shown in Fig. 1, where g denotes gravitational acceleration; Gr 

means ground; s represents each structural segment; S, D and th are the type, the external diameter, 

and the wall thickness of the section; db, nb and c´ represent the diameter, quantity, and the concrete 

cover of reinforcing bars. The structure is 46-m-high, including a 40 m superstructure with a hollow 

circular section and a 6 m deep full-circular foundation. The modulus of elasticity adopted for the 
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superstructure and foundation were 37566 MPa and 25044 MPa, and their density 2600 kg/m3 and 

2500 kg/m3, respectively. The slenderness ratio of the tower is upper than 400. A set of antennas and a 

platform are usually installed on its top, constituting a concentrated mass, whose limit value in relation 

to the loss of stability for buckling needs to be determined. Cables and a ladder are attached along of the 

entire length, adding a distributed mass of 40 kg/m to the system. 

 

 
 

 
(a) Photos 

 
(b) Geometry “cm” 

 

(c) Cross sections 

 
 

(d) FEM 

Figure 1. Analyzed system 

 The foundation is a relatively deep shaft having a bell diameter and length of 140 cm and 20 cm, 

shaft diameter and length of 80 cm, and 580 cm, respectively. The lateral soil resistance is represented 

by an elastic parameter equal to 2669 kN/m3. The physical nonlinearity of the material was computed 

by multiplying the product of flexural stiffness by 0.50 and the creep of concrete considered according 

to the EN 1992-1-1 [7] criteria. Because of that is a reinforcement concrete (RC) structure, it was 

necessary to account the presence of the reinforcing bars when calculating the moment of inertia, which 

was performed homogenizing the cross section. Then, according to the theorem of parallel axis, the 

factor Fhs, which multiplied the nominal moment of inertia of the section in terms of the total moment 

of inertia of the reinforcing steel, in the homogenized section were Fh1 = 1.0199, Fh2 = 1.0568, 

Fh3 = 1.0811, Fh4 = 1.0671, and Fh5 = 1.0859, respectively for intervals from 1 to 5. 

3  Analysis by Rayleigh method 

 When developing the Rayleigh method for calculation of the critical buckling load to the present 

problem, the principle of virtual work (PVW) was written in terms of the generalized coordinate defined 

at the free end of the column and chosen to represent the first mode shape, in an undamped free vibration. 

For purposes of comparison, four expressions were used as a shape function: a trigonometric, Eq. (1); 

two polynomials, Eq. (2) and (3); and a potential, Eq. (4); with the exponent equal to 2.27, obtained in 

agreement with Wahrhaftig [8]. These functions were considered valid in the whole domain of the 

structure. The behavior each function along the structural domain (vertical axis) can be seen in Fig. 2. 
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Figure 2. Shape functions along domain 

 Consider the model of Fig. 3, where x is the location of the calculation, originating at the base 

of the structure, and L is the length of the column, t indicates dependency of the time, s is a given 

segment, (x) a shape function and Gr delimits the buried part.  

 The system has constant and variable properties, which include an axial compressive force N(x), 

its geometry, elasticity or viscoelasticity and density. The viscoelasticity is related to the creep of 

concrete and its consideration can be made through rheological models, as done by Wahrhaftig [9]-[10], 

or utilizing normative criteria, as previously mentioned. Applied springs of variable stiffness kso(x) act 

as the lateral soil resistance until the foundation elevation. In this context, the column is under the action 

of gravitational forces, originating from distributed masses, including the self-weight, and a 

concentrated mass, m0, at the upper end, whose limit value in terms of the critical buckling load will be 

determined. 

 To find the analytical solution of the problem, it is necessary to consider a shape function which 

restricts the problem to a system with a single degree of freedom (SDOF). Applying the PVW and its 

derivations, as in Wahrhaftig [11], the dynamic properties of the system are obtained. The conventional 

elastic/viscoelastic stiffness is given by: 
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Figure 3. Frame element representing the structure in an undamped free vibration 
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where for a segment s of the structure, Es(t) is the viscoelastic modulus of the material with respect to 

time; Is(x) is the variable moment of inertia of the section along the segment in relation to the considered 

movement, obtained by interpolation of the previous and following sections, already homogenized (if it 

is constant, it is simply Is); k0s(t) is the temporal term for the stiffness; K0(t) is the final conventional 

stiffness varying over time; and n is the total number of segment intervals given by the structural 

geometry. If the material in a given interval is not a time-dependent, t vanishes of the formulation. 

 The geometric stiffness appears as a function of the axial load, including the self-weight 

contribution (Wahrhaftig [12]-[13]), and is expressed as: 
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where kgs(m0) is the geometric stiffness in segment s, Kg(m0) is the total geometric stiffness of the 

structure with n as defined previously, and N0(m0) is the concentrated force at the top, all of which are 

dependent on the mass m0 at the tip. Further, Nj is the normal force from the upper segments, given by: 

0 0 0( )N m m g , and 
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where ( )sm x  is the mass per unit length. Then, the total generalized mass is given by 

0 0( )M m m m , (8) 
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where As(x) represents the cross-sectional area and s the density of the material. If the cross section has 

a constant area along the interval, As(x) will be only As, consequently, the mass distribution will also be 

constant. Similarly, if the mass m0 does not vary, all other parameters that depend on it will also be 

constant. To consider the participation of the ground in the vibration of the system it is necessary to 

consider it as a series of vertically distributed springs along the foundation. With kSos(x) denoting the 

spring parameter, the effective stiffness of the soil as a function of the variable x along the length can 

be defined as: 

1
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where the parameter KSo is an elastic characteristic consisting of the sum of kSos(x) along the foundation 

depth, which dependents on the geometry of the foundation, Ds(x), and the elastic soil parameter Sops, 

considered constant, in this case, in each layer of soil. Considering the normal force as positive, the total 

structural stiffness appears as a function of two variables: 

0 0 0( , ) ( ) ( )g SoK t m K t K m K . (11) 

 Therefore, the circular natural frequency, as a function of the time and the mass at the tip, can 

be calculated by: 

2 0
0
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( , )
( , )

( )

K t m
t m

M m
. (12) 

 The mathematical procedure described above constitute a modal analysis capable of calculating 

the critical buckling load of the structure once that all the generalized parameters are expressed as 

function of the mass at the top. After introducing the creep, the frequency becomes a temporal function 

because the modulus of elasticity varies over time. From this moment, the frequency passes to be written 

in terms of the time and the mass at the top, and the emerged expression from that process is sufficient 

to calculate the critical buckling load, determined when the frequency is zero at any arbitrary time after 

the structure to be placed in service. Details of this analytical procedure was presented by Wahrhaftig 

[14]. 

Taking all the previously explained in consideration, and making the mass at the top of the pole 

to vary, the force acting at the top also varies, as does the frequency of the structure varies according to 

Eq.(12). Thus, the critical buckling load, Nbuck, is defined for a normal force at zero frequency as: 

2
0

0 0 ( , ) 0
( )buck t m

N N m . (13) 

4  Computational modelling by FEM 

 It should be noted that, while the analytical solution presented in the previous section provides 

a single functional form for the entire problem domain, the FEM formulation establishes interpolation 

functions that are restricted to the domain of each finite element. In terms of modal analysis, the relevant 

eigenvalues and eigenvectors can be obtained by solving the following secular equation: 

2 0K M , (14) 

where [M] is the mass matrix and [K] is the stiffness matrix, which includes the geometric stiffness term 

for nonlinear cases, formulated similarly to Eq. (11). In the FEM environment,  represents the 
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eigenvalues and  represents the eigenvectors. The spring matrix that represents the soil-structure 

interaction is a 6 × 6 symmetric matrix of the spring coefficients, including all the translational and 

rotational degrees of freedom of a bar element. The components of this matrix are nodal springs. The 

mathematical development of the FEM system, as described above, is based on modal analysis 

performed by reducing the stiffness of the system using geometric stiffness matrix components and a 

more detailed description of it can be found in Wahrhaftig [15]. 

 To assess the accuracy of the proposed shape equations for the critical buckling load by Rayleigh 

method, their results were compared with those given by an FEM computational model. The considered 

structure was modeled using frame elements with constant or variable cross sections, as appropriate. 

The varying mass was applied to the model with the corresponding axial forces, beyond of existing 

masses and forces present to the system. The spring factor was assigned to the foundation frame element 

as a linearly distributed parameter. Only a lateral spring was used to model the foundation system, and 

the spring stiffness matrix was thus considered to be null at all positions corresponding to the axial and 

rotational degrees of freedom, while the values extrapolated from the interior of each element joint were 

considered to be active components of the matrix. The model constructed using SAP2000 structural 

analysis software, such as the discretization of the structure in Fig. 1 was of 51 frame elements. Note 

that the global stiffness matrices of the structure were obtained automatically by the analysis software. 

The buckling load was determined by using the FEM and assuming an isotropic homogeneous material 

using the parameters employed in the analytical investigation and a Poisson’s ratio of 0.2. It is important 

to observe that the interpolation functions used in FEM are third-degree polynomials as in Eq. (3). 

5  Results and discussion 

 Figure 4(a) shows the values of the critical buckling load for the four adopted functions and 

FEM, analyzed at the time t = 0, instant on which the structure is loaded and for which the concrete 

creep has not produced any effects. Can be observed that the polynomial function given by Eq. (3) leads 

to a quite different result from the other equations. In order to evaluate values of the critical load at a 

different time of the initial one and to consider possible effects of the creep of concrete, a period of 4000 

days after the structure got into service was stipulated. Figure 4(b) presents the results as analyzed for 

that instant. An important reduction in the vertical loading capacity of the system is observed for both 

instants of the time. It is also interesting to note the slight decrease in the intensity of the critical buckling 

load presented by the potential Eq.(4) with respect to the polynomial, Eq.(2) when analyzing for 4000 

days. Table 1 summarizes the values found for each equation analyzed, considering a gravitational 

acceleration g = 9.80665 m/s², standard conditions of concrete production, and a 70% of environmental 

humidity. 

Table 1. Values of the critical buckling load 

Trial Function 
Critical Load (kN) 

(t = 0)           (t = 4000 days) 

Difference 

(%) 

Trigonometric - Eq. (1) 281.12 221.79 21.10 

Polynomial - Eq. (2) 311.35 256.08 17.75 

Polynomial - Eq. (3) 1308.11 1107.93 15.30 

Potential - Eq. (4) 339.94 245.25 27.85 

FEM - Eq.(14) 249.59 179.52 28.08 
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(a) t = 0 

 
(b) t = 4000 days 

Figure 4. Variation of the structural frequency and critical load 
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6  Conclusion 

 In this paper, a modal analysis has been performed to determine the critical buckling load by 

using an analytical process based on the Rayleigh method and finite element method (FEM). The 

analytical procedure was numerically solved for different shape functions while FEM was based on 

computational modelling processed through a software packed. A real slender reinforced concrete pole 

was analyzed. The structure presented variation of elastic parameters, density, reinforcement ratio and 

geometry throughout its length. The structural self-weight was directly considered on calculation, 

further of distribute mass and forces. The analytical procedure considered all the parameters necessary 

to a nonlinear calculation, such as the geometric, material and concrete creep. On it, four shape functions 

were used, all of them obeying to the boundary conditions of the problem and being differentiable on 

domain. For comparative porpoise, a modal analysis by FEM considering the structural stiffness 

obtained preliminary with all the nonlinear mentioned aspects was performed. In conclusion, is possible 

to state the following: 

1 - For t = 0, instant on which the structure is loaded, the lowest critical load of 249.09 kN was 

obtained by using the finite element analysis, Eq. (14), while the largest of 1308.11 kN was 

provide by the polynomial function given by Eq. (3). 

2 - When analyzing for t = 4000 days, the highest critical load allowed (1107.93 kN) was found 

through the polynomial function given by Eq. (3), while the lowest one (179.46 kN), was 

defined by a modal analysis through the FEM, Eq. (14). 

3 - Still for 4000 days, an decrease of 4% on the intensity of the critical buckling load by Eq.(2), 

polynomial, in relation to Eq.(4), potential, was observed. This represents an inversion on 

behavior of the latter equation, once it turns back to Eq.(2) when the force on the top is 

approximately 215 kN. 

4 - The FEM presented the biggest percentual difference between 0 and 4000 days, 28.08%. 

5 - It was possible to observe that Eq. (3) led to results too distant from the other equations. 

For future works comparison with other mathematical processes are expected. 
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