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Abstract. The use of steel-concrete composite beams allows the best properties of these materials to be 

explored, enabling the design of larger spans and the achievement of more economical structural 

solutions. The alveolar steel beams, in turn, provide a greater rationalization in the use of this material, 

since, with almost the same amount of steel, expanded profiles are produced with greater moment of 

inertia and, consequently, greater flexural strength and better performance under serviceability limit 

states. Through the union of these structural systems the composite alveolar beams are obtained, in 

which the advantages of the two systems are enhanced, and their disadvantages are mitigated. Thus, it 

is possible to reduce materials consumption and, consequently, the generation of environmental impacts. 

Considering that the Brazilian and the international standards do not specify criteria for analysis and 

design of composite alveolar beams, numerical and experimental studies have been carried out at the 

academic level in order to deepen the understanding about the behavior of these structures, whose 

complexity involves the occurrence of different modes of collapse. The present work aims to contribute 

to the advances in the field of numerical analysis of composite alveolar beams by developing a finite 

element model with ANSYS software, version 19.2, in which the steel profile was modeled by shell 

elements, the concrete slab by hexahedral solid elements, the connectors by non-linear spring elements, 

the steel deck sheet by shell elements and the slab reinforcement bars by embedded elements. In order 

to capture the effects of local instabilities, initial geometric imperfections were added to the profile 

through the combination of buckling modes. For the simulation of concrete behavior, two models have 

been used: the first, denominated DP-Concrete, is a native ANSYS model, available in the more recent 

versions of this software; and the second, denominated usermat, is a customizable model based on 

Ottosen criterion. The validation of the model was done through the numerical analysis of beams tested 

experimentally by other authors. The obtained results presented a good correlation with the experimental 

results and with numerical results from previous works. 

Keywords: Finite Element Method, Composite Beams, Cellular Beams, Castellated Beams.  

 



Development of a finite element model of steel-concrete composite alveolar beams 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

1  Introduction 

The use of steel-concrete composite beams has been widespread in the civil construction sector, as 

it allows the best mechanical properties of the involved materials to be explored. In these beams, a steel 

profile is connected to a concrete slab through shear connectors, which aim to restrict longitudinal slip 

and vertical separation at the interface [1], ensuring the joint work of the materials. This configuration 

allows to use these materials more rationally, especially in beams that are simply supported, where the 

concrete basically works under compression and the steel profile under tension. The result of this 

rationalization is an increase in the strength of the composite beam, when compared to the materials 

working separately, which allows the projects of larger spans and/or the achievement of more 

economical structural solutions [2]. 

Another possible solution to overcome large spans and rationalize construction is the use of steel 

alveolar beams, which consist of steel profiles with sequential openings in the web. The great advantage 

of this type of beam is a result of its manufacturing process: the original steel profile is cut longitudinally 

in a certain pattern so that the two resulting halves can be repositioned and then welded together in a 

new configuration, in which the flanges are farther apart, as shown in Fig. 1. That is, with practically 

the same weight and volume of steel a new profile is manufactured with higher height, and consequently 

greater moment of inertia and resistance to bending. According to the shape of the holes, generally 

known as alveoli, these beams can be called as castellated beams, when their holes have a hexagonal 

shape; or as cellular beams, when they are circular in shape. 

 

Figure 1. Manufacturing process of castellated beams [3]. 

Although the use of alveolar beams has many advantages, such as increased flexural strength, better 

performance under serviceability limit states, the possibility of passage of pipes through the alveoli and 

optimization of the ceiling height in buildings, among others, these beams also have a significant 

disadvantage, that is the reduction in shear strength compared to full web beams. Consequently, they 

are inefficient in resisting the stresses of concentrated loads, often requiring reinforcements on the web, 

thus increasing their cost [4], [5]. 

Moreover, due to the peculiarity of their geometry and consequently of their structural behavior, 

the alveolar beams have specific modes of collapse, which must be properly understood, aiming at their 

correct use as a structural element. Kerdal and Nethercot [6] studied these failure modes, which are:  

(i) Formation of a Vierendeel mechanism; (ii) Buckling of web post due to shear; (iii) Rupture of a 

welded joint in a web post; (iv) Lateral-torsional buckling of an entire span; (v) Formation of a flexure 

mechanism (hinge); and (vi) Buckling of web post due to compression. 

In order to maximize advantages, mitigate disadvantages and further rationalize the use of the 

materials involved, it is possible to unite the two structural systems discussed so far, through the 

utilization of composite beams of concrete and alveolar steel profiles, called as composite alveolar 

beams. This union has been the target of academic research in the last decades and has been widespread 

and used in civil construction, as it enables the reduction of materials consumption and, consequently, 

leads to more economical solutions and less environmental impacts. Figure 2 illustrates ArcelorMittal's 

Global Research & Development Centre [7], with composite cellular beams on the roof, utilizing the 

steel-deck system. 
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Figure 2. ArcelorMittal's Global Research & Development Centre [7]. 

According to Badke-Neto, Calenzani and Ferreira [5], due to the increased stiffness of the alveolar 

beam compared to the full web beam, the composite alveolar beams can overcome even larger spans 

than the traditional composite beams. Likewise, the concrete slab's contribution of stiffness enables them 

to overcome larger spans and resist higher loads than alveolar beams working isolatedly. 

However, according to Gonçalves [3], the presence of the concrete slab influences the failure modes 

of the alveolar beam, modifying them and even creating the possibility of new modes. It is essential that 

this differentiated behavior is properly studied and understood in order to be properly considered in 

structural calculation. Brazilian and international standards approach composite steel and concrete 

structures, but do not specify criteria for the calculation of composite alveolar beams. 

In this context, the goal of the present work is to develop a finite element model for the numerical 

simulation of composite alveolar beams, aiming to create a tool that helps understanding the behavior 

of these structures. The developed model will be validated by comparing its results with experimental 

results from the tests made by Nadjai et al. [8]. 

2  Numerical model 

The numerical model was developed in ANSYS software, version 19.2. In this section, the element 

types, material models, boundary conditions and solution stages are presented. 

2.1 Element types 

The concrete slab was modeled by hexahedral elements with twenty nodes and three degrees of 

freedom per node (translations in x, y and z), called SOLID186 in ANSYS [9]. In the present work these 

elements were used in their homogeneous form with full integration. Its formulation is based on 

Zienkiewicz [10]. Because it is a current-technology element, SOLID186 is compatible with several 

current ANSYS features, such as the generation of embedded elements and the use of new material 

models, e.g. DP-Concrete. 

The reinforcement bars were modeled by discrete embedded elements, called REINF264 in 

ANSYS [9], which are suitable for simulating steel bars. These elements use the same nodes of the base 

elements SOLID186, even if their geometric position does not coincide with them. The REINF264 

element presents only axial stiffness, thus the stiffnesses to bending, torsion and shear stress are 

neglected. A perfect interaction between the reinforcing element and the concrete base element is 
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admitted, so there is no relative movement between them [9]. 

For the generation of reinforcement embedded elements, a new ANSYS functionality was used, 

denominated mesh-independent method. This method uses MESH200 elements, which are only guide 

elements, and thus do not directly contribute to the solution, but determine the positions where 

REINF264 reinforcement elements are created. Therefore, it is possible to insert the positions of the 

reinforcement bars from the lines drawn in absolute coordinates, unlike the standard method, in which 

it is necessary to use relative coordinates in respect to the base elements, generating mesh dependence.  

The steel profile was modeled by quadrilateral shell elements, named SHELL181 in ANSYS [9], 

with 4 nodes and 6 degrees of freedom per node (x, y, z translations and rotations), considering 

membrane and bending stiffnesses. Its formulation is based on the work of several authors, including 

Bathe and Dvorkin [11] and MacNeal and Harder [12], and uses Mindlin-Reissner's first-order shear-

deformation theory. It is applicable to linear and nonlinear problems, including large deformations and 

rotations. For this reason, the formulation uses logarithmic strain and true stress measures rather than 

nominal engineering strain and stress. For small deformations, the difference between nominal and true 

values is negligible. The element can also contain several layers, and in the present work a single and 

centralized layer was used, with five integration points along the thickness. 

The connectors were modeled by nonlinear spring elements, called COMBIN39 in ANSYS [9], 

acting in the longitudinal direction of the beam. Thus, the relative slip of the profile and slab nodes in 

this direction (𝑢𝑥) are governed by points of the force versus slip curve of the element, whose data are 

obtained from push-out tests. When acting on a single degree of freedom per node, these elements should 

preferably be applied to coincident nodes [9]. In this work, however, they were applied to nodes spaced 

by half the thickness of the superior flange (𝑡𝑓𝑠/2), in function of the model geometry and the centralized 

positioning of the profile shell elements cross-section, as shown in Fig. 3. However, once this distance 

is very small, it can be assumed that these nodes are practically coincident. In the transverse and vertical 

directions, the coupling of the displacements 𝑢𝑦 and 𝑢𝑧 of these same nodes is performed. Thus, the 

COMBIN39 element acts only in the longitudinal direction of the beam, and compatibility equations are 

responsible for simulating the behavior of connectors in the other directions, as in the model proposed 

by Queiroz, Vellasco and Nethercot [13]. 

 

Figure 3. Connectors in the numerical model. 

The steel-deck sheet was modeled by shell elements, assuming perfect interaction with the concrete 

slab. For this purpose, the lower slab faces were selected for the mesh generation, using the same nodes 

of the SOLID186 elements, which have 8 nodes on each face. For reasons of shape compatibility, an 

eight-node shell element was used, called SHELL281 in ANSYS [9], with 6 degrees of freedom per 

node (x, y, z translations and rotations). 

Figure 4 highlights the elements cited in the developed numerical model. 
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Figure 4. Element types in the numerical model. 

2.2 Material models 

For the simulation of the concrete behavior, two models have been used: (i) DP-Concrete and (ii) 

customized model via ANSYS usermat interface. 

DP-Concrete is a native ANSYS model, available in the more recent versions of this software. A 

single Drucker-Prager surface does not represent the large differences in tensile and compressive 

behavior of concrete. Thus, the DP-Concrete model uses a Drucker-Prager plastification surface for 

compression, and a second surface, that may be Drucker-Prager or Rankine, for tension and tension-

compression. Figure 5 illustrates the composition Drucker-Prager with Rankine, which was used in the 

present work, in the two-dimensional principal stress plane. The surfaces formulations are presented 

below, based on Chen [14] and ANSYS [9]. 

 

Figure 5. Combination DP-Rankine (adapted from [9]). 

The Rankine surface in tension and tension-compression is defined by Eq. (1). 

𝑓𝑅 = 𝜎𝑚 +
2

3
. 𝜎𝑒 . 𝑐𝑜𝑠(𝜃) − 𝑇. Ω𝑡 =  0. (1) 

cos(3𝜃) =
3√3

2
.

𝐽3

√𝐽2
3

. 
(2) 
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Where 𝜎𝑚 = 𝐼1/3 is the hydrostatic stress; 𝐼1 is the first stress invariant; 𝐽2 is the second deviatoric 

stress invariant; 𝜎𝑒 =  √3𝐽2 is the von Mises stress; 𝐽3 is the third deviatoric stress invariant; 𝜃 is the 

similarity angle, defined by Eq. (2); 𝑇 is the uniaxial tensile strength of concrete; and Ω𝑡 is the tension 

function of the adopted HSD model. 

While the value of 𝑓𝑅 is less than zero, the tensile and tensile-compressive behavior is admitted as 

linear elastic. When 𝑓𝑅 equals zero, the plastic regime starts, in which the cracking can be simulated, 

approximately, through increments of plastic strain. In this step, the Rankine surface moves according 

to the function Ω𝑡 of the adopted HSD model. 

The Drucker-Prager surface under compression is defined by Eq. (3). 

𝑓𝐷𝑃𝑐 =
𝜎𝑒

√3
+ 𝛽𝑐 . 𝜎𝑚 − 𝜎𝑌𝑐 . Ω𝑐 = 0. (3) 

Where 𝛽𝑐 , 𝜎𝑌𝑐 are the constants calculated from material parameters and Ω𝑐 is the compression 

function of the adopted HSD model. 

While the value of 𝑓𝐷𝑃𝑐 is less than zero, the behavior in compression is admitted as linear elastic. 

When 𝑓𝐷𝑃𝑐 equals zero, the plastic regime starts: the Drucker Prager surface moves according to the 

function  Ω𝑐 of the adopted HSD model. As a general rule, unless concrete is accepted as perfectly 

elastoplastic (without the adoption of any HSD model), all available HSD models are divided into two 

sections in the compression behavior: (i) hardening, which governs surface expansion, until the 

maximum compressive stress is reached; and (ii) softening, which governs the shrinkage of the surface, 

initiating the crushing process, after reaching the maximum compressive stress. 

The values of the constants 𝛽𝑐 e 𝜎𝑌𝑐 are calculated by Eq. (4) and (5). 

𝛽𝑐 =
√3. (𝑅𝑏 − 𝑅𝑐)

2. 𝑅𝑏 − 𝑅𝑐
. (4) 

𝜎𝑌𝑐 =
𝑅𝑏 . 𝑅𝑐

√3. (2. 𝑅𝑏 − 𝑅𝑐)
. (5) 

Where 𝑅𝑐 is the uniaxial compressive strength of concrete [kN/cm²] and 𝑅𝑏 is the biaxial 

compressive strength of concrete [kN/cm²]. 

Depending on the HSD (hardening, softening and dilatation) model adopted, the functions Ω𝑐 and 

Ω𝑡 assume a certain format. Through these models, it is possible to simulate, approximately, the 

phenomena of cracking, in the tensile behavior, and crushing, in the compressive behavior, through 

increments of plastic strain related to hardening and softening rules. ANSYS offers four types of HSD 

models. In this work the model HSD Linear, shown in Fig. 6, was used. 

 

Figure 6. Linear HSD Model (adapted from [9]). 

In Fig. 6, the graphs represent the values of the softening and hardening functions in compression 

and tension (Ω𝑐 and Ω𝑡) in the ordinates, and the effective plastic strain (κ) in the abscissa. The other 
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parameters indicated in the graphs are input parameters, which can be adjusted to change the format of 

the functions. The softening laws in tension allow the effect of the contribution of concrete between 

cracks (known as tension stiffening phenomenon) to be considered. In the present work, the values of 

Ω𝑐𝑖 = 0.4; Ω𝑐𝑟 = 0.65; Ω𝑡𝑟 = 0.02 e 𝜅𝑡𝑟 = 0.001 were adopted. On the other hand, the values of 𝜅𝑐𝑚 and 

𝜅𝑐𝑟 were calibrated so that the total strains (elastic plus plastic) in compression were equal to 2‰ when 

the concrete reaches the maximum stress, and to 3.5‰ when the concrete reaches the residual stress. 

It was also used, for purposes of results comparison, a customized model for concrete developed 

by Lazzari et al. [15], based on the Ottosen [16] criterion, through the ANSYS subroutine called usermat, 

which can be programmed to customize a material model [9]. The surface of Ottosen [16] is given by 

Eq. (6) and (7). 

𝑓(𝐼1, 𝐽2, cos(3𝜃)) = 𝛼.
𝐽2

𝑓𝑐𝑚
2 + 𝜆.

√𝐽2

𝑓𝑐𝑚
+ 𝛽.

𝐼1

𝑓𝑐𝑚
− 1 = 0. (6) 

𝜆 = {
𝑐1. cos (

1

3
𝑎𝑟𝑐𝑐𝑜𝑠(𝑐2. 𝑐𝑜𝑠(3𝜃)))    𝑓𝑜𝑟  𝑐𝑜𝑠(3𝜃) ≥ 0.          

𝑐1. cos (
𝜋

3
−

1

3
𝑎𝑟𝑐𝑐𝑜𝑠(−𝑐2. 𝑐𝑜𝑠(3𝜃)))   𝑓𝑜𝑟  𝑐𝑜𝑠(3𝜃) ≤ 0.

 (7) 

Where 𝑓𝑐𝑚 is the average compressive strength of concrete; 𝛼, 𝛽, 𝑐1 𝑎𝑛𝑑 𝑐2 are material parameters. 

For the compressive behavior, the hardening law adopted is given by Eq. (8), illustrated in Fig.7(a), 

suggested by fib2010 model code [17].  

𝜎𝑐

𝑓𝑐𝑚
= − (

𝑘. 𝜂 − 𝜂2

1 + (𝑘 − 2). 𝜂
).  (8) 

Where 𝜎𝑐 is the compressive stress; 𝜀𝑐 is the compressive strain of concrete; 𝜀𝑐1 is the strain at the 

maximum compressive stress; 𝜀𝑐,𝑙𝑖𝑚 is the ultimate compressive strain; 𝐸𝑐𝑖 is the initial tangent modulus 

of elasticity of concrete; 𝐸𝑐1 is the secant modulus of elasticity of concrete; 𝑘 = 𝐸𝑐𝑖/𝐸𝑐1 is the plastic 

number; and 𝜂 = 𝜀𝑐/𝜀𝑐1. 

For the tensile behavior, a model of distributed cracks was adopted, considering the tension 

stiffening effect through the softening law shown in Fig. 7(b). Initially, the concrete is admitted as linear 

elastic until the tensile strength (𝑓𝑐𝑡𝑚) is reached. After the cracking occurs, the softening is governed 

by a decreasing line that intersects the vertical axis in the value of 𝛼. 𝑓𝑐𝑡𝑚 and the horizontal axis in the 

limit strain value (𝜀𝑐𝑡𝑢). In the present work, 𝛼=0.6 e 𝜀𝑐𝑡𝑢=0.001 were adopted. 

 

Figure 7. Constitutive laws for concrete in usermat model: (a) compression; (b) tension. 

The profile steel was modeled by von Mises plastification criterion for yielding with isotropic 

hardening. As hardening law, the constitutive model proposed by Gattesco [18], shown in Fig. 8(a), was 

adopted. This model is divided into three stages of loading: (i) elastic-linear; (ii) yield plateau; (iii) 
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hardening governed by parabolic curve, given by Eq. (9). On the other hand, steels of the reinforcement 

bars and the steel deck sheet were simplified as perfectly elastoplastic, as shown in Fig. 8(b). 

 

Figure 8. Constitutive laws: (a) profile steel; (b) reinforcement bars and steel-deck steels. 

𝜎 = 𝑓𝑦 + 𝐸ℎ . (𝜀 − 𝜀ℎ). (1 −
𝐸ℎ . (𝜀 − 𝜀ℎ)

4. (𝑓𝑢 − 𝑓𝑦)
). (9) 

Where fy and fu are the steel yielding and ultimate strengths, 𝜀𝑦 is the strain at steel yielding stress, 

𝜀ℎ is the strain at the initial hardening, 𝜀𝑢 is the strain at ultimate stress, 𝐸 is the steel modulus of 

elasticity and e 𝐸ℎ is the tangent modulus of elasticity. 

Unlike other materials, the steel properties of the connectors are not inserted into a material model 

itself, but rather through real constants of the COMBIN39 spring element. These real constants provide 

points for the force versus slip curve obtained experimentally via the push-out test. In order to 

standardize the model, the theoretical curve given by Eq. (10), as proposed by Ollgaard, Slutter and 

Fisher [19], adjustable to the push-out test data of stud bolts, was adopted. 

𝑄 = 𝑄𝑚á𝑥. (1 − 𝑒−𝑚𝑠)𝑛. (10) 

Where 𝑄 is the shear force acting in the connector [kN]; 𝑄𝑚á𝑥 is the maximum shear force resisted 

by the connector [kN]; 𝑠 is the slip [mm]; 𝑒 = 2,718 is the Euler number; and 𝑚 e 𝑛 are curve fitting 

parameters, in mm-1 and dimensionless, respectively. 

2.3 Boundary Conditions 

The developed model admits the beams as simply supported and uses the symmetry condition. 

Thus, the nodes at the first support, on the lower face of the beam, had the displacements in y and z 

restricted; and the nodes at the central cross-section of the beam had the displacements in x and the 

rotations around y and restricted, as shown in Fig. 9. The load was applied by imposing y-displacements 

on the nodes located at the respective points of application. 

 

Figure 9. Boundary conditions. 
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2.4 Stages of the solution 

The numerical problem was solved in four stages, aiming at the model's ability to simulate local 

instability effects in nonlinear analysis: 

Stage 1: Solution of a base static analysis, by applying a unit load distributed among the same 

nodes as the final load. 

Stage 2: Solution of an Eigen-Buckling analysis, by solving the problem of eigenvectors and 

eigenvalues, to determine buckling modes and load factors associated with the base static analysis.  

Stage 3: Addition of geometric imperfections in the steel profile by updating the model geometry, 

based on the deformed buckling modes obtained, multiplied by weighting factors. In this work, the 

weighted combination of the first two modes was employed, each one with an amplitude of dg/600, dg 

being the height of the expanded profile. This amplitude value was suggested by Bake [20]. 

Stage 4: Final nonlinear analysis, by imposing y-displacements, divided into substeps. In this stage 

the Newton-Raphson method was used to solve the nonlinear problem. 

3  Analyzed examples 

Two beams, experimentally tested by Nadjai et al. [8], named A1 and B1, were modeled. The 

geometry of these beams is shown in Figs. 10 and 11. In both beams, a stud bolt connector per rib has 

been allocated, i.e. every 15 cm, with a diameter of 19 mm and a height of 120 mm. The concrete 

presented average compressive strength of 3.5 kN/cm², measured in test. A welded steel mesh with 

uniform spacing of 20 cm between bars with a diameter of 6 mm (A142 mesh) was used. The properties 

adopted for the materials in both numerical models are presented in Table 1. Some concrete properties, 

not provided by the authors, were calculated by the model code fib2010 [17] from the value of 𝑓𝑐𝑚. It is 

noteworthy that, for the analysis with the DP-Concrete model, a reduced modulus was used, since the 

initial domain of the stress-strain curve is approximated by a linear function until the stress reaches the 

value of 0.4.𝑓𝑐𝑚. For this purpose, the value of 0.9.𝐸𝑐𝑖 was adopted in the two analyzed beams. 

Beams A1 and B1 differ because of the geometry of the alveolar steel profile and the point of 

application of the loads, as shown in Figs. 10 and 11. The numerical models developed are shown in 

Figs. 12 and 13, with the symmetry condition. Table 2 indicates the number of elements used in each 

model. 

 

Figure 10. Geometry of beam A1 (adapted from [8]). 
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Figure 11. Geometry of beam B1 (adapted from [8]). 

 

 

 

Figure 12. Numerical model of beam A1. 
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Figure 13. Numerical model of beam B1. 

 

Table 1. Materials parameters adopted for the numerical models. 

Material Parameter Value Unit Source 

Profile 

Steel 

𝐸 20000 kN/cm² Arbitrated, usual value 

𝑓𝑦 31.2 kN/cm² 
Bake [20] 

𝑓𝑢 43.85 kN/cm² 

𝜀ℎ/𝜀𝑦 7.5 - 
Arbitrated 

𝐸ℎ 400 kN/cm² 

Connectors 

𝑄𝑚á𝑥 110 kN 
Arbitrated based on the values 

adopted by Schmitz [22] for 

same diameter connectors 
𝑚 1.3 1/mm 

𝑛 1 - 

Concrete 

𝑓𝑐𝑚 3.5 kN/cm² Nadjai et al. [8] 

𝐸𝑐𝑖 3264 kN/cm² 

Calculated based on model 

code fib2010 [17] 

𝑓𝑐𝑘 2.7 kN/cm² 

𝑓𝑐𝑡𝑚 0.27 kN/cm² 

𝑓𝑐2𝑚 4.08 kN/cm² 

Steel from 

Steel-Deck 

𝐸 21000 kN/cm² Arbitrated, usual value 

𝑓𝑦 32.7 kN/cm² Nadjai et al. [8] 

Reinforcement 

Steel 

𝐸 21000 kN/cm² Arbitrated, usual value 

𝑓𝑦 46 kN/cm² Nadjai et al. [8] 
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Table 2. Number of elements in the numerical models. 

Element type 
Number of elements 

Beam A1 Beam B1 

SOLID186 2000 2000 

SHELL181 2423 2629 

SHELL281 1248 1248 

COMBIN39 30 30 

REINF264 402 402 

Total 6103 6309 

 

4  Results and discussion 

Figures 14 and 15 display the obtained results by the present work, with DP-Concrete and usermat 

models, of the total load applied versus midspan deflection relationships for the beams A1 and B1, along 

the experimental results by Nadjai et al. [8] and numerical results by Bake [20] and Ferrari [21], who 

also analyzed these beams numerically. 

In the experimental tests, both beams failed by buckling of the web post due to shear. Numerical 

models were able to capture this failure mode, as highlighted in Fig. 14 and 15, and illustrated by the z-

displacements of beam A1 in Fig. 16, when uy = 1.4 cm. The addition of geometric imperfections to the 

model through the combination of elastic buckling modes has proved to be an appropriate strategy to 

capture this mode of collapse. 

Both numerical models of this work were able to capture the behavior of the analyzed beams with 

good precision, since their results showed a good correlation with the experimental results. Moreover, 

it is possible to notice that both models adopted for concrete – DP-Concrete and usermat – presented 

very similar results. Figure 17 shows the normal stresses in x on beam A1, when uy = 1.0 cm, obtained 

by both models. 

 

 

Figure 14. Load-deflection curve – Beam A1. 
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Figure 15. Load-deflection curve – Beam B1. 

 

 

Figure 16. Beam A1: displacements in z when uy=1.4 cm. 

 

 

  

   

   

   

   

   

   

   

   

   

                           

  
  

  
  

 

                     

       

                                  
                                 
                            

        
        



Development of a finite element model of steel-concrete composite alveolar beams 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

 

Figure 17. Beam A1: Comparison between the normal x-stresses obtained, when uy=1.0 cm. 

5  Conclusions 

A finite element numerical model was developed in ANSYS software, version 19.2, for the 

simulation of composite alveolar beams, using two different material models for concrete. The obtained 

results with this model showed good correlation with the experimental results of two beams tested by 

Nadjai et al. [8] and with numerical results from previous works.  

The models were able to capture the experimental collapse mode, that was buckling of the web post 

due to shear. For that, it was essential to add initial irregularities to the steel profile through the weighted 

combination of buckling modes, obtained from previous Eigen-Buckling analysis. 

The two models adopted for concrete – DP-Concrete and Usermat – presented very similar results, 

which increases the reliability of the developed numerical model, as well as of each one of these material 

models. 

Finally, it is concluded that the developed model was able to adequately simulate the behavior of 

the two analyzed beams. Further investigations should be performed to evaluate the model's ability to 

capture other modes of collapse. 
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