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Abstract. The objective of this research is to present a study of the influence of the geometrical 

nonlinearities in the dynamic behavior of plane steel frames. The adopted geometrically nonlinear 

formulation is based on Euler-Bernoulli model and uses the updated Lagrangian description and the 

corotational approach to deduce the tangent stiffness matrix of the element with both fixed ends. The 

theory predicts that nodes will suffer large displacements and rotations, and the elements of the 

structure, large stretches and curvatures. The solution of the nonlinear equations of motion is achieved 

by combining the Newmark's implicit time integration method with the Newton-Raphson technique. 

The results of the performed analyzes showed a good agreement with the numerical solutions available 

in the literature, demonstrating the efficiency of the proposed method in obtaining the geometrically 

nonlinear dynamic behavior of steel structures. 

Keywords: Geometrical nonlinearity, Second-order effects, Nonlinear transient analysis; Updated 

Lagrangian description; Corotational approach. 
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1  Introduction 

Steel structures are generally designed for industrial and commercial buildings, since they have 

high strength-to-weight ratio and excellent ductility. In the case of light and slender structures, the 

influence of dynamic loads and second-order effects are more pronounced and, therefore, they cannot 

be neglected during the analysis. Additionally, several researches have been carried out in the field of 

structural analysis and it has been observed that only the linear static analysis may not be able to 

describe the real behavior of a structure submitted to the various external requests, especially in the 

case of atypical situations, such as earthquakes and strong wind gusts [1]. In these occasions, the 

structural elements can exhibit a diversity of behaviors, ranging from small strains to large 

displacements. Therefore, the correct design and prediction of such responses has led to the creation of 

consistent analytical models based on the finite element method. 

These analytical models, using advanced analysis methods, can consider simultaneously several 

sources of the nonlinear behavior of structures as well as different types of loading, which leds to 

results more consistent with the real structural response and a less conservative design [1]. Regarding 

the nonlinear transient dynamic analysis, the conventional Lagrangian description has been 

extensively employed [2–5]. Nonetheless, this formulation requires an expressive modification in 

existing elemental hypothesis for nonlinear analysis [6]. By contrast, the adoption of a corotational 

formulation constitutes a good alternative to consider the geometric nonlinearity once it facilitates the 

decomposition of the element’s motion into rigid body and pure deformational parts [7]. However, its 

domain of application is limited by a kinematic assumption that deformations must be small [8]. A 

number of interesting studies combining the corotational technique and the Lagrangian description 

have been published in the literature, as the works of Le et al. [9], Albinto et al. [10], da Silva et al. 

[11] and Huang et al. [12]. In this paper, the updated Lagrangian description is combined with the 

corotational approach in order to obtain the internal force vector and the tangent stiffness matrix. 

An important feature in designing steel members and structures is the consideration of stability 

problems [13]. On the basis of this fact, researchers have proposed numerical formulations for 

nonlinear dynamic analysis of steel frames including second-order effects in terms of P-∆ and P-δ 

effects, as the studies presented by Chan and Chui [14], Liu et al. [13], Yu and Zhu [15], Nguyen and 

Kim [16], Silva et al. [17], and so on.  

Nguyen and Kim [16] developed a simple numerical formulation based on the finite element 

method to be used in the second-order elastic dynamic analysis of space steel frames. The geometric 

nonlinearity was considered by using stability functions and geometric stiffness matrix. On the other 

hand, Yu and Zhu [15] applied the finite particle method for modeling the structural geometric 

nonlinearities in steel frames under dynamic loads. Since it is crucial to remove rigid body motion and 

rotation from the structural displacement, fictitious motion was used to address naturally the 

geometrical nonlinearity. 

Liu et al. [13] proposed an efficient numerical procedure for time-history elastic analysis of three-

dimensional steel frames using one-element-per-member model. The numerical simulation technique 

takes into account P-∆ and P-δ second-order effects, large global deflections and member 

deformations. The arbitrarily-located-hinge element proposed by Liu et al. [18–19] was used to 

explicitly simulate the initial member curvatures. The incremental secant stiffness approach is 

introduced to describe the kinematic motion of elements during the incremental-iterative procedure. 

In order to deal with the effects of geometric nonlinearities, Cunha [20] employed the corotational 

description to the finite element method for 2D beam elements, based on the Euler-Bernoulli 

hypothesis. The tangent stiffness matrix was developed so that it can be decomposed into two parts, 

being one the material stiffness matrix and the other one called geometric stiffness matrix. 

This paper concerns with a study of the dynamic behavior of plane steel frames, through time-

domain integration, considering a geometrically nonlinear formulation. To this end, the numerical 

procedure for nonlinear static analysis proposed in da Silva et al. [11] is extended for nonlinear 

dynamic analysis of plane frames. However, in the present research, the shear deformation effect and 
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the material nonlinearity are not considered for comparison purposes. The adopted formulation 

employs an updated Lagrangian formulation and the corotational technique for the consistent 

deduction of the tangent stiffness matrix of the element with both fixed ends. The theory predicts that 

nodes will suffer large displacements and rotations, and the elements of the structure, large stretches 

and curvatures. The Newmark numerical integration scheme [21] is used in combination with the 

Newton-Rapshon iterative algorithm to solve the nonlinear dynamic equilibrium equations. In order to 

reduce computational effort in the simulations, the lumped mass matrix is adopted. 

The described solution strategy was implemented in the PPLANLEP program, which is written in 

Fortran 90 language, and is capable to perform static and dynamic advanced analysis of framed steel 

structures. This program was developed by Lavall [22], adapted by Silva [23], who included the 

influence of semi-rigid connections and the shear deformations along the bars, and, then modified by 

Viana [1], who included the dynamic analysis in the structure of the program. The numerical 

responses obtained by the PPLANLEP program are compared with the numerical solutions available 

in the literature in order to demonstrate the efficiency and accuracy of the proposed analysis method. 

2  Finite element model 

The formulation for nonlinear static analysis of plane steel frames proposed by da Silva et al. [11] 

is used in the present study. Nonetheless, here it is employed the kinematic hypothesis of Euler-

Bernoulli.  

2.1 Coordinate systems 

The 2D frame element with both fixed ends is shown in Fig. 1. The structural nodes have three 

degrees of freedom, namely, the displacements u and v along the axis x and y, respectively, and the 

rotation θ, positive when counter-clockwise. In the reference configuration, the chord between 

elements nodes has the length lr. On the chord a local reference coordinate system (xr,yr) is placed, 

with the origin at the center. The angle between the axis x and the chord is denoted by φr. At current 

configuration the chord between element nodes has length lc. A corrotational coordinate system (xc,yc) 

is defined on this chord, with the origin at the center, as indicate in  Fig. 1. The angle between the axis 

x and the chord is now φc while the angle between the chord and the axis of the bar is denoted by α. 

 

 

Figure 1. Finite element deformation for the fixed ends conditions 

The degrees of freedom referent to the corotational system can be collected in a vector ωq , where 

ω = 1, 2, 3: 

{ }321
T qqq ;;=q .                                                             (1) 

The Cartesian degrees of freedom pi (global system) are collected in the element’s nodal 
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displacement vector, defined by 

{ }bbbaaa
T vuvu θθ= ;;;;;p .                                                    (2) 

The relations between natural and Cartesian degrees of freedom are important and listed below: 


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In Eq. (4), xa, xb, ya and yb are the element nodal coordinates at reference configuration. 

The differential relations between the corotational coordinates and the Cartesian global 

coordinates can be written in a B3x6 matrix by deriving qω from pi: 
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where, comma indicates partial differentiation. Note that Greek indices range from 1 to 3, while Latin 

indices range from 1 to 6. 

The second derivatives of qω with respect to pi can be placed in three symmetrical matrices Gω 

(6x6) given by: 
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2.2 Structural theory 

Euler-Bernoulli hypothesis is assumes that cross-sections remain plane and perpendicular to the 

neutral axis after deformation. Displacement field of an arbitrary point in the beam element is defined 

if the axial displacement ),( yxu c and lateral displacement ),( yxvc of neutral axis are known, as well 

as the rotation of the transverse section, as depicted in Fig. 2. 

Figure 2. Displacement field considering the theory of Euler-Bernoulli 

In the corotational system (xc, yc), uc and vc displacements represent the displacement fields of the 

point P of section S. 

α−= sin)(),( rcc yxuyxu .                                                      (8) 

)cos()(),( α−−= 1yxvyxv rcc .                                               (9) 

where, cu and cv  are the displacements of the bar axis in the corotational system.  

The rotation α of the cross sections results from the displacements cu and cv  of the points on the 

bar’s axis: 
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Suppose that the rotation angle is small, Eq. (8) and Eq. (9) can be rewritten in the following 

form: 

α−= rcc yxuyxu )(),( .                                                       (11) 

2
yxvyxv

2

rcc

α−= )(),( .                                                    (12) 

Based on the displacement field, the analytical expression of the deformation field for straight 

bars is deduced, getting to the following expression: 

( ) αy1α sec u1ε rcx
′−−′+= .                                                    (13) 

Adopting interpolation functions for displacements cu and cv  of the bar’s axis, it is obtained: 

11c qu Ψ= .                                                                    (14) 
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Deriving Eq. (14) and Eq. (15) and inserting into Eq. (10), the rotation α of the cross section can 

be calculated by 

( )3322 qq '' Ψ+Ψ=α .                                                        (17) 

in which 
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The deformation of the bar’s axis is given by xmε , which is variable along its length. To facilitate 

the analytical development of the formulation, Lavall [22] adopted a constant value for ε , represented 

by its mean value, given by: 

rx

r

xm dx
l

1
 ε=ε .                                                              (19) 

Although the hypothesis of small rotations of the elements’ axis in relation to their chords is used, 

it does not prevent the occurrence of large curvatures as long as the elements are short. Thus, the 

expression for the deformation field is modified to: 
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2.2 Equilibrium Equations 

The virtual power principle is used in the development of the finite element stiffness: 

ii

V

rxx pPdV

r

δ=δεσ .                                                            (21) 

where dVr is the volume element in the reference configuration, σx the normal stress, δεx virtual 

longitudinal deformation and Pi are the element nodal forces. 

The virtual longitudinal deformation is equal to: 
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iixx pq δε=δε ωω ,,
.                                                              (22) 

Therefore, the equilibrium equation of the element is given by: 

ii qQP ,ωω= .                                                                  (23) 

where Qα is the element natural forces in corotational system: 

 ωω εσ=
rV
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,

.                                                            (24)  

2.3 Element stiffness matrix 

The derivative of P with respect to time can be given by: 

t
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where, Kt is the tangent stiffness matrix of element in Cartesian coordinates.  

The components kij are obtained through differentiation of Pi with respect to Cartesian 

coordinate’s pj: 
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where βω,Q is the derivative of  ωQ with respect to qβ, which can be write as follows:  

( ) ωββωβω εσ+εε=
rV

r,xx,x,x dV  D Q , .                                          (27)  

where D is the fiber's axial stiffness. 

By Eq. (27) it is defined: 
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 ωβεσ=
βω
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rxx dVH
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Then, a stiffness matrix for the element is established as: 

ω,ijβ,j
f

,βω,iβ,j
f

,βω,iij qQqHqqDqk ωωω ++= .                                    (30) 

The constitutive part is represented by the first term of the Eq. (30), while the second and third 

terms represent the P-δ and P-∆ effects, respectively.  

Finally, the symmetric tangent stiffness matrix (6x6) can be written as: 

ωω++=+= GBHBBDBkkk TT
GMt Q .                                      (31) 

in which kM is the constitutive matrix and kG, the geometric matrix. As the material nonlinearity 

including gradual yielding of a steel beam–column member under axial force and bending moments is 

beyond the scope of this study, the constitutive matrix remains elastic. 

3  Nonlinear dynamic solution procedure 

The Newmark numerical integration scheme is combined with the Newton-Raphson method for 

the numerical integration of the nonlinear equations of motion. Thus, the incremental equation of 

motion of a structure is defined as: 
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t
int

Δt)(t
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Δt)tΔt)(t  FFKUUCUM −+++   = +  + (&&& .                                         (32)                                                                   

where M, C, K are the mass, damping and tangent stiffness matrices, respectively; U&& , U& are vectors of 

nodal point accelerations and velocities, respectively; U is the vector of nodal point displacement 

increments; Fext is the applied external load vector and t
intF is the nodal point force vector equivalent to 

the element stresses. 

The Newmark’s method consists in expressing the displacements and velocities according to 

finite difference approximations in the time domain, given by: 
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Δt ++ +−++= UUUUU &&&&& .                                 (33)                                                            

( )[ ]Δt)(tttΔt)(t  γ γ1Δt ++ +−+= UUUU &&&&&& .                                            (34)                                                                   

where γ and β are parameters that determine the stability and precision properties of the method. 

From Eq. (33) it is obtained the incremental accelerations, given by: 
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Then, considering Eq. (35) into Eq. (34), the incremental velocities can be calculated from: 
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Inserting Eq. (35) and Eq. (36) into Eq. (32), the equation that establishes the dynamic 

equilibrium of the structural system at t + Δt can be modified to: 

FUK ˆˆ    =∆ .                                                                      (37) 

in which K̂ and F̂  are the effective stiffness matrix and the effective force vector, respectively, 

computed as: 
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At the first iteration of each time step, the geometry, total displacement, velocity and acceleration 

are updated on the basis of the incremental displacement vector. For the second and subsequent 

iterations of each time step, the system of dynamic equations are solved under the effect of the residual 

force vector R, as follows: 

 k
Δt)t

k   δ RUK =+(ˆ .                                                               (40) 

where Rk is computed at the unbalanced iterative step k, given as: 

))(t 
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Thus, the incremental displacement vector is saved as: 

Δt)t

k

Δt)t

1-k

Δt)t

k δ
+++ +∆=∆ ((( UUU .                                                     (42) 

Using the incremental displacement vector, it is computed the velocities and accelerations at the 

unbalanced iterative step k. Once the convergence is achieved, the geometry, displacements, velocities 

and accelerations are saved for the next time step. 
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4  Numerical examples 

A computer program written in Fortran 90 programming language was developed based on the 

present numerical procedure. Numerical examples are showed in order to evaluate the accuracy and 

efficiency of the proposed methodology in predicting the nonlinear elastic dynamic behavior of plane 

steel frames. In all analyzes, the lumped mass matrix is adopted and the effects of rotary inertia are 

neglected. The parameters γ and β of the Newmark method are considered equal to 0.5 and 0.25, 

respectively. Rayleigh proportional damping is not considered during the analysis. 

4.1 Williams toggle frame 

This problem, shown in Figure 3, has been solved analytically and experimentally by           

Williams [24]. This structure is commonly used by researchers to validate nonlinear numerical models 

and verify the efficiency of computational implementations. The structure consists of two members of 

rectangular sections with area of 1.1806 cm² and inertia of 0.036 cm4. The frame is subjected to a 

concentrated load P (t) equal to 67 N. The structural members were discretized into 4 finite elements, 

and the cross section was divided into 10 slices. The modulus of elasticity and the volumetric mass 

adopted were 71.02 GPa and 2.7145 kNs²/m4, respectively. A constant time increment of 10-4 s and a 

tolerance of 10-5 for the displacements were adopted. 

Figure 3. Williams toggle frame 

The displacements at the top of the frame obtained by the proposed second-order analysis are 

closed with the displacements predicted by Chan and Chui [14], Silva [25] and SAP2000 commercial 

program, as plotted in Fig. 4. Comparing the numerical results provided by the second-order analysis 

with the first-order analysis, it can be observed that geometrical nonlinearities have a great influence 

on the structural behavior of this frame. The second-order effects cause a reduction in the structure’s 

stiffness and, consequently, change de amplitude and period of vibration.  

 

Figure 4. Displacement time response of Williams toggle frame 
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The small variation between the obtained results and results of other studies may be attributed to 

the difference in the numerical approach adopted. While Chan and Chui [14] and Silva [25] adopted a 

consistent mass matrix, the present work uses the lumped mass concept. As stated by Leitão [26] the 

natural period of vibration and the global second-order effects are influenced by the stiffness and mass 

matrices of the structure. 

4.2 Cantilever under ramp-infinite duration load 

A cantilever beam under a ramp-infinite duration load is shown in Fig. 5. This structure has been 

investigated by Behdinan et al. [27], Cunha [20] and other researchers. The elements have a cross-

sectional area of 141.29 cm², inertia of 4162.32 cm4, longitudinal modulus of elasticity equal to    

206.85 GPa and linear density equal to 4.8807 x 10-7 kNs²/cm4. For this problem 10 elements were 

used in the discretization of the structure, and the cross section was divided into 20 slices. A constant 

time increment of 0.002 s and a tolerance of 10-4 for the displacements were adopted. 

Figure 5. Beam geometry and loading history 

 

The response obtained is in good agreement with those reported by Behdinan et al. [27] and 

Cunha [20], as depicted in Fig. 6. It can be noticed a regular oscillatory behavior regarding the 

amplitude and oscillation period from the instant 0.2 seconds, which is maintained until the end of the 

analysis.  

 

Figure 6. Time response of the cantilever under ramp-infinite duration load 

 

It is observed that the linear and nonlinear responses have similar behavior; however, small 

differences between them are observed. 

4.3 Portal steel frame with initial geometric imperfection 

The objective of this example is to demonstrate the influence of the initial geometric 

imperfections on the dynamic response of steel frames. Figure 7 illustrates a portal frame with pinned 

supports. An initial geometric imperfection of column ψ of 1/200 is considered. The structure is 

subjected to two static loads of 200 kN and two concentrated masses acting on the top of the columns. 

All members of the structure are made of W8x48 steel profiles. In addition, the structure is subjected 
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to a horizontal impact load equal to 60 kN applied at the top of the left column. For all structural 

members, a longitudinal modulus of elasticity E of 205 GPa is adopted. The cross sections were 

discretized into 50 slices, 20 for each flange and 10 for the web. A time step of 0.001 s and a tolerance 

of 10-4 for the displacements were adopted in this analysis. 

 

Figure 7. Pinned supported portal frame subjected to a horizontal impact load 

 

Figure 8 shows the lateral displacement time-history at the top of the right column with the 

presence and absence of the initial geometric imperfections (GI). Analyzing the displacement time-

history response it can be concluded that the initial geometric imperfections of the columns may 

increase the peak displacement of the structure. The geometric imperfections contribute to the second-

order effects, resulting in a more flexible structure. 

 

Figure 8. Displacement time-history response of the pinned supported portal frame 
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5  Conclusion 

This paper presented a study of the dynamic behavior of plane steel frames, through time-domain 

integration, considering a geometrically nonlinear formulation that combines the corotational 

technique with the updated Lagrangian description. The theory predicted that nodes will suffer large 

displacements and rotations, and the elements of the structure, large stretches and curvatures. The 

Newmark time integration scheme combined with the Newton-Raphson iterative technique was 

chosen to solve the nonlinear incremental dynamic equilibrium equation in temporal domain. The 

lumped mass matrix was adopted and the effects of rotary inertia were neglected. 

It was observed that the second-order effects, which includes both the P-Δ effect due to member 

chord rotation and the P-δ effect due to member curvature, can have a great influence on the structural 

behavior of frames, since they can cause a reduction in the structure stiffness. As a consequence, the 

results given by a second-order analysis may reveal a more flexible structure. Furthermore, it was 

concluded that the initial geometric imperfections may change the dynamic response of steel frames, 

in particular, the amplitude of vibration. Therefore, in order to precisely predict the behavior of steel 

frames, these attributes should be included during the analysis.  

In all analyzes, it was found good agreement with the results provided by previous studies and the 

SAP2000 commercial program, confirming the efficiency of the formulation and numerical solution 

strategy adopted. Thus, it is believed that the present formulation may represent a valuable engineering 

tool for the nonlinear transient analysis of planar steel structures undergoing large displacements and 

rotations. 
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