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Abstract. In this work, lattice Boltzmann (LB) regularization is extended to boundary conditions (BC). 
Dealing with boundary conditions was ever considered a puzzling question in the LB method, especially, 
when a large set of lattice vectors is required for the description of a given physical problem in high 
order models. The most popular BC models are based on Ad-Hoc rules and, although these BC models 
were shown to be suitable for low-order LBE, their extension to high-order LBE was shown to be a very 
difficult problem and, at authors knowledge, never solved with satisfaction. In fact, the main question 
to be solved is how to deal with a problem when the number of unknowns (the particle populations 
coming from the outside part of the numerical domain) is greater than the number of equations we have 
at each boundary site. A new boundary condition model is here proposed. The main idea is that when 
we write both the equilibrium and non-equilibrium parts of the discrete populations in terms of its 
equilibrium and non-equilibrium hydrodynamic moments, these moments replace the discrete 
populations as unknowns, independently of the number of discrete velocities that are needed for solving 
a given problem. This idea is here applied to the 2D lid-driven cavity flow problem and improved 
stability properties are demonstrated. 
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1. Introduction 

The lattice-Boltzmann equation (LBE) can be considered as a projection of the Boltzmann equation 
onto a subspace Hq of the Hilbert space H that maps the velocity space onto the real numbers. The 
dimension q of Hq is dependent on the hydrodynamic problem it is wanted to solve, whether isothermal 
or non-isothermal, or if it involves non-ideality in single or multi-component systems [1] [2], [3]. Since 
subspace Hq is generated by a finite Hermitian basis, truncated at a given order, the solution of a LBE 
involve errors being affected by high-order moments that cannot be controlled with this approximation 
and considered to contribute to instability issues. Regularization is not a new concept in LBM and dates 
to the pioneer works of Ladd [4] in 1994 showing to have improved stability properties by Latt & 
Chopard [5]. An improvement of the regularization method was proposed, in connection with kinetic 
projections, Mattila et al. [6],  and it was demonstrated that solutions of the LB equations, with improved 
stability ranges, may be found in a systematic way, based on increasingly order projections of the 
continuous Boltzmann equation onto subspaces generated by a finite set of Hermite polynomials. We 
considered a particular truncation, filtering the diffusive parts of high-order non-equilibrium moments 
that do not belong to the Hilbert subspace Hq, retaining. only their corresponding advective parts that fit 
into this representation. The decomposition of moments into diffusive and advective parts is based 
directly on general relations between Hermite polynomial tensors. The resulting regularization 
procedure led to recurrence relations where high-order non-equilibrium moments were expressed in 
terms of low-order ones, Mattila et al. [6]. The procedure is appealing in the sense that stability can be 
enhanced without local variation of transport parameters, e.g., the viscosity, or without tuning the 
simulation parameters based on embedded optimization steps.  

In this work, LB regularization is extended to boundary conditions (BC). While the regularization 
scheme leads to improved general stability of LBM [5], [6], it does not directly address boundary 
conditions. Most popular onsite boundary conditions solve for the unknown distributions using methods 
such as (i) bounce-back of the nonequilibrium distribution [7]; (ii) iterative scheme to solve for an 
unknown slip velocity [8]; (iii) extrapolation scheme based on non-equilibrium distribution functions 
[9]. However, the restriction to replacing a subset of the distributions leads to instability at even 
moderate Reynolds numbers [10]. Regularized onsite boundary conditions, which replace the entire 
distribution at the boundary, have been developed, but encounter instability at large Re and require 
complex iterative schemes to address edges and corners [10].  

A new boundary condition model is here proposed. The main idea is that when we write both the 
equilibrium and non-equilibrium parts of the discrete populations if  in terms of its equilibrium and non-
equilibrium hydrodynamic moments, these moments replace the discrete populations as unknowns, 
independently of the number of discrete velocities that are needed for solving a given problem. This 
idea is applied to the 2D lid-driven cavity flow problem and improved stability properties are 
demonstrated.  

2. The LB equation as a kinetic projection 

The distribution ( ), ,f tx ξ , solution of the Boltzmann equation 

 t f f∂ + ⋅∇ = Ωξ  , (1) 

may be considered, for each  ( ),tx  as a map from the continuous velocity space Dξ  onto the space R  
of real numbers (Figure 1). In fact, it belongs to the Hilbert space H  of square integrable functions 

: Df ξ →R   and  may be written in terms of an orthogonal basis of H  that will be, here, considered 
as the infinite set of Hermite polynomial tensors,  
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Figure 1. The Hilbert space solution of the Boltzmann equation. 

Consider now the subspace qH  of H generated by a finite set of q Hermite polynomial tensors 
(Figure 2). The projection of the Boltzmann equation, Eq. (1) onto this subspace will have a solution 
that can be written in its dimensionless form as, 
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Notation is standard. The dimensionless molecular velocity is given by 0 / ξ=ξ ξ , where 

0 /kT mξ = , is related to the average molecular speed, T0 is a reference temperature, m is the mass of 
a single molecule, n0  is a reference number density of molecules and k is the Boltzmann constant.  
Symbols , ,x y zn n n means the number of times the index , ,x y zn n nα = appears repeated in the Hermite 

polynomial tensor, x y zn n n θ+ + =   and ( )
2
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D
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−

 is the weight function for the Hermite 
polynomials. 

 

Figure 2. Subspace 10q=H  of H  generated by a finite set of 10 Hermite polynomial tensors and related to the 
D2V17 LBE [12]. 
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The subspace qH  is directly related to the set of b discrete velocities 0, ,  0,...., 1i i b= −ξ   used to 
represent the velocity space This formal relationship was found by Philippi and co-workers  [12], [13] 
and Shan et al. [14] and is based on the preservation of the inner product 

 ( ) ( )( ) ( ) ( )( )
d c

H H H Hθ η θ η∗ = ∗  , (3) 

between any two Hermite polynomials ( )H θ , ( )H η  that form the basis of qH , where 

 ( ) ( )( )
( )

( ) ( ) ( ) ( )
2
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H H e H H d
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−
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and  

 ( ) ( )( ) ( ) ( ) ( ) ( )i s i s id i
H H W H a H aθ η θ η∗ = ∗∑ e e  . (5) 

In the above equations, iW  are quadrature weights and sa  is the scaling factor that relates the lattice 
vectors ie  to the dimensionless velocities, 0,i s ia=ξ e . Since the Hermite polynomials are orthogonal in 
the continuous velocity space, the above condition means that, when considered as mappings from the 
discrete velocity space onto the real numbers, their inner product must be zero or the square of their 
norm, when identical, 
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The above relationship results in a set of equations for  each ( )
qH θ ∈H  , that can be solved for the 

scaling factor sa and weights iW . 

The collision term  Ω  in Eq. (1), is usually written as a BGK relaxation term [15]. In dimensionless 
form  

 *

eqf f
τ
−

Ω = −  , (7) 

where the Maxwell-Boltzmann equilibrium distribution can be written, in its dimensionless form, as 

 
( )

( )
( )

( )

2
0

2 1
*

2 2

1

2 1

ou

eq
D D

ef

ξ

ρ
π

−
−

Θ+

=
Θ +

 , (8) 

where *
0/n nρ =  and 0 1T TΘ = −  is the local temperature deviation from the reference temperature 

0T .  

In subspace qH  the MB equilibrium distribution is to be written in terms of the finite set of Hermite 

polynomial tensors spanning qH  

 
( )

( )

( )

( )

2
0
2

2 ! ! !2 q

eqeq
D

x y zH

aef H
n n nθ

ξ
θ

θ

π

−

∈

= ∑
H

 . (9) 



 
Luiz A. Hegele Jr., Keijo K. Mattila, Jonas H. Hegele, Ricardo L.M. Bazarin and Paulo C. Philippi 

In its discrete form, Eq. (1) can be written as 

 
eq

i i
t i i i

f ff f
τ
−

∂ + ⋅∇ = −ξ  , (10) 

where ( ), , ,  0,...., 1i if f t i b= = −x ξ , are the populations of particles that, at time t, have a velocity iξ  
in site x , *t t δ= , δ  is the time step, * h∇ =∇  and h  is the orthogonal distance between two 
contiguous sites. 

Using a first order Taylor expansion for if , 

  ( ) ( ) ( )22, , ,i i t if t f t f f Oδ δ δ+ ∆ + − = ∂ + ∆ ⋅∇ + ∆x x x x x  . (11) 

When iδ∆ =x ξ , meaning that the velocities iξ  are chosen in such a way that particles are propagated 
to next neighbor sites (a CFL number equal to 1), the above equation reduces to 

 ( ) ( ) ( ) ( )2, ,i i i t i if t f t f f Oδ δ δ δ+ + − = ∂ + ⋅∇ +x ξ x ξ   (12) 

and by defining ω δ τ= ,  Eq. (10) can be rewritten as 

 ( ) ( ) ( ) ( )2, , eq
i i i i if h t f t f f Oδ ω δ+ + − = − − +x e x   (13) 

or, in the form, 

 ( ) ( ) ( ) ( )2, , 1eq neq
i i i if h t f t f Oδ ω δ+ + = + − +x e x   (14) 

2.1. Moments 

From Eq. (9), the first Hermitian equilibrium moments are 
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where *
0,su a uα α= . 

In the same way, the Hermitian non-equilibrium moments can be found from Eq. (2) 
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The second order non-equilibrium moment 
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is directly related to the dimensionless viscous stress tensor 
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The dimensionless velocity 
2

2
s

c
a

ξ =  with c h δ=  representing the lattice speed, in such a way that 

 ( )2*
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1 1neq
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s s
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τ
τ ξ ξ

ρ
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or, as it is more usual to write 

 ( )
*

2
, 2neq

s

a
c
αβ

αβ

τ
=   (20) 

where 1s sc a=  is the dimensionless speed of sound in isothermal systems. 

3. The D2Q9 LBE 

Let us consider a two dimensional second-order Hermitian representation as shown in Figure 3. 

 

 

Figure 3.  (a) Second-order Hermitian basis of the D2Q9 LBE (b). 

The norm preservation condition, Eq. (6) gives a set of 4 independent equations for the weights and 
scaling factor, whose solution is  

 ( ) ( )0 1 216 36, 1 4 36, 2 1 36, 3.i i sW W W e W e a= = = = = = = =   

The equilibrium distribution is given by Eq. (9). In isothermal condition ( )0Θ = ,  
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 In the same way the non-equilibrium distribution may be written as 

 

( ) ( ) ( ) ( ) ( ) ( )
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because, from Eq. (16), the zero-th and first order Hemitian moments are null. 

Second-order LBE such as the D2Q9 and its counterparts D1Q3 in one-dimensional systems and 
D3Q27 in three-dimensions do not preserve energy. Consequently, the condition 

 ( )2 * *1 1 0
2 2

neq
i i xx yy

i
f e τ τ= + =∑  , (23) 

cannot be verified. From fluid mechanics theory, Eq. (23) is recognized as the Stokes assumption of 
zero bulk viscosity, a condition that must be satisfied by kinetic models in the framework of the 
Boltzmann equation, based on material points,  because the first and second viscosity coefficients are 
identical for such systems. Indeed, a careful Chapman-Enskog analysis of the D2Q9 LBE leads to 

 * * *2
3xx yyτ τ ρ
ω

+ = − ∇ ⋅u .  

and the Stokes condition can be only satisfied  for incompressible flows, when 0∇ ⋅ =u  . 

In addition, second-order non-equilibrium moments such as *
αβτ  are dependent on the spatial 

derivatives of third-order equilibrium moments [6]. Therefore, the full set of third-order Hermite 
polynomials, ( ) ( ) ( ) ( )3 3 3 3, , , ,xxx xxy xyy yyyH H H H  is required in the Hermitian basis of a LBE as a necessary condition 
for retrieving the hydrodynamic Navier-Stokes (NS) equations in isothermal conditions ( 0Θ =  ). These 
Hermite polynomials are not present in the Hermitian representation given in Figure 3 and, in 
consequence, the NS equations will be only retrieved with third-order errors ( )3O u . Since the Mach 

number *
sMa u c= , the usual strategy is to keep the Mach number as small as possible limiting the 

simulations to the quasi-incompressible limit. The inconvenient of this strategy is the increase in the 
computational costs, because the Reynolds number  

 
*

2
Re

1 1
2s

u N

c
ω

=
 − 
 

 , (24) 

can be only increased by increasing the resolution N of the simulation domain, when the relaxation 
frequency ω   cannot be further increased approaching  its upper limit, 2ω = , for preventing 
instability issues. 
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4. Collision and propagation steps  

After propagation the populations if  are known in every fluid site of the numerical domain. The 
dimensionless density and local velocity are calculated in accordance with 

 

*

* *

i
i

i i
i

f

u f eα α

ρ

ρ

=

=

∑

∑
 , (25) 

and the equilibrium populations ( )* * *, ,eq
i x yf u uρ  in accordance with Eqs. (21). 

For each direction i, the non-equilibrium populations are given by 

 neq eq
i i if f f= −  . (26) 

The main idea of the regularization method for collision-propagation schemes is that the non-
equilibrium populations calculated with Eq. (26) cannot be supposed to be free of errors due to higher-
order ghost moments that cannot be controlled, considering the order of approximation of  the kinetic 
projection to the Boltzmann equation. 

It is now time to calculate the components of the viscous stress tensor 

 * neq
i i i

i
f e e

αβ α βτ =∑  , (27) 

and to filter the noise produced by numerical errors due to non-controlled higher-order moments. This 
is performed by recalculating the non-equilibrium populations in accordance with Eq. (22) 

 ( )2 * 21ˆ
2

neq
i i s s i if W a a e eαβ α β αβτ δ = −  

 . (28) 

This procedure is to be seen as a regularization step since, at each time step, it is not in our interest 
to take the information for neq

if given by Eq. (26) into account, because it cannot be supposed to be free 
of errors that will affect the accuracy and stability of the algorithm.  

The numerical values of the equilibrium eq
if  and regularized non-equilibrium populations  ˆ neq

if are 
required in each site x  for performing the collision step, when all populations are recalculated in 
accordance with  

 ( ) ( ) ˆ, 1out eq neq
i i if t f fω= + −x  . (29) 

Populations out
if  are then propagated to neighbor sites in accordance with 

 ( ) ( ), ,out
i i if h t f tδ+ + =x e x   (30) 

  

5. Boundary conditions for second order LBE 

Consider the wet node located in ( ),b bx y  adjacent to the solid surface in Figure 4 and suppose that 

the populations that are shown in black in the figure are the populations that were propagated to ( ),b bx y  
from neighbor fluid sites. Populations 4 7 8, , ,f f f   shown in red are unknown.  
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Since the node ( ),b bx y  is a fluid site, we can write the post-collisional populations in accordance 
with Eq. (14) 

 ( ) ( ) ( ) ( )* * * * * *ˆ ˆ, , , 1 , ,out eq neq
i i x y i xx xy yyf t f u u fρ ω τ τ τ= + −x  . (31) 

Independently of the number of lattice vectors in the representation, when the velocity of the 
boundary node is known, the only unknowns are the density *ρ and the 3 components of the viscous 
stress tensor  * * *, ,xx xy yyτ τ τ  in this kind of problem.   

 

 

 

Figure 4. A wet node adjacent to a solid surface. 

5.1 Mass conservation 

Since mass must be conserved and node ( ),b bx y  is adjacent to a solid surface, the sum of the 
populations of particles outgoing from the boundary node to the fluid sites after the collision step, must 
be identical to the sum of the populations incoming from fluid sites before the collision step, or 

 out
i i

i I i O
f f

∈ ∈

=∑ ∑   (32) 

where { }0,1,2,3,5,6I = and { }0,1,3,4,7,8O =  are, respectively, the sets of outgoing and incoming 
directions from and to the fluid sites.  

Populations out
if  are now replaced by their kinetic projections ˆ out

if  for i I∉ , corresponding to 
populations 4 7 8, ,f f f  in Figure 4. Recall that the l.h.s. of Eq. (32) is a known positive real number and 
that, after this replacement, the r.h.s of this equation has a linear dependence on *ρ , * * *, ,xx xy yyτ τ τ . 

For the node depicted in Figure 4, this condition results in the following equation, 

 ( )2* * * *1 2 1 1 1 1
6 3 2 2 2 yyy yu u Aω ω ρ ω τ  + − − − − − =  

  
 , (33) 
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where *1ω τ=  is a collision frequency and ( )0 1 3 2 5 6A f f f f f fω= + + + + +  is a real number that 

depends on ( ),b tx . 

5.2 Solution based on the regularization of second-order moments 

For a Dirichlet boundary condition such as the one we have when the boundary node velocity is 
prescribed, a suitable approach to the boundary condition problem is to write the second-order non-
equilibrium moments *

xxτ , *
yyτ  and  *

xyτ  in terms of regularized populations, in such a way as to assure 
the mass conservation and non-slip conditions.  

Mass conservation is assured by Eq. (32). Adherence condition can be assured by prescribing the 
velocity of the boundary node. The idea is, here, to produce a solution based on the regularization of 
components *

xxτ , *
yyτ  and  *

xyτ  of the viscous stress tensor. This appears to be a natural choice for a 
Dirichlet BC, since adherence is still required for all boundary sites. 

So we write *
xxτ , *

yyτ  and  *
xyτ  in accordance with  
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∑ ∑ ∑
  (34) 

and get the following equations 
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  (35) 

where 2 5 6B f f f= + +  ,  1 3 5 6C f f f f= + + +   and 5 6D f f= −  . 

The solution of Eqs. (33) and (35) results into the following relations 
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  (36) 

The unknown populations ,  if i I∉  can be now written in terms of the incoming populations ,  if i I∈  
by using 

 ˆeq neq
i i if f f= +  , (37)  
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for  i I∉ , in this case, populations 4 7 8, ,f f f . The following equations are obtained 

 

( )
( )
( )

2

2

2

* * * * *
4 1 2 3 5 6

* * * * * * *
7 1 2 3 5 6
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8 1 2 3 5 6

1 3 9 3 6 6 9 ,
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1 3 6 3 24 6 5 6 ,
30
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30
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x y y
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f f f f f f u u

f f f f f f u u u

f f f f f f u u u

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

= − + − + + − +

= − − − − − + + + +

= − − − − + − − + +

  (38)

   

Consistency 
Consider the sample case where the boundary node is at rest ( ) ( )( )* *, , 0x b y bu t u t= =x x . In collision-

propagation framework every boundary condition problem involves the determination of a set of 
unknown pre-collisional populations if  .  After the collision step, these populations propagate the 
information on the physical state of the boundary to next neighbor sites, inside the fluid phase. Under 
the continuum hypothesis, the Knudsen number is close to zero, 0Kn → , meaning that collisions are 
dominant. In these local collision processes, outgoing particles from the boundary transfer the 
information that says that the local velocity is zero at the boundary to the particles that are incoming 
from fluid phase.  

When we add the populations 4 7 8, ,f f f  given by Eq. (38), we get 

 * *
4 7 8 2 5 6yf f f u f f fρ+ + = − − −   . (39) 

This equation can be rewritten as 

 * *
2 5 6 4 7 8 yf f f f f f uρ+ + − − − =  , (40) 

which is consistent with the statistical definition of the normal component of the momentum 

 * *
i iy y

i
f e uρ=∑  . 

By adding the populations ( ),i bf tx , replacing 4 7 8, ,f f f  by their expressions in terms of the known 
incoming populations given by Eq. (38), the following equation is obtained 

 * *
0 1 2 3 5 62 2 2i y

i
f f f f f f f uρ= + + + + + −∑  , (41) 

which can be rewritten as 

 
0 1 2 3 5 6 4 7 8

* *
2 5 6 4 7 8

i
i

y

f f f f f f f f f f

f f f f f f uρ

= + + + + + + + +

+ + + − − − −

∑
 , (42) 

and, since from Eq. (40) we know that the second part on the r.h.s. of Eq. (42) is null,  this result is 
consistent with the statistical definition of density at the boundary node bx . 

  

 *
i

i
f ρ=∑  . (43) 
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Consider now that population  7f  is subtracted from population 8f  in Eq. (38). The following result 
is obtained 

 * *
8 7 6 5

1
3 xf f f f uρ− = − +  , (44) 

which can be rewritten as 

 * *
8 7 6 5

1
3 xf f f f uρ− − + = .   (45) 

To be consistent with the statistical definition of the x-component of the momentum, the difference 

1 3f f−  should be equal to * *2
3 xuρ ,  which is exactly the result we get when regularized forms of  1f  and 

3f  are used. 

Therefore, Eq. (37) 

 ˆeq neq
i i if f f= +   

is used for all populations ,  0,...,8if i =  expressing both the unknown and known populations in terms 

of  the density *ρ  and the second order moments * * *, ,xx xy yyτ τ τ ,  given by Eq. (36). This means that the 
incoming populations are also replaced by their regularized forms on the boundary sites. So, errors 
produced by high order moments are also avoided on the boundary nodes, with appreciable results on 
the stability of the algorithm. 

Eq. (43)  and the adherence conditions 

 * * * *,    i ix x i iy y
i i

f e u f e uρ ρ= =∑ ∑   

lead to a system of 3 equations for 4 unknowns 4 7 8, ,f f f  and *ρ . This is the main difficulty of some 
former methods for solving the BC equations and, in previous work, this system was solved by using 
ad-hoc assumptions. This is the case of Zou and He [7] and Inamuro [8] models and the assumption of 
bounce-back reflection. In contrast, the use of regularized forms for the populations ,  if i I∉  leads to 
the solution of the boundary condition problem without any heuristic assumptions.  This is especially 
important when we deal with high-order sets of lattice-vectors [12]. 

5.3. Corner sites 

The procedure based on the replacement of the unknown populations by their kinetic projections 
written in terms of *ρ and second order non equilibrium moments  may be extended  to corner and edge 
sites in 2D and 3D problems. 

Consider, for instance, the 2D corner site of  Figure 5. Populations 1 4 8 5 7, , , ,f f f f f  are unknown and 
should be replaced by their kinetic projections. In this case, the set related to the incoming populations 
is { }0̀,2,3,6I =  and set { }0,1,4,8O = designate the outgoing directions from the boundary node to the 

fluid phase. Therefore, populations 5 7,f f  do not have any role in the calculation of the unknown values 
of the pre-collisional populations 1 4 8, ,f f f  from the known values of  populations 0 2 3 6, , ,f f f f . 
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Figure 5. A corner site. Populations 1 4 8 5 7, , , ,f f f f f  are unknown and replaced by their kinetic projections. 

For finding the unknown populations, the procedure is exactly the same as in Section 5.2. We require 
the conservation of mass, Eq. (32) and the regularization condition, Eq. (34) for the second order 
moments , ,xx yy xyτ τ τ . When the corner site is at rest, we find 

 

( )

( )

( )

( )

*
0 2 3 6 2 3 6

*
0 2 3 6 2 6

*
0 2 3 6

*
0 2 3 6 3 6

36 19 15 15 27 4 4 8
451 24

2 156 43 494 348 24 96
451 24

6 6 19 19 56
451 24

2 156 494 43 348 24 96
451 24

xx

xy

yy

f f f f f f f

f f f f f f

f f f f

f f f f f f

ρ ω
ω

τ ω
ω
ωτ
ω
ωτ ω
ω

 = + + + + + − +

 = − + + + − + +

= − − +
+

 = − + + + − + +

 . (46) 

Using Eq. (37), identical expressions are found for populations 5 7,f f , 

 ( ) ( ) ( )5 7 0 2 3 6
1 4 6 23 6 23 6 15

233 42
f f f f f fω ω ω ω

ω
 = = + + + + − + +

,  (47) 

5.5. Wet node at the entrance/exit of the fluid domain 

Consider now that the solid surface is replaced by a fluid domain representing a fluid that is flowing 
into/out the numerical domain of interest from the outside/inside (Figure 6). In these cases, populations 

4 7 8, ,f f f  came from outside and are unknown.  In contrast with the previous case, there is no mass 
conservation on node bx , because we have fluid from outside being added/withdrawn to/from the fluid 
domain, assuring a fluid velocity ( ),b tu x  along the entrance/exit of the numerical domain. In many 
cases, it is desirable to simulate a uniform and constant velocity field of velocity .,  0y xu const u= = , as 
it happens when the boundary surface (or line in 2D problems) is the entrance of a wind tunnel.   

In these cases, populations  if   must satisfy Eq.(43) . Remark that the velocity components *
xu  and 

*
yu  are considered to be known and density *ρ  has, here, the role of the pressure at the entrance/exit 

node 

 * 2 *
sP c ρ=  , 



BOUNDARY CONDITIONS FOR HIGH-ORDER LB MODELS 

 

 

Figure 6. Wet node in the entrance/exit  of the fluid domain. 

and populations if  are expected to satisfy 

 *
i

i
f ρ=∑  , (48) 

 which can be written as 

 *ˆ
i i

i I i I
f f ρ

∈ ∉

+ =∑ ∑  . (49) 

Replacing ,  if i I∉  by their kinetic projections, the following relationship is obtained 

 ( )* * * *
1

5 1 11
6 2 2y y yyu u Aρ τ + − − = 

 
 , (50) 

where 1 0 1 2 3 5 6.A f f f f f f= + + + + +   

Solution of Eqs. (34)  and (50) gives 

 

( )

( )
( ) ( )

( )

2 2

*
0 1 2 3 5 6*

* * * * *
0 1 2 3 5 6

* * * *
0 1 2 3 5 6

* * * *
5 6

1 2 2 2 ,
1

1 2 4 2 4 4 4 5 2 ,
5

51 2 ,
3

1 2 .
3

y

xx x y

yy y y

xy x y

f f f f f f
u

f f f f f f u u

u u f f f f f f

u u f f

ρ

τ ρ ρ

τ ρ

τ ρ

= + + + + +
+

= − − + − − − + +

 = − + − + + + + +  
 = − + + −  

 . (51) 

6. Results for the two-dimensional lid-driven cavity flow problem 

The incompressible flow in a square cavity whose top wall moves with a uniform velocity has been 
used as a model problem for testing and evaluating numerical techniques, in spite of the singularities we 
have at the two top corners. In this kind of flow problem, a main primary vortex is formed near the 
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center of the cavity and secondary or even tertiary vortices appear in the corners and are intensified 
when the Reynolds number (Re) increases (Figure 7). 

In LBM framework, numerical solutions were based on the BGK model [16], multi-relaxation times 
[17], [18], entropic approach [19] and regularization [20], [21]. 

The purpose of this section is to show some numerical simulations that were performed to test the 
new proposed set of boundary conditions presented in Section 5 with respect to convergence, adherence, 
accuracy and stability. 

Simulations were performed for Re= 100, 400, 1000, 3200 and 5000. 

Accuracy was tested comparing our results with the classical results of Ghia et al. [22], who solved 
this problem using a multigrid method, based on the vorticity-stream ω ψ−  formulation.  

The Mach number (Ma) was taken as 0 / sMa u c= , where 0u  is the dimensionless lid velocity and 

1 / 3sc =  is the speed of sound in the D2Q9 LBE. This result in the following relationship for the 
dimensionless relaxation time 1ω−   

 1 1
Re 2s

LMa
c

ω− = +   (52) 

where L  is the number of grid points along a coordinate x  or y .  

As pointed out in Sections 3-4, the numerical simulation with the D2Q9 LBE is restricted to 
incompressible flows, with errors ( )3O Ma . Therefore, we restrict the Mach number to  0.1Ma =  and 

Eq. (52) can be used to find the relaxation time 1ω−  in terms of the Reynolds number and the number 
of grid points. 

Convergence was tested by doubling, successively, the number of grid points: 32, 64, 128, 256 and 
512. It was achieved with a small number of grid points of 128 for Re=100 and 400, but, as it was 
expected, higher Reynolds number required to increase this number.  

Figure 8 and 9 show the numerical results for Re=400, 1000 and 5000 showing the relative velocity 
ux/u0 along the mid-line x=L/2 and the relative velocity uy/u0 along the mid-line y=L/2 of the cavity. 
Results were based on simulations  performed using a 5122 numerical domain. Adherence conditions 
for both y=0 and y=L are verified.  

Results can be considered as accurate with respect to Ghia et al. [22] results. 
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Figure 7. The two-dimensional cavity flow problem. The lid in y=L is moving with a constant velocity u0 and 
produces a main vortex and two secondary vortex on the right and left bottom corners. 

 

Figure 8. Numerical results for Re=400, 1000 and 5000 showing the relative velocity ux/u0 along the mid-line 
x=L/2. Simulations were performed using a 5122 numerical domain. Adherence conditions for both y=0 and y=L 
are verified. Results are compared with Ghia et al. [22]. 

0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y/
L

ux/u0

Re=400

Re=1000

Re=5000

Re=400 (Ghia)

Re=1000 (Ghia)

Re=5000 (ghia)



 
Luiz A. Hegele Jr., Keijo K. Mattila, Jonas H. Hegele, Ricardo L.M. Bazarin and Paulo C. Philippi 

 

Figure 9. Numerical results for Re=400, 1000 and 5000 showing the relative velocity uy/u0 along the mid-line 
y=L/2 of the cavity. Simulations were performed using a 5122 numerical domain. Adherence conditions for both 
x=0 and x=L are verified. Results are compared with Ghia et al. [22] 

6.1. Stability 

For the lid driven cavity, the Reynolds number can be written in terms of dimensionless parameters 
as 

 
* *
0

*Re u L
ν

=  , 

where *
0 ou u c=  is the dimensionless lid velocity, c  is the lattice speed, c h δ= , *L L h=  is the 

number N of lattice nodes along one of the two orthogonal direction and *ν  is the dimensionless 
kinematic viscosity 

 * 2 1 1
2scν

ω
 = − 
 

  

Therefore, for a given *L the Reynolds number can be increased both by increasing the dimensionless 
lid velocity or by increasing the collision frequency till its upper limit 2.  For each *L and *

0u , Figure 10 
was built by reducing the relaxation time in such a way as to increase the Reynolds number till the 
stability limit of the lid driven cavity LB simulations. As it is to be expected high values of *

0u , such as
*
0 0.125u = , reduces the stability limit. Nevertheless, for reasons that are still to be explained, very small 

values of *
0u , such as *

0 0.015625u = has also the effect of lowering this stability limit. Values of *
0u  

depicted in Figure 10 were found as *
0

1u
c

=  where c=23, 24, 25, 26. In present simulations, the value of 

*
0u  leading to the larger stability limits was found in the intermediate range 0.03125-0.0625.  
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Figure 11 shows the results that were obtained for the stability of the proposed kinetic algorithm 
when compared with other works. We compare the stability range of the LB algorithm, when using the 
boundary conditions that were proposed in this paper, with the stability range of BGK based algorithms 
and with the work of Montessori et al. [20], who used the same regularized equations shown in Section 
3, but wrote the boundary conditions in accordance with Guo et al.  [9] model. 

This comparison is performed for two lid dimensionless velocities *
0 0.125u =  and *

0 0.03125u = . It 
is clearly seen the beneficial effect the use of regularized boundary conditions has on the stability of the 
simulation algorithm, Indeed, even in the worst case, corresponding to *

0 0.125u = , the stability range is 
multiplied by 2 in the lower resolution case ( * 40L = )  and reaches four times the stability range of 
Montessori and co-workers in the larger resolution case ( * 100L = ). 

In addition, for the larger resolution ( * 100L = ) a large improvement of the stability range was 
achieved, up to Re=85000, when the dimensionless lid velocity is reduced to *

0 0.03125u = . 

7. Conclusion 

In LBM framework we deal with populations of particles and not with macroscopic quantities as in 
the Navier-Stokes level. Going back to Section 5, it is important to take into account that the pre-
collisional populations outgoing from a boundary node into the fluid phase, were calculated following 
an algorithm that is based on the mass conservation of particles and on the regularization of the 
components of the viscous stress tensor.  

By regularization, we mean that these components are calculated by replacing the unknown outgoing 
populations by their kinetic projections on the subspace generated by a second-order set of Hermite  

polynomials. This procedure results in a closed set of 4 equations for the unknows * * * *, , ,xx yy xyρ τ τ τ  and 
the solution of this set of equation enables to find the unknown pre-collisional populations in terms of 
the incoming populations (e.g., Eqs. (38) and (46) ), without any heuristic assumptions and to regularize 
the incoming populations relieving these populations from errors due to high-order uncontrolled 
moments. 

This idea can be easily extended to high order LBE and will be the subject of a next paper. 
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Figure 10. Stability limits for different values of the dimensionless velocity *
0u  and *L . 

 

Figure 11. Stability ranges of the LB algorithm with regularized boundary conditions when compared to previous 
work. BGK and Montessori results were extracted from Montessori et al. [20]. 
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