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Abstract. In this study we present Lattice-Boltzmann simulations of a 2D backward facing step flow in

the low to moderate Reynolds number range. A single relaxation time model for the collision operator

(BGK) is compared to a two-relaxation-time model (TRT) and 3-D experiments of [Tihon, J., Penkakova,

V. and Pantzali, M., 2010. The effect of inlet pulsations on the backward- facing step flow. European

Journal of Mechanics B-Fluid, Vol. 29, pp. 224-235]. Special attention is devoted to detachment and

reattachment locations along the line of center of the computational domain, and to numerical stability

comparison between BGK and TRT as a function of grid resolution for similar accuracy. A traditional

finite volume method is also implemented for comparison. Results show that the BGK implementation

achieves similar accuracy at lower grid resolution, maintaining numerical stability of the method at re-

duced computational cost. BGK and TRT implementations agree with experiments and the finite volume

method at Reynolds number of 590.
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1 Introduction

The backward-facing step flow (BFS) is a canonical problem in fluid mechanics. A scheme of the

flow is shown in Fig. 2. It consists of a rectangular channel of width W where the flow enters through

the channel inlet (I), followed by a constant area section of length lu and height H after which a step

of height h is introduced, giving rise to an abrupt expansion. The flow then proceeds to the outlet (II)

through a constant area section of length ld, height H + h and width W . Depending on the Reynolds

number Reh = Uh/ν, where U is the inlet mean velocity and ν is the kinematic viscosity of the fluid,

the flow will exhibit very different behavior. Unless the Reh ∼ O(1), there will be flow separation

at the step. Other important parameters in this problem are the expansion ratio ER = 1 + h/H and

the aspect ratio AR = W/h. In spite of the simple geometry, a complex array of phenomena can be

investigated, including flow instability, laminar to turbulence transition, boundary layer separation, shear

layer reattachment, recirculation, etc. [1, 2].

Often BFS is a demanding test bench for turbulence models [3–5]. There is extensive experimen-

tal [6–9] and numerical work on this subject, including full three-dimensional numerical solutions of the

Navier-Stokes equations covering a wide range of Reynolds numbers, from laminar to turbulent [10–13].

Over the last couple of decades, simulation methods based on gas-kinetic theory have developed

significantly, in particular the so called Lattice-Boltzmann Method (LBM) [14] has proven itself in ap-

plications such as turbulence, multiphase flow and microfluidics [15]. In previous work [16] we validated

a LBM code with a simulation of a 2-D BFS with ER = 2 at two Reynolds numbers, Reh = 124 and

Reh = 590, and compared the results to experiments and simulations reported in Tihon et al. [17]. In this

paper we are interested in investigating the numerical stability of two widely used collision operators, the

Bhatnagar-Gross-Krook (BGK) [18] and the two-relaxation-time (TRT) [19] operators. In §2 we present

an overview of LBM and describe simulation specifics. This is followed by results and discussion in §3.

Finally, we provide conclusions and a general outlook for future work in §4.

2 Numerical methods

2.1 The Lattice-Boltzmann Method

The Lattice-Boltzmann method (LBM) is a numerical method for the simulation of fluids, based on

the Kinectic Theory of Gases. The LBM is built on the mesoscopic scale, in which the system description

is done using a single particle distribution function, fi(x, t), representing the number of particles with

velocity ci at the site x and time t. The physical and velocity space are discretized, therefore the particles

are restricted to a discrete lattice, in such a manner that each group of particles are allowed to move only

in a finite number of directions and with a limited number of velocities. This is illustrated schematically

in Fig. 1.

The local macroscopic properties such as total mass (the particle mass, m, is assumed unitary),

ρ(x, t), and total momentum, ρu(x, t), can be obtained from the distribution function according to,

ρ(x, t) =
∑

i

fi(x, t) , (1)

ρu(x, t) =
∑

i

fi(x, t)ci . (2)

The Lattice Boltzmann equation, i.e., the discrete version of the Boltzmann equation is written as,

fi(x+ δtci, t+ δt)− fi(x, t) = Ωi(ρ,u) , (3)

where δt is the time step and Ωi(ρ,u) is the collision operator.

The time evolution given by Eq. (3), can be split in two processes. In the first, designated as

collision, the distribution function fi(x, t) is changed by the action of the collision operator. In the
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Figure 1. The D2Q9 lattice, used in two-dimensional simulations. The arrows represent the distributions

fi(x, t), and circles represent the lattice sites.

second process, called propagation, the values fi are propagated to the neighboring sites, in accordance

with the direction of the vector ci.

Owing to its simplicity, the most widely used collision operator is the BGK operator, written as,

Ωi = −
1

τ/δt
[fi(x, t)− feq

i (ρ,u)] , (4)

where τ is a relaxation parameter related to the kinematic viscosity ν and feq
i (ρ,u) is a polynomial

approximation of the Maxwell-Boltzmann equilibrium distribution function of the local variables ρ(x, t)
and u(x, t) [20–23]. Another frequently used collision operator for simulation in porous media is TRT

collision operator [19]. In this collision operator the distribution function is separated into its symmetric

(+) and anti-symmetric (-) components:

f±

i =
1

2
(fi ± f−i), i = 1, ..., b; (5)

where the label −i indicates the opposite direction of ci, that is c−i = −ci. For the rest populations

f+

0
= f0, f−

0
= 0. The TRT collision operator is then written,

Ωi = −
1

τ/δt

[

f+

i (x, t)− feq+
i (ρ,u)

]

−
1

τ−

[

f−

i (x, t)− feq−
i (ρ,u)

]

, (6)

where τ−, the anti-symmetric relaxation time, is a function of τ ,

τ− =
8− δt/τ

8(2− δt/τ)
. (7)

The symmetric and anti-symmetric equilibrium distributions are obtained by applying Eq. (5) to the

equilibrium distributions.

A Chapman-Enskog analysis [24] shows that this system macroscopically will evolve according to

the Navier-Stokes equations,

∂ρ

∂t
+

∂ (ρuj)

∂xj
= 0 , (8)

∂ (ρuk)

∂t
+

∂ (ρukuj)

∂xj
= −

∂p

∂xk
+ ν

∂

∂xj

(

ρ
∂uj
∂xk

+ ρ
∂uk
∂xj

)

, (9)

where the pressure p and the kinematic viscosity ν are given by,

p = c2sρ , (10)

ν = c2s(τ − 1/2) . (11)
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and cs is the sound velocity, a constant depending on the set of velocities ci. In the simulations presented

in this paper a set with nine velocities is employed, shown in Figure 1.

2.2 Simulation Domain

The simulation domain shown in Figure 2 was discretized at the finest resolution using 150 sites

uniformly distributed in the wall normal direction over the span H , NH = 150. This spatial resolution

was maintained over the entire simulation domain. In our previous work, we established that a conser-

vative length ld = 100h was sufficient to ensure that domain size effects over the flow of the backward

facing step are negligible. In all of our simulations, ld = 10h. Barkley et al. [25] have also shown this to

be the case.

Figure 2. The D2Q9 lattice, used in two-dimensional simulations. The arrows represent the distributions

fi(x, t), and circles represent the lattice sites.

2.3 Boundary and Initial Conditions

At the walls the bounce-back boundary conditions for particle distributions were imposed, i.e., all

particles that would collide with the walls in the propagation step reverse their direction in this step. This

ensures the no-slip boundary condition at the walls and was chosen owing to its simplicity. At the inlet

(I) a parabolic laminar velocity profile was imposed using the Zou & He boundary condition, [26]. At the

outlet (II) of the domain a null-derivative boundary condition in the direction of the flow was applied.

This is obtained by imposing that sites at the outlet assume the velocity of the adjacent sites. All sites

are initialized with zero velocity by imposing the equilibrium distribution. The flow develops as a result

of the boundary condition imposed at the inlet. Only after the elapsed simulation time is t ∼ O(100) of

the time scale H/U , statistics begin to be computed.

The incompressible solver icoFoam available in OpenFOAM was used to corroborate LBM simu-

lations. The same parabolic inlet velocity was prescribed along with a pressure gradient boundary con-

dition to ensure that the flux at the inlet boundary is that specified by the velocity boundary condition.

The outflow boundary condition for pressure was set to 0 and the velocity outflow boundary condition

was set to a null streamwise derivative. The same spatial resolution as the LBM solvers was adopted.

The time step was set to ensure a Courant number of less than 0.35 during almost the entire simulation,

excluding a brief initial period. At no moment did the Courant number exceed unity.

3 Results and Discussion

In this section we present the results obtained in simulations using LBM with BGK and TRT oper-

ators. The results are compared with each other and with results obtained from OpenFOAM as well as

experimental and numerical results previously reported in Tihon et al. [17]. The variable of choice for
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Figure 3. BGK comparison of the non-dimensional mean shear rate S∗ at the (a) top and (b) bottom

channel wall with previous results of Tihon et al. [17] (EXP, FLUENT) and OpenFoam (FOAM).
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Figure 4. Comparison of the non-dimensional mean shear rate S∗ at the (a) top and (b) bottom channel

wall among TRT and BGK collision operator implementations of the LBM.

comparison is the non-dimensional mean shear rate at the top and bottom wall S∗, given by,

S∗ ≡
h

U

∂u

∂y

∣

∣

∣

∣

wall

≈
1

2

h

U

unear

δn
, (12)

where δn is the grid spacing in the wall-normal direction and unear is the velocity component in the

streamwise direction at the grid node closest to the wall.

The shear rate is calculated after the system reaches steady state. This is quantified in terms of an

integral timescale defined as τh = h/U . After this steady state is reached O(102τh) the average shear

rate calculated over a period of O(10τh).

As can be seen in Figures 3 and 4, the results obtained with both operators are in very close agree-

ment with respect to each other and with results obtained using OpenFoam as well as published numerical
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results by Tihon et al. [17]. The numerical results shown here are in reasonable agreement with experi-

mental results of of Tihon et al. [17] up to x/h = 15. As shown in the work of Barkley et al. [25], the first

absolute linear instability of the steady two-dimensional flow is a steady three-dimensional bifurcation

at a critical Reynolds number of Reh = 748. Furthermore, the system is shown to be absolutely stable

to two-dimensional perturbations up to a Reynolds number of Reh = 1500. Hence, the discrepancies

shown are not likely to be related to 3-D effects since both 2D-simulations and experiments are not ex-

pected to show three-dimensional features at the Reynolds number of Reh = 590. Our simulations from

a quiescent initial condition reveal features very similar to the experimental results shown in Figures 3.

With respect to the comparison of collision operators, BGK proved to be considerably more stable

than TRT. Furthermore, the smallest spatial resolution at which TRT was stable was with NH = 150,

whereas with the BGK operator it was possible to obtain similar results with NH = 50. The reasons for

the instability of the TRT operator are still unclear at the time of writing of this paper and shall be the

subject of future investigation.

4 Conclusions

In this paper we present results for the 2-D simulation of a flow over a backward-facing step at

Reh = 590. We investigate the numerical stability of the TRT and BGK operators with respect to spatial

resolution. It is found that the BGK operator is significantly more stable than the TRT operator for

this flow. LBM simulation results compare favorably with a simulation using OpenFOAM and previous

results reported in the literature. Future work will address the issue of numerical stability of the LBM

implementation with the TRT collision operator.
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