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Abstract. In this paper several discretization schemes that result in a improved multicomponent pseudo-
potential model of the Lattice-Boltzmann method are investigated. The discretization scheme here pro-
posed, when compared to the model original of Shan and Chen [1], considers the explicitness of the
force term, the second order discretization of the stream term, the regularization model and also higher
orders of discretization of derivative terms. To verify the accuracy of the proposed model, the effect of
the viscosity ratio and the spurious currents obtained for the static bubble problem is investigated. The
resulting algorithm maintains the simplicity of the pseudo-potential model while allowing an easy im-
plementation for multicomponent problems. The results show that the current model, besides showing
a higher viscosity ratio range than the literature results, show a significant improvement in the spurious
currents range.
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1 Introduction

Over the past decades the Lattice Boltzmann method (LBM) has become a promising alternative
tool to simulate the fluid dynamics of multi-component flows. Originated from evolution of the Lattice-
Gas Automaton method, the LBM consists of a discrete form of the Boltzmann equation that has gained
popularity by allowing simple implementation even for complex geometries, as in the case of porous
media and airfoils. In addition, the method can be designed to provide high computational efficiency by
parallelizing numeric codes.

Regarding the modeling of fluid-fluid and fluid-solid interfaces, the LB models found in the liter-
ature are classified as force method (color gradient and pseudo-potential) and pressure method (free-
energy and interface tracking) [2]. As expected, despite their use bring advantages and disadvantages, all
of of these approaches seek stability for high viscosity and density ratios, low spurious currents, as well
as a low computational cost [3].

The present work focuses on the study of the pseudo-potential model, developed by Shan and Chen
[1].This model incorporates the interaction of different phases and components by repulsive and/or at-
tractive forces. However, regardless its advantages, the model also presents some limitations such as
high spurious currents and instability for both low density and viscosity ratios.

In the study of multicomponent problems, particularly of immiscible fluids, Porter et al. [4] demon-
strates that with the explicitness of the force term, second-order discretization of stream term, high order
discretization of derivative terms in the force calculation and the collision model of multi-relaxation time
- MRT, one verifies the occurrence of stability in high viscosity ratios and max value of spurious currents
in the order of, 103 and 10−3 l.u/t.s (lattice units/ time steps), respectively. In the most recent work,
Otomo et al. [5] applies the regularization method proposed by Latt and Chopard [6], using a first order
discretization of the stream term with explicitness of the force term, obtaining stability in high viscosity
ratios and max value of spurious currents, both in the same orders of magnitude found by Porter et al.
[4].

Remarkably, the works mentioned above contribute with specific aspects of the pseudo-potential
model for multicomponent problems of immiscible fluids, but none of them are dedicated to combine
such improvements. Therefore, the pseudo-potential model for multicomponents presented here com-
bines the regularization model with the second order discretizations of the stream term, the explicitness
of the force term and also higher orders of discretization of derivative terms. For that, the static bubble
problem is investigated and the stability for the parameters of viscosity ratio and low spurious currents
are analyzed.

2 Lattice-Boltzmann Method

The Lattice-Boltzmann method consists of a discretized form of the Boltzmann equation:

df

dt
= ∂tf + ~ξ · ∇~xf + ~g · ∇~ξf = Ω, (1)

in space velocity and stream term (space-time), representing the evolution of the distribution function f
which describes the probability of a particles set are in a certain position at a certain speed at a specific
time. The Boltzmann discretized equation represented in the present work, called the Lattice-Boltzmann
equation, using the model proposed by Bhatnagar et al. [7] for simplification of the collision operator, is
written for the first order discretization of stream term in the form

fi(~x+ ~eiδt, t+ δt) = fi(~x, t)−
1

τ
(fi(~x, t)− feqi (~x, t)) + δtFi. (2)

where feq is the equilibrium distribution function, F is the force term, i represents the index of space
velocity discretization, ~e is the vector direction of velocity space discretization, δt is the discrete time
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increment and τ represents the non-dimensional relaxation time given by

τ =
ν

c2s
+

1

2
, (3)

where ν and cs are the kinematic viscosity and sound speed, respectively.
The equilibrium distribution function is given by the Maxwell-Boltzmann distribution function,

which represents the probability of the particle set, like f , at a steady state. Using a second order
discretization of velocity space, the equilibrium distribution function is written in its discretized form
truncated in the second order term [2]:

feqi (ρ, ~u) = ρwi
(
1 +

~ei · ~u
c2s

+
1

2c4s
~u~u: (~ei~ei − c2sI)

)
, (4)

where wi are the weight factors for the corresponding index of space velocity discretization.
The macroscopic properties of the problem are recovered from the moments of the distribution

functions, i.e.,
ρ =

∑
i

fi, ρ~u =
∑
i

~eifi, Πneq =
∑
i

(feqi − fi)~ei~ei, (5)

Πneq is the viscous stress tensor.
The discretization of the velocity space is done using a second-order approximation for nine points,

obtaining the two-dimensional lattice D2Q9, where

~ei=0 = (0, 0),

~ei=1,2,3,4 =

(
cos

i− 1

2
π, sin

i− 1

2
π

)
,

~ei=5,6,7,8 =
√

2

(
cos

i− 5

2
π +

π

4
, sin

i− 5

2
π +

π

4

)
.

(6)

The D2Q9 lattice weight factors are given by w0 = 4/9, wi = 1/9 for i = 1, 2, 3, 4; and wi = 1/36 for
i = 5, 6, 7, 8; and the sound speed by cs = 1/

√
3.

2.1 Multicomponent Pseudo-Potential Model

The pseudo-potential model proposed by Shan and Chen [1] is one of the first and most widely
used in the literature for describing phase transitions and immiscible flows. This model was initially
constructed based on the pseudo interaction of potential mass forces between the particles of each com-
ponent, so that each component σ has its own distribution function, i.e.,

fi,σ(~x+ ~eiδt, t+ δt) = fi,σ(~x, t) +
1

τσ
(feqi,σ(ρσ, ~u

M
σ )− fi,σ), (7)

where the macroscopic properties of each component and the adjusted velocity ~uMσ are obtained by

ρσ =
∑
i

fi,σ, ρσ~uσ =
∑
i

~eifi,σ, Πneq
σ =

∑
i

(feqi,σ − fi,σ)~ei~ei, ~uMσ =

∑
σ
ρσ~uσ
τσ∑

σ
ρσ
τσ

+ τσ~gσ. (8)

The vector force per unit mass ~g which describes the potential mass forces between the components,
characterizing the pseudo-potential model, is given by

~gσ = ~gex +
ψσ
ρσ

∑
σ

Gσσ
∑
i

wi(~ei)ψσ(~x+ ~eiδt, t)~ei (9)

where ~gex represent forces resulting from external sources, ψ is the virtual mass, σ indicates a other
component than σ and Gσσ, called of interaction strength, is the molecular parameter only dependent on
the σ − σ intermolecular interaction. In the present work the virtual mass parameter (ψ) is represented
by the density (ρ) and Gσσ = Gσσ.
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Explicit Force Term

The velocity ~uMσ in the equilibrium distribution function, which incorporates the force per unit
of mass ~gσ, proposed by Shan and Chen [1] results in an discretization form of the force term that
introducing errors in the problem. In this way, the explicitness of the term force becomes essential for a
reduction of errors introduced in the model. Rewriting the Equation (7) with the force term in the explicit
form:

fi,σ(~x+ ~eiδt, t+ δt) = fi,σ(~x, t) +
1

τσ
(feqi,σ(ρσ, ~uσ)− fi,σ) + δtFi,σ(~gσ). (10)

With the explicitness of the force term, different schemes can be used in their representation, for more
details see Huang et al. [8]. The present work uses the scheme proposed by He et al. [9], which consists
of the distribution function approximation by the equilibrium distribution function, given by

Fi,σ(~gσ) = ~gσ · ∇~eifi,σ ≈ ~gσ · ∇~eif
eq
i,σ = ~gσ ·

~ei − ~u
c2s

feqi,σ. (11)

Secon Order Discretization of the Stream Term

The Discretization of the Equation (1) in the stream term (space-time) is represented initially by
an expansion in Taylor series of the forward term to a first-order forward difference of the df

dt term,
algebraically write in the simplified form by

fi(~x+ ~eiδt, t+ δt) = fi(~x, t) + δDtfi +
δ2

2
D2
t fi +

δ3

6
D3
t fi + ...

= fi(~x, t) +
∞∑
j=1

δj

j!
Dj
t fi.

(12)

where Dt is the advective derivative term given by

Dt() = ∂t() + ~ei · ∇~x(). (13)

From this point the truncation orders on the right-hand side of the Equation (12) represent the discretiza-
tion orders of the time-space. By truncating in terms of the third order, i.e.,

fi(~x+ ~eiδt, t+ δt) = fi(~x, t) + δDtfi +
δ2

2
D2
t fi +O(δ3), (14)

replacing the derivative term of Dtfi = Ωi + Fi and applying first order forward difference in the term
DtΩi, we have

fi(~x+~eiδt, t+δt) = fi(~x, t)+
δ

2
[Ωi(~x+~eiδt, t+δt)+Ωi(~x, t)]+

δ

2
[Fi(~x+~eiδt, t+δt)+Fi(~x, t)]. (15)

Since f(~x+~eiδt, t+δt) is an unknown value and depends on Ωi(~x+~eiδt, t+δt) which is another unknown
value in time t. In this way, the explicit numerical scheme is applied considering f̂i = fi − 1

2(Ωi + Fi),
obtaining the final form of LBE in the second order

f̂i(~x+ ~eiδt, t+ δt) = f̂i(~x, t) +
feqi − f̂i

τ̂
+

(
1− 1

2τ̂

)
Fiδ. (16)

where τ̂ = τ
δ + 1

2 .

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



R. L. M. Bazarin, C. Naakgeboren, S. L. M. Junqueira

Regularization

Historically, the regularization scheme was initially applied by Ladd [10] and later defined by Latt
and Chopard [6], showing improvements in stability and accuracy of the simulations. Such a scheme has
some variations in the application process according to the discretization schemes applied in the stream
term. However, the method is based on the idea of representing the non-equilibrium distribution function
(fneqi ), eliminating high order ghost moments that cannot be controlled.

In regularized form the Equation (16) is written by

f̂i(~x+ ~eiδt, t+ δt) = feqi (~x, t) +

(
1− 1

τ̂

)
f̂neqi +

(
1− 1

2τ̂

)
Fiδ. (17)

where

f̂neqi = wi

(
−~ei
c2s

δt
2
· ~g +

(~ei~ei − c2sI)

2c4s
: Πneq

)
. (18)

For more details of the regularization process considering a second-order discretization of the stream
term with forces, see Latt and Chopard [6] and Silva and Semiao [11].

High Order Discretization of the Derivative Terms

In the correct representation of surface forces present in non-ideal fluid mixtures, in this case in
immiscible multicomponent fluids, appear derivative terms that are represented in the proposed force
model by Shan and Chen [1].

Applying a Taylor series expansion on the term ψσ present in Equation (9)

ψσ(~x+ ~eiδt, t) =
∞∑
n=0

1

n!

[
∇(n)ψσ

]
· ~ei~ei...~ei︸ ︷︷ ︸
n terms

, (19)

and substituting in the Equation (9) without external forces has

~gσ =
ψσ
ρσ

∑
σ

Gσσ

d∑
i

wi|(~ei)|2ψσ(~x+ ~eiδt, t)~ei

=
ψσ
ρσ

∑
σ

Gσσ(E(2) · ∇ψ +
1

3!
E(4) · ∇(3)ψ +

1

5!
E(6) · ∇(5)ψ + ...)

(20)

where d represents the different distances considered in the interaction of ψ and E(n) is the tensor of (n)
order described by

E(n) = E(n)
α1,α2,...,αn =

d∑
i

wi|(~ei)|2~ei,α1~ei,α2 ...~ei,αn , (21)

the values of E(n) are directly related to the velocity space discretization, so that the odd orders of the
tensor are null, i.e., E(n∗2+1) = 0. Truncating the Equation (20) gives different interaction distances for
each order, in the Figure 1 the respective distances up to the sixteenth order are illustrated. For more
details of the discretization processes and the respective weights wi|(~ei)| for each order, see Shan [12]
and Sbragaglia et al. [13]. In the present simulations the tenth order discretization in derivative terms is
used.

3 Results and Discussion

In order to examine the feasability of the improvements resulting from the specifications applied to
the pseudo-potential model, two-dimensional static bubble problem are simulated and compared to the
results of Porter et al. [4] and Otomo et al. [5].
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Figure 1. Immiscibility.

Aiming to verify the surface tension, spurious currents and its viscosity dependencies, simulations of
the static bubble problem are performed using different viscosity, viscosity ratio and interaction strength.
The problem geometry consists of a circular bubble of ratio rb (fluid 2) located at the center of a square
domain with length H = 120 l.u (lattice units) containing another suspending (fluid 1), where periodic
conditions are applied on all boundaries (see Figure 2 b)). The considerations problem is assumed to
be in steady regime, constant temperature, null gravitational force, being both fluids incompressible and
Newtonian. The simulation is performed until the equilibrium point is reached.

Before any specific analysis, a components immiscibility test is required. For that, the influence of
theGσσ coefficient, which controls the intensity of the cohesive force between components, is performed
to estimate the miscibility and immiscibility ranges. In this test, densities of fluid 2 (ρ2 = 1) and fluid 1
(ρ2 = 1) are monitored at the center of the volume with rb = 37.5l.u, for three different viscosity ratios
(M = ν2

ν1
), M = 100, M = 103 and M = 106.The results obtained for the range of Gσσ, verified in

Figure 2 a), show that values of Gσσ ≤ 2 occurs the diffusion of one fluid over the other, while the range
2 < Gσσ ≤ 2.5 perceives a transition region of the fluid interaction. Furthermore, the interval 2.5 ≤ Gσσ
can be considered, with a certain tolerance, the immiscibility condition. Notably, for a certain tolerance,
the behavior of the components with the variation of Gσσ is independent of M . In Figure 2 b), one can
see the representation of the density field of fluid 2 for the immiscibility range of Gσσ mentioned.

a) b)

Figure 2. Immiscibility test: a) variation of the density ρ1 and ρ2, in the center of the volume for different
values of Gσσ (M = 100 ; M = 103 ; M = 106 ); b) density field in the immiscible range.

Once the immiscibility range is defined, the superficial tension analysis between immiscible fluids
1 and 2 is based on the Laplace equation, varying rb as a function of ∆p:

∆p = p2 − p1 =
γ

rb
. (22)
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That way, the physical representation of superficial tension (γ) is verified by the modified pseudo-
potential model for three different viscosity ratios M = 100, M = 103 and M = 106, considering
Gσσ = 3.0, Gσσ = 3.5 and Gσσ = 4.0. The results obtained in Figure 3 a) demonstrate a correct linear
behavior of ∆p as a function of 1/rb, as well as an independence of γ to M and a proportionality for the
increase of γ with the increase of Gσσ.

Investigating the influence of spurious currents on the model in terms of ν1 and M for the static
bubble using rb = 37.5, the results obtained can be seen in Figure 3 b) compared to Porter et al. [4] and
Otomo et al. [5]. Varying ν1 toM = 1 generally has |u|max in the order 10−4, i.e, one order less than the
other results compared. In the variation of M keeping constant ν1 = 0.0067, as well as in the variation
of ν1, was observed in general |u|max in the order 10−4, while the other works compared show results in
the order of 10−3.

a) b)

Figure 3. Superficial tension and spurious currents: a) Laplace equation verification for different values
of M and Gσσ; b) Comparison of the max value of spurious currents in function of ν1 and M .

4 Conclusions

The present pseudo-potential multicomponent model based on discretization enhancements in rela-
tion to the original proposed by Shan and Chen [1], was used to simulate the static bubble problem in
order to observe the influence of the force term explicitness, second order discretization of stream term,
regularization and tenth order discretization of the derivative terms, both combined.

The obtained results demonstrate a correct representation of the static bubble problem, identifying
the miscibility, transition and immiscibility ranges, as well as the verification of the Laplace equation
(Eq. 22). Compared to other works in the literature, especially Porter et al. [4] and Otomo et al. [5], the
present model demonstrates three more order in the variation of viscosity ratio (M ) and one less order in
the influence of spurious currents. Consequently, the present model allows a relation of viscosity ratios of
up to 106, enabling multicomponent interactions between fluids such as gases and highly viscous fluids,
with spurious currents in the order of 10−4.
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