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Abstract. Heat transfer can be a result of a radiative process. In such case, it is modeled by the ra-
diative transfer equation (RTE), which is an integro-differential mathematical model that simulates the
movement of photons in a medium. However, many other applications are also modeled with the RTE.
Here, the RTE outputs the radiance distribution in the considered medium given the boundary conditions,
source term, and inherent optical properties, such as the absorption and scattering coefficients as well as
the scattering phase function, in the case of a translucid medium. The domain is discretized into the az-
imuthal, polar and vertical dimensions. The azimuthal discretization is obtained by the finite expansion
of the Legendre polynomial of the scattering phase function, and by the radiance expansion using the
Fourier decomposition of cosines. The resulting number of azimuthal modes is equivalent to the order of
anisotropy of the medium. The discretization in polar direction domain is made by an approximation of
the corresponding integral in the RTE, and the number of polar angles denotes the employed quadrature
order. Consequently, the RTE is expressed by a set of linear differential equations, one for each azimuthal
mode. The selected case study tackles an anisotropic and non-homogeneous medium, where the vertical
domain is discretized in 80 regions, with 50 polar angles, and the number of azimuthal modes is 174.
Therefore, each azimuthal mode requires to solve a linear system of differential equations with 80x50,
or 4000 unknowns. The chosen solver is the LTSN method. It emerged in the early 1990s in the neutron
transport research, being further extended to solve radiative transfer problems. The aim of this work is
to optimize the number of azimuthal modes and of the quadrature nodes while obtaining stable solutions
with accurate values of radiance. Another approach that is presented here is to solve only one linear
system for all azimuthal modes, in a single step, with a much larger number of unknowns.
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1 Introduction

The radiative transfer equation (RTE) is a mathematical model for the study of absorption, transmis-
sion, and scattering of photons in a medium. This work employs the RTE in a hydrologic optics problem
that involves the determination of the radiance distribution in a body of water, given the boundary con-
ditions, source term, inherent optical properties, such as the absorption a and scattering b coefficients,
and the scattering phase function. A brief description of the RTE components is given in the beginning
of Section 2.

This work also employs bio-optical models that correlate coefficients a and b to the chlorophyll-a
concentration profile. The spatial domain is discretized in a number of regions (R), being the chlorophyll-
a concentration assumed as constant in each region. The discrete chlorophyll-a profile is then defined by
(R+ 1) points.

One method for solving the RTE is given by the discrete ordinates equations, or SN equations [1].
Here, it is employed the LTSN method [2, 3], which applies the Laplace transform to the SN ordinates.
The LTSN method emerged in the early 1990s as a result of research on transport of neutrons, and was
further extended to radiative transfer problems. Details of the discrete ordinate formulation, and how
LSTN method solves it, are presented in Subsection 2.1 and in Subsection 2.2.

In a medium with high degree of anisotropy like a natural body of water, there is a big number
of possible scattering directions that require radiance calculations. In the case of a non-homogeneous
medium containing many regions with different optical properties according to the depth, such calcu-
lation of radiances is replicated to all discrete depth levels of the vertical domain. In such a scenario,
the LTSN formulation yields a sparse matrix system, in which the radiances are calculated in different
directions, for each depth level.

Due to the ill-conditioned nature of the LTSN sparse matrix, the obtained radiance values can be-
come severely unstable. In Section 3, two alternative approaches are presented in order to overcome
this issue, based on the sparse structure of the matrix. A comparison of the computational performance
between these two proposed strategies is also discussed.

2 Radiative Transfer Equation

The RTE models the transport of photons through a medium. Light intensity is given by a directional
quantity, the radiance L, that measures the rate of energy being transported at a given point and in a given
direction.

Considering a horizontal plane, this direction is defined by a polar angle µ (relative to the normal
of the plane) and an azimuthal angle ϕ (a possible direction in that plane). At any point of the medium,
light can be absorbed, scattered or transmitted, according to the coefficients a and b and to a scattering
phase function that models how light is scattered in any direction.

An attenuation coefficient c is defined as c = a+b and the geometrical depth is mapped to an optical
depth τ that embeds c. Assuming a plane-parallel geometry, and a single wavelength, the unidimensional
integral-differential RTE, can be written as:

µ
∂

∂τ
L(τ, µ, ϕ) + L(τ, µ, ϕ) =

$0(τ)

4π

∫ 1

−1

∫ 2π

0
β(µ, ϕ;µ′, ϕ′)L(τ, µ′, ϕ′)dϕ′dµ′

+ S(τ, µ, ϕ)

(1)

subject to boundary conditions

L(0, µ, ϕ) = Fδ(µ− µ0)δ(ϕ− ϕ0) (2a)
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L(ζ,−µ, ϕ) = 0, (2b)

for µ ∈ (0, 1] and ϕ ∈ [0, 2π], the cosine of the incident polar angle θ and the incident azimuthal angle,
respectively. $0(τ) = b(τ)/c(τ) is the single scattering albedo.

The scattering phase function β(µ, ϕ;µ′, ϕ′), gives the scattering beam angular distribution, map-
ping the incident beam direction (µ, ϕ) to the scattered direction (µ′, ϕ′), and the source term is S(τ, µ, ϕ).

There are several methods to solve the RTE, most of them adopting the Chandrasekhar’s decompo-
sition on the azimuthal angle [1]. In a medium with anisotropy degree Ng, that decomposition generates
Ng + 1 integral-differential equations, each one with no dependence on ϕ.

2.1 The discrete ordinates method

Using the addition theorem of the spherical harmonics, the phase function can be expressed as

β(µ, ϕ;µ′, ϕ′) =

Ng∑
m=0

(2− δ0,m)

 Ng∑
l=m

βml P
m
l (µ)Pml (µ′)

 cosm(ϕ− ϕ′) (3)

the radiance and the source term are also expanded as a Fourier decomposition,

L(τ, µ, ϕ) =

Ng∑
m=0

Lm(τ, µ) cosmϕ (4a)

S(τ, µ, φ) =

Ng∑
m=0

Sm(τ, µ) cosmϕ (4b)

The heterogeneous medium is modeled as a plane-parallel geometry, with a set of R homogeneous
parallel finite layers with boundary conditions between layers. Each layer is denoted as being a region
r of the multiregion domain, as shown in Figure 1. Thus, the properties of a heterogeneous medium are
splitted into a multiregion domain composed by a set of homogeneous regions:

$0(τ) = $r r = 1, 2, . . . , R (5)

0
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τ
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Figure 1. Plane-parallel geometry of a heterogeneous medium.
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The substitution of Equations (3)-(4)-(5) in Equation (1) yields

µ
∂

∂τ
Lmr (τ, µ) + Lmr (τ, µ) =

$r

2

L∑
l=m

βml P
m
l (µ)

∫ 1

−1
Pml (µ′)Lmr (τ, µ

′)dµ′

+ Smr (τ, µ)

(6)

subjected to the following boundary conditions, for µ ∈ (0, 1]

Lm1 (0, µ) = fm (7a)

and

LmR (τR,−µ) = gm (7b)

and to the interface conditions, for r = 1, 2, . . . , R− 1

Lmr (τr,±µ) = Lmr+1(τr,±µ) (8)

Radiance was decomposed into azimuthal modes, while the phase function was replaced by the
associated Legendre function expansion with degrees of anisotropy (Ng).

An approximation of the integral equation (1) is obtained using a quadrature of order Nµ = 2n,
with nodes {µj} and weights {ηj}. The value of µ is then discretized in µj , with j = 1, 2, . . . , N , that
are the discrete ordinate directions.

In a non-homogeneous medium with Ng degrees of anisotropy, the scattering angle is then dis-
cretized into (Ng +1) azimuthal modes, with N polar angles, while the domain is splitted into R homo-
geneous regions. The radiate transfer equation is then expressed as the discrete ordinate equations, also
known as SN equations, given by

µj
d

dτ
Lmr (τ, µj) + Lmr (τ, µj) =

$r

2

Ng∑
l=m

βml P
m
l (µj)

N∑
i=1

ηiP
m
l (µi)L

m
r (τ, µi)

+ Smr (τ, µj),

j = 1, 2, . . . , N

m = 0, 1, 2, . . . , Ng

r = 0, 1, 2, . . . , R

(9)

The boundary conditions are

Lm1 (0, µj) = 0 j = 1, 2, . . . , n (10a)

LmR (τR,−µj) = 0 j = n+ 1, n+ 2, . . . , N. (10b)

For the discrete ordinate method, the above equations are approximated by a colocation method,
where the µ integral is computed by the Gauss-Legendre quadrature formula. This yields a set of N
differential equations for each azimuthal mode.

Each set (discretized RTE) is solved by the LTSN method, that generates a system of linear equations
of order R×N .
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2.2 The LTSN method

The LTSN method [2, 3] applies the Laplace transform on the radiative transfer discrete ordinates
equations, given by Eqs. (9) and (10). This yields a system of symbolic algebraic equations on s:

sL
m
j,r(s) +

1

µj
L
m
j,r(s) −

$r

2µj

Ng∑
l=m

βml P
m
l (µj)

N∑
i=1

ηiP
m
l (µi)L

m
i,r(s) = Lmj,r(0) +

1

µj
S
m
j,r(s)

(11)

with L
m
j,r(s) ≡

∫∞
0 Lmj,r(τ)e

−sτ dτ . The matrix form of equation (11) becomes

M
m
N,r(s)L

m
r (s) = Lmr (0) +Q

m
r (s). (12)

where the N -order matrix M m
N,r(s), called the LTSN matrix, is expressed as

M
m
N,r(s) = sI +Amr (13)

and I is the N -order identity matrix, while the Am matrix is given by

amr (i, j) =



1

µj
− $r

2µj

L∑
l=m

βml P
m
l (µj)ηjP

m
l (µj),

if i = j,

−$r

2µj

L∑
l=m

βml P
m
l (µj)ηiP

m
l (µi),

if i 6= j.

(14)

and vectors Lm
r (s), Lmr (0) and Qm

r (s) are defined as

L
m
r (s) =

[
L
m
1,r(s) L

m
2,r(s) . . . L

m
N,r(s)

]
,

L
m
r (0) =

[
L
m
1,r(0) L

m
2,r(0) . . . L

m
N,r(0)

]
,

Q
m
r (s) =

[
S
m
1,r(s)

µ1

S
m
2,r(s)

µ2
. . .

S
m
N,r(s)

µN

]
.

In order to solve the matrix equation (12), it must be multiplied by the inverse matrix of M m
N,r(s),

as follows
L
m
r (s) =

[
M

m
N,r(s)

]−1
Lmr (0) +

[
M

m
N,r(s)

]−1
Q
m
r (s), (15a)

L
m
r (s) = B

m
r (s)Lmr (0) +B

m
r (s)Q

m
r (s). (15b)

Applying the Laplace inverse transform

Lmr (τ) = Bm
r (τ)Lmr (0) +Hm

r (τ) (16)

where
Bm
r (τ) = L−1

[
B
m
r (s)

]
(17)

and
Hm
r (τ) = Bm

r (τ) ∗Qmr (τ) . (18)

The operation Bm
r ∗Qmr in the above equation denotes the convolution between the two functions.
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Figure 2. Sparse structure of the linear system matrix, considering a non-homogeneous medium with 10
regions and 50 polar directions (Ns = 500 and nnz = 47, 500).

The implementation of the LTSN method solves each m-th azimuthal-mode system of order R×N
shown in Equation (16), for m = 0, 1, 2, . . . , Ng, and R regions, using N -th order of quadrature. Ap-
plying in Equation (16), the boundary conditions and a criterion of continuity between adjacent regions,
i.e., Lmr (τ) = Lmr+1(τ), yields to the systems given by the Equation (19)



B(1)
11 (0)B

(1)
12 (0)

B(1)(τ1) −B(2)(0)

B(2)(τ2) −B(3)(0)

. . .

B(R−1)(τR−1) −B(R)(0)

B(R)
21 (τR)B

(R)
22 (τR)





L1

L2

L3

...

LR−1

LR


=

=



−Hd
1 (0)

H2(0)−H1(τ1)

H3(0)−H2(τ2)

...

HR(0)−HR−1(τR−1)

−Hu
R(τR)



(19)

For instance, Figure 2 shows a representation of the sparse structure from the linear system matrix
given by the Equation (19), for a non-homogeneous medium with 10 regions (R = 10) and 50 polar
directions (N = Nµ = 50). From these discretization parameters, the resulting matrix has 500 rows and
columns (Nsystem = 500, or Ns = 500 for short), containing 47,500 nonzero entries (nnz = 47, 500),
meaning more than 90% are zero in the matrix. Note that the number of nonzeros elements for the matrix
of can be obtained simply by using nnz = (2R− 1)×N ×N .

3 RTE for Hydrological Optics solved by LTSN

The Radiative Transfer Equation problem in hydrologic optics involves the determination of the
radiance distribution in a body of water, given the boundary conditions, source term, inherent optical
properties, such as the absorption a and scattering b coefficients, and the scattering phase function.
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This work employs bio-optical models that correlate absorption and scattering coefficients of each
region to the chlorophyll-a concentration. These coefficients are assumed to be constant in each region.
Therefore discrete values ar and br can be estimated for each region from the discrete values Cr. A real
chlorophyll-a concentration profile, presented in Figure 3, was employed.
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Figure 3. Profile of chlorophyll-a concentration.

The adopted bio-optical model for the absorption coefficient was formulated by [4]:

ar =
[
aw + 0.06 ac C0.65

r

] [
1 + 0.2 e−0.014(λ−440)

]
(20)

where aw is the pure water absorption and ac is a non-dimensional, statistically derived chlorophyll-
specific absorption coefficient, and λ is the considered wavelength. The adopted bio-optical model for
the scattering coefficient was formulated by [5]:

br =

(
550

λ

)
0.30 C0.62

r (21)

As previously mentioned, the number of independent azimuthal modes is equivalent to the degree of
anisotropy of the medium. The radiance values are then obtained summing up the results of these linear
systems for all azimuthal modes.

A case study for a non-isotropic, with degree of anisotropy Ng = 174, in a non-homogeneous
medium is presented, where the domain is divided into 80 regions (R = 80) and 50 polar directions
(Nµ = 50). The resulting sparse linear system has 4, 000 unknowns radiance values (Ns = 4000), and
its linear system matrix has 397, 500 nonzero entries (nnz = 397, 500).

The higher the azimuthal mode, the smaller are the values of the results of its linear system, and less
relevant is its contribution to overall sum. Due to this reason, for this case study, only the firsts sixteen
(Nm = 16) azimuthal modes were considered in order to calculate the radiance values. The algorithm
SMALLERSYSTEMS, presented in Figure 4, summarizes the sequence of steps to obtain radiance values.

Using a direct solver from LAPACK solver [6] in the SOLVESYSTEM step, the obtained radiance
values are showed in Figure 5a, and the corresponding sparse structure of the linear systems is showed
in Figure 5b.

Once the LAPACK solver was implemented for dealing with dense matrices, it results in a waste of
processing time when it is used in sparse system matrices. Therefore, we adopted a sparse direct solver
for computing the radiance values, from the Intel R© MKL PARDISO library [7].

However, some unexpected huge values of radiance were obtained, as seen in the Figure 6. Probably,
these singular values are due to the ill-conditioned nature of the LTSN matrix, compromising the stability
of the solution.
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Algorithm: SMALLERSYSTEMS(Nm,R,Nµ,L)

Data:
Nm: number of independent azimuthal modes
R: number of regions
R: number of polar angles
Result: L: radiances
begin

L = 0
for m← 1 to Nm do

CREATEMATRIX(R,Nµ,Am)
CREATERHS(R,Nµ,bm)
SOLVESYSTEM(Am,bm,Lm)
L = L+ Lm

end
SOLVESYSTEM(A,b,L)

end

Figure 4. SMALLERSYSTEMS algorithm.

(a) (b)

Figure 5. (a) Radiance values in all depths/regions (z) for 10 selected polar directions (µ); (b) Sparse
structure of the linear system matrix, considering a non-homogeneous medium with 80 regions and 50
polar directions (Ns = 4, 000 and nnz = 397, 500)

It is important to note that the LAPACK library has a function that computes the row and column
scalings in order to balance the coefficients matrix and reduce its condition number. Consequently, there
are no unstable value of radiance in the solution, as already observed in Figure 5a.

The first approach employed to overcome this issue was simply to increase the number of polar
directions (Nµ) and, consequently, the number of nodes in the quadrature, until obtaining stable values
of radiance. The values of radiances remained unstable for some increasing numbers of polar angles
(Nµ): 70, 90, 110 and 130, as shown in Figure 7 and in Figure 8. Finally, for (Nµ = 150), stable values
of radiance were reached (Figure 9a)implying in solving the corresponding sparse linear system with
12, 000 unknowns (Ns = 12, 000) and more than 3.5 million of non-zero values (nnz = 3, 577, 500) in
the sparse matrix system.

A second approach was adopted to treat the unstable radiance values. It consists on simultaneously
calculate the radiance values for all azimuthal modes by solving a single sparse linear system that embeds
all the linear systems of the azimuthal modes. The algorithm ONESYSTEM, presented in Figure 10,
summarizes the sequence of steps to obtain radiance values with this alternative approach.

The sparse structure of the matrix generated with this approach is presented in Figure 11a. The
horizontal and vertical black lines in this figure do not correspond to matrix values. These are imaginary
lines that delimit the sub-matrices of each azimuthal mode.
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Figure 6. Unstable values of radiance obtained solving the linear system given by Eq. (19), using a sparse
direct solver from MKL PARDISO library, for with R = 80 and Nµ = 50.

(a) 70 polar directions (b) 90 polar directions

Figure 7. Unstable values of radiance obtained by solving the linear system given by Eq. (19), using the
sparse direct solver from MKL PARDISO library, for with R = 80 and: (a) Nµ = 70; (b) Nµ = 90

Note that this new approach employed the original number of polar direction, i.e., Nµ = 50, for
R = 80 regions. Thus, each sub-matrix has exactly 4000 rows and columns. Since there are 16 azimuthal
modes, the size of the whole matrix is Ns = 4, 000× 16 = 64, 000. Such linear system was solved, and
the resulting values of radiance are shown in Figure 11b. No unstable values appear.

Table 1 shows a brief comparison between the SMALLERSYSTEMS and ONESYSTEM approaches.
Additional information about the corresponding linear systems and computing performances is shown in
Table 2 for the numeric factorization evaluated by the MKL PARDISO sparse direct solver. Note that,
although the number of non-zeros values in the L and U matrices from SMALLERSYSTEMS approach
is nearly 30% smaller, the number of float-point operations (flop) to perform the numeric factorization
is almost 2.7 times higher than the system of ONESYSTEM approach. This greater performance cost is
most likely due to the ill-conditioned nature of SMALLERSYSTEMS matrices, even with an increased
number of polar angles. Indeed, an extra computational effort (more flop) is required to find the right
pivot in order to reach a stable solution.
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(a) 110 polar directions (b) 130 polar directions

Figure 8. Unstable values of radiance obtained by solving the linear system given by Eq. (19), using
sparse direct solver from MKL PARDISO, for with R = 80 and: (a) Nµ = 110; (b) Nµ = 130

(a) (b)

Figure 9. (a) Radiance values in all depths (z) and for 10 selected polar directions (µ); (b) Sparse
structure of the linear system matrix, considering a non-homogeneous medium with 80 regions and 150
polar directions (Ns = 12, 000 and nnz = 3, 577, 500)

Algorithm: ONESYSTEM(Nm,R,Nµ,L)

Data:
Nm: number of independent azimuthal modes
R: number of regions
R: number of polar angles
Result: L: radiances
begin

for m← 1 to Nm do
CREATEMATRIX(R,Nµ,Am)
CREATERHS(R,Nµ,bm)
ADDTOONESYSTEM(Am,bm,A,b)

end
SOLVESYSTEM(A,b,L)

end

Figure 10. ONESYSTEM algorithm.
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(a) (b)

Figure 11. (a) Only one system for all Nm = 16 azimuthal modes, considering a non-homogeneous
medium with 80 regions and 50 polar directions (Ns = 64, 000 and nnz = 6, 360, 000); (b) Radiances
values in all depths (z) and for 10 selected polar directions (µ).

Table 1. SMALLERSYSTEMS vs. ONESYSTEM comparison - I

STRATEGY R Nµ Nm Ns Nonzeros Systems

SMALLERSYSTEMS 80 150 16 12,000 3,577,000 16

ONESYSTEM 80 50 16 64,000 6,360,000 1

Table 2. SMALLERSYSTEMS vs. ONESYSTEM comparison - II

STATISTICS SMALLERSYSTEMS ONESYSTEM

(per azimuthal mode) (all azimuthal modes)

number of unknowns (radiances) 12,000 64,000

number of non-zeros in A 3,577,500 6,360,000

number of non-zeros in L 4,506,418 6,860,000

number of non-zeros in U 3,323,582 4,140,000

number of non-zeros in L+U 7,830,000 11,000,000

Gigaflop for the numerical factorization 2.69 1.01
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4 Final Remarks

This work analyzed the stability of solutions obtained by the LTSN method for a radiative trans-
fer problem. It was detected that this method can generate inconsistent values of radiance due to the
ill-conditioned nature of the corresponding linear system, making such solutions very unstable. Two
different approaches were then tried in order to obtain stable solutions in these particular cases. The first,
called SMALLERSYSTEMS, is based on gradually increasing the number of polar angles until achiev-
ing consistent radiance values, which required a minimum value of Nµ = 150. In the second approach,
called ONESYSTEM, instead of solving one linear system for each azimuthal mode, a single linear system
was employed for all azimuthal modes, which also resulted in consistent radiance values.

These approaches present quite different computational costs. In the SMALLERSYSTEMS approach,
each one of the 16 linear systems has order Ns = 12, 000 (that corresponds to 80 × 150), while for
the ONESYSTEM approach, the system order is Ns = 64, 000 (that corresponds to 80 × 150 × 16).
However, even comparing one system of the first approach (12,000 unknowns) with the single system of
the second approach (64,000 unknowns), the number of floating point operations of the numeric factoring
is approximately 2.7 higher for the first approach (2.69GFlop× 1.01GFlop). Probably, this higher cost
of the SMALLERSYSTEMS is due to the additional effort of finding the pivot during numeric factorization
in the many ill-conditioned systems. In future work, it is intended to further investigate this issue in order
to better understand the ill-conditioned nature of linear systems generated by the LTSN method, and also
propose a new approach for obtaining stable solutions without increasing the number of polar directions
in SMALLERSYSTEMS and, consequently, its computational cost.

This work is aimed at the stability of solutions and computational performance of a RTE solver
applied to a hydrologic optics problem. It is part of a research that involves the use of the RTE solver for
solving an inverse problem that estimates the optical properties of the medium from the observed/measured
light field. This inverse problem is solved implicitly, being formulated as an optimization problem. The
corresponding iterative scheme implies in successively generating and evaluating candidate solutions
(values of the optical properties). Each candidate solutions serves as input to the RTE in order to gen-
erate a light field, which is compared to the observed one by means of a quadratic difference. This
metric is then employed by a stochastic optimizer to generate the candidate solution for the next itera-
tion [8–10]. Such implicit solver may demand hundreds or even thousands of iterations, and each one
demands solving the RTE, making the corresponding processing time unfeasible, particularly in the RTE
problem described here, that involves anisotropic and non-homogeneous medium with many vertical lev-
els [11, 12]. Therefore, the optimization of the considered RTE solver, the LTSN method, is a critical
issue.
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