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Curitiba, PR, 81280-340, Brazil

Abstract. The Lattice-Boltzmann method (LBM) has been attracting lot of interest as a tool to solve
hydrodynamic problems, mostly due its suitability for parallelization. However, the implementation of
boundary conditions in LBM has some hardships, especially for flow domains containing immersed par-
ticles. An alternative to overcome this problem is the immersed boundary method (IBM), a numerical
technique that uses a secondary Lagrangian mesh and imposes a boundary condition through a force field.
This study presents the development of an IB-LBM based algorithm that simulates a free flow around a
stationary sphere, which can also be described as a uniform jet stream that encounters a spherical obsta-
cle. The fluid domain is described using a D3Q19 lattice arrangement and, a geodesic polyhedron based
mesh delineates the spherical boundary. The flow evolution for fluid mesh is simulated using LBGK
equation, whose stability is enhanced through regularization, a process which discards non-physical high
order moments from LBM. In order to verify algorithm consistency, this document presents comparison
with literature benchmark data of flow profiles and drag coefficients for different Reynolds numbers,
showing good agreement between present work and available studies.
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1 Introduction

Problems involving fluid-structure interaction are ubiquitous in Nature and therefore, object of great
interest in fluid dynamics. This interdisciplinary subject is discussed in many fields such as, hemody-
namics, Crosetto et al. [1], food processing, Oda et al. [2], and aerodynamics, Fairuz et al. [3], to name
but a few. However, since this category of problems involves complicated solid-fluid interplay, ana-
lytic solutions are mostly non-existent and, in order to represent this phenomenon, one has to resort to
experimental or numerical methods.

The purpose of this study is the development of a numerical model capable of predicting the behav-
ior of flows with immersed solid boundaries. The algorithm validation was performed through analysis
of a Newtonian flow past a stationary sphere, a case continuously studied over the years that has extensive
literature benchmark data available, in which, the drag coefficient CD and velocity profile for different
Reynolds numbers is presented.

In 1850, Charles Gabriel Stokes derived an analytical solution for this flow by solving the Navier-
Stokes equations (NSE) for a creeping flow, under this assumption, the drag coefficient in this situation
is given by, Stokes [4]:

CD =
Re

24
. (1)

This solution entitled Stokes Law provides reliable results for Re ≤ 0.1, Bird et al. [5]. As the
Reynolds number increases, the inertial terms become significant in the momentum equation and no
analytical solution is available. Therefore, several experimental and numerical studies were conducted
to characterize flows around a spherical surface for Re > 0.1. As a result, many correlations for the
drag coefficient as a function of Reynolds number were developed using different methods, for example,
empirical fit of experimental data, Schiller and Naumann [6], by numerically solving the NSE, Concha
and Almendra [7], among others. Photography of streamlines patterns for different Reynolds numbers
can also be found in literature, those images can be registered via techniques such as aluminium dust
method, Taneda [8].

The present work uses the combination of immersed boundary and lattice-Boltzmann methods, also
known by the acronym ’IB-LBM’, as phenomenon numerical description. Due its suitability for parallel
computing, the lattice-Boltzmann method (LBM) has been attracting a lot of interest as a tool to solve
hydrodynamic problems. Through discretization of domain in arrangements denoted lattices, the LBM
numerically solves Boltzmann equation and, with the proper choice of collision operator Ω, can be
used to solve the quasi-incompressible Navier-Stokes equation (NSE), Chapman et al. [9]. Despite its
advantages, there are some hardships at implementation of boundary conditions in LBM, which require
special attention. Cases were the boundary consists of a curved surface or a moving immersed solid can
be quite challenging for LBM since lattices are most frequently structured in a Cartesian arrangement.

An alternative to overcome the issue of curved boundaries arises from the method developed in 1972
by Charles Peskin, immersed boundary method (IBM), which uses a secondary mesh for solid surface
and imposes desired boundary condition by spreading force terms in fluid domain mesh, Peskin [10].

The collision model used is the regularized single relaxation-time BGK, which reduces stability
issues from original BGK model caused by non-physical high-order moments present in any LBM sim-
ulation, Mattila et al. [11]. The aim of this work is to present a IB-LBM algorithm capable of producing
an accurate simulation of a uniform flow around a spherical surface at different Reynolds number.

Some works combining IB-LBM techniques are available in literature, Dash et al. [12] uses a 3D
IB-LBM scheme to simulate flows past stationary and moving spheres; Eshghinejadfard et al. [13], with
a direct forcing immersed boundary combined with lattice-Boltzmann method, simulate sedimentation
of two circular particles; Li et al. [14] models a 2D flow over cylinder using a regularized IB-LBM
algorithm. The novelty of present study resides in the development of a three dimensional regularized
IB-LBM numerical model that is validated for a flow over spherical surface.
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2 Numerical method

This section provides a description of LBM and IBM, discussing their fundamental concepts, equa-
tions and the regularization process at BGK collision operator to increase LBM stability.

2.1 Lattice-Boltzmann method

The lattice-Boltzmann method was first introduced in 1988 by McNamara and Zanetti [15] and
differs from traditional computational fluid dynamics methods because, instead of solving the equations
of mass, momentum and energy on discrete nodes, elements or volumes, the fluid is replaced by particles
that stream along given directions, often referred as lattice links, and collide at the lattice sites, Mohamad
[16]. The lattice-Boltzmann equation is then divided in two major processes for each time step ∆t.

The collision, a process that represents variations of particle populations due collisions and action of
external forces Krüger et al. [17]. In this step, post-collision distribution populations fi|out are calculated.

fi|out (x, t) = fi (x, t) + Ωi + Si. (2)

And streaming, also referred as propagation, in which post-collision particle populations move to
neighbor lattices; with their destinations being dictated by the velocity directions ei.

fi (x+ ei∆t, t+ ∆t) = fi|out (x, t) . (3)

In the above equations, ei is the velocity direction, Ωi the collision operator and Si the source term
associated with external forces acting on the fluid domain. In LBM, it is common practice to work with
variables in lattice units and therefore, holding no physical dimension, Krüger et al. [17]. The source term
can be deducted via different forms from Boltzmann equation, one path is through Hermite polynomial
expansion, in which the source term is found as, Guo et al. [18]:

Si =

(
1− 1

2τ

)
wi

[
(ei − u)

c2s
+

(ei · u)

c4s
ei

]
· F (x, t) . (4)

In which, F (x, t) is the macroscopic force density being exerted on the fluid, u (x, t) the flow
velocity field, cs the speed of sound, equals 1/

√
3 for usual LBM velocity sets, τ the relaxation time and

wi the weighting factor, whose value holds a lattice configuration dependence, Krüger et al. [17].
The particle distribution function f can be seen as a generalization of fluid density ρ that also takes

the microscopic particle velocity into account. Thus, instead of a deterministic approach, where ρ (x, t)
represents the density of particles in position x at time t, the fluid flow is described in a probabilistic
fashion and fi (x, t) can be seen as particles travelling with velocity ei, located in x at time t. This
designates a mesoscopic description for the LBM, since it lies between macroscopic and microscopic
scales, Mohamad [16]. The macroscopic moments of density and momentum are then obtained through
summation of fi and ei moments.

ρ =
∑
i

fi. (5a)

ρu =
∑
i

fiei +
∆t

2
F . (5b)
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The LBM development for a fluid flow occurs not only through discretization of physical space and
time but also velocities domain, therefore, each discrete node has a set of discrete velocities {ei} and
their corresponding weights {wi}. This configuration, often referred as lattice arrangement or velocity
set, is named according to the number d of its spatial dimensions and discrete velocities q, thus, a DdQq
set is define in d dimensions and has q discrete velocities, Krüger et al. [17].

2.2 Regularized BGK collision operator

Boltzmann original collision operator considers all possible outcomes of two-particle collisions for
any choice of intermolecular forces, Succi [19], and results in a burdensome integral over velocity space
that can be highly non-linear. To avoid this kind of complication, Bhatnagar, Gross and Krook (1954)
introduced a much simpler operator, Bhatnagar et al. [20]:

ΩBGK(f) = −1

τ
(f − feq) . (6)

Named after its inventors, the BGK collision operator uses a mean free-path treatment and expresses
the fact that collisions tend to relax the distribution function towards equilibrium feq, Bhatnagar et al.
[20]. For this expression, τ is a suitable average collision time, known as relaxation time.

The variable feq is the Maxwell-Boltzmann distribution function. Originally conceived for a con-
tinuous domain, this function can be projected in a discretized LBM by using orthogonal Hermite poly-
nomials, Krüger et al. [17], the discrete equilibrium function for a second order expansion is:

feqi = ρwi

[
1 +

(ei · u)

c2s
− (u · u)

c2s
+

(ei · u)2

c4s

]
. (7)

Being the non-equilibrium part of distribution function fneqi = fi − feqi the standard lattice-BGK
(LBGK) collision equation can be written as:

fi|out (x, t) = feqi (x, t) +

(
1− 1

τ

)
fneqi (x, t) + Si. (8)

Using a second order Hermite polynomial expansion, the non-equilibrium populations can be writ-
ten as, Mattila et al. [11]:

fneqi =
wi

2c4s

[
Πneq :

(
eiei − c2sδ

)
− c2s∆t (F · ei)

]
. (9)

With δ being the Kronecker delta tensor and Πneq the second order moment tensor for the non-
equilibrium populations, given by:

Πneq =
∑
i

fneqi eiei. (10)

Through a Chapman-Enskog expansion it is possible to return the NSE from Boltzmann equation
and verify Πneq as related to the viscous stress tensor, Regulski et al. [21].

This procedure that consists in projecting the non-equilibrium moments into a Hermitian represen-
tation is called regularization and increases stability of LBM, Mattila et al. [11], allowing simulations at
higher Reynolds numbers to be performed. Montessori et al. [22], demonstrate a significant enhancement
of numerical stability for lid-driven cavity flows using the regularized LBGK equation.
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2.3 Immersed boundary method

The immersed boundary was originally developed to study flow patterns around heart valves, later
evolving to a very useful tool for fluid-structure interaction problems. In the IBM, the fluid is represented
on an Eulerian coordinate system and the structure on an Lagrangian, Peskin [10].

Velocity, forces and density described separately for each system are then related using the Dirac
delta, a singular pulse function. This concept is extended to a numerical scheme through use of a sec-
ondary Lagrangian mesh Lh delineating the immersed boundary surface as illustrated in Fig 1.

Figure 1. Exemplification of numerical IBM scheme, where velocities at Lagrangian nodes are obtained
through interpolation of velocities from fluid nodes. Eh represents the Eulerian mesh

The velocity at each Lagrangian node located atX is given by interpolation of velocity field u from
near Eulerian points x. The equation which describes this process is, Peskin [10]:

dX

dt
=
∑
x∈Eh

uδh (x−X) ∆x3. (11)

In Eq. (11), δh works as a weighting function and can be seen as a discrete equivalent of three
dimensional Dirac delta. The representation of δh(x) for a Eulerian grid with ∆x distance between
nodes is:

δh (x) =
1

∆x3
φ
( x1

∆x

)
φ
( x2

∆x

)
φ
( x3

∆x

)
. (12)

In which, x1, x2 and x3 are the components of a three dimensional vector x and φ is a one-
dimensional discrete delta function which can be constructed through different paths, Yang et al. [23]. A
commonly used form for φ is the four point piecewise, given by, Peskin [10]:

φ(r) =


1
8

(
3− 2|r| −

√
1 + 4|r| − 4|r|2

)
, 0 ≤ |r| ≤ 1;

1
8

(
5− 2|r| −

√
−7 + 12|r| − 4|r|2

)
, 1 ≤ |r| ≤ 2;

0 , |r| ≥ 2.

(13)

This form satisfies restrictions that are imposed for the discrete Dirac function, being therefore,
appropriate for IBM numerical schemes. In order to attain a specified boundary condition at the La-
grangian nodes, the IBM uses a process in which forces calculated at structure points are spread over the
fluid domain as ilustrated in Fig. 2.
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Figure 2. Illustration of spreading process of forces from IBM Lagrangian mesh to Eulerian nodes at
fluid domain

That way, the boundary conditions are satisfied by means of a force field acting on the fluid that will
shape the velocity field to satisfy the specified boundary conditions. The spreading process of Lagrangian
forces can be written as:

F =
∑

X∈Lh

fδh (x−X) ∆A∆x. (14)

In which, f is the force acting on Lagrangian nodes, ∆A is area element and F is the force on
Eulerian domain. The implementation of those equations in an IB-LBM algorithm will be better detailed
in the numerical modeling of present work.

3 Numerical Modeling

Figure 3 illustrates the flow domain considered, along with its boundary conditions. The fluid leaves
inlet with a uniform velocity and collides with a spherical obstacle.

Figure 3. Mathematical representation of uniform flow past sphere, for each plane is assigned a boundary
condition

A Dirichlet boundary condition with a uniform velocity normal to−x plane is given at flow inlet; all
other domain surfaces are taken as free surfaces, including the outlet. Those use a Neumann boundary
condition in which the derivative of velocity vector towards normal plane direction has a given value,
Yang [24], assumed as null for a free flow.
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Being d the sphere diameter, the dimensions for the simulations were W = H = 2.5d, L = 5d and
b = 1.5d, the domain was discretized in a D3Q19 lattice arrangement, which is illustrated in Fig. 4.

Figure 4. D3Q19 lattice arrangement, it has 19 velocities, being e0 the null direction and cs = 1/
√

3

For this velocity set, {f1, f7, f10, f12, f13} are unknown populations at inlet during streaming, for a
Dirichlet boundary condition, those are given by, Krüger et al. [17]:

f−i (xin, t+ ∆t) = fi|out (xin, t)− 2wiρin
ei · u0

c2s
. (15)

With −i indicating the opposite velocity direction. For the Neumann boundary condition imple-
mentation, ghost nodes are used, as illustrated in Fig. 5.

Figure 5. Illustration of ghost nodes used for application of Neumann boundary condition

By copying the nodes from boundary neighborhood the zero normal derivative is assured during
streaming, which is then performed normally using the copied nodes, Junk and Yang [25].

The non-slip condition at sphere surface is attained through IBM using a icosahedron based mesh.
Amongst regular polyhedrons, this geometry presents the highest number of sides and is favorable
for generating a spherical mesh with almost evenly spaced nodes through hierarchical triangular mesh
(HTM) method, Szalay et al. [26]. This technique is illustrated in Fig. 6.

Figure 6. Representation of HTM method, a triangular plane is subdivided in more triangular faces for
each refinement degree nb
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This subdivision procedure is applied to each face of original icosahedron and the nodes are pro-
jected into a circumscribed sphere resulting in a geodesic dome, as shown in Fig. 7.

Figure 7. Schematic of meshing process for sphere using a polyhedron (a) regular icosahedron with
vertexes at sphere surface (b) division of each face in 4 equal triangles (c) the new vertexes are normalized
and extended to sphere surface creating a 80 faces circumscribed polyhedron

The amount of Lagrangian nodes will be number of vertexes Vpoly for a convex polyhedron with
Fpoly faces and Epoly edges. For a icosahedron with nb divisions:

Fpoly = 20
(
1 + nb + n2b

)
; (16a)

Epoly = 30
(
1 + nb + n2b

)
; (16b)

Vpoly = 2 + Epoly − Fpoly. (16c)

That way, the element ∆A from Eq. (14) is assumed as:

∆A =
πd2

Vpoly
. (17)

To satisfy the no-slip condition within a convergence limit, an implicit calculation of the force
density scheme, with a single Lagrangian velocity correction term, is prescribed, Dash et al. [12]. The
boundary velocity is written in terms of its interpolation ub = uint + δu and an iterative process for the
force term is given by:

f (n) = f (n−1) +
2ρδu

∆t
. (18)

The forces are spread into Eulerian domain, the velocity field is recalculated and a iterative process
follows until a error criterion for velocity |δu| ≤ L is attained. Source terms in collision equation Si are
then calculated from spread forces F and evolution of LBM proceeds.

Therefore, the complete IB-LBM simulation starts with a initialization, in which populations are set
equal to their equilibrium parts for a initial velocity and density, then a implicit force scheme is applied
and is followed by collision and streaming. The numerical algorithm is summarized in the flowchart
in Fig. (8). The simulation is performed until drag coefficient variation between 1000 time steps is
negligible and flow regime is assumed as steady.
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Figure 8. Flowchart of immersed boundary-lattice Boltzmann method algorithm

As mentioned, it is possible to return the NSE from Boltzmann equation. That way, it is possible to
relate the relaxation time τ , with the kinematic viscosity ν as, Krüger et al. [17]:

ν =

(
τ − 1

2

)
c2s. (19)

Therefore, taking the reference length as the sphere diameter d for considered phenomenon, the
Reynolds number for each simulation will be given by:

Re =
u0d

ν
. (20)

4 Results and discussion

Simulations from developed algorithm were performed with different Reynolds numbers which, for
comparison of streamlines patterns, were chosen to coincide with experimental work from Taneda [8].
Also, the drag coefficient CD for each simulation was given by:

CD =
2FD

ρ0u2oAp
. (21)

Being Ap, the projected area from spherical surface π(d/2)2 and FD, the total drag force over
sphere, calculated through momentum balance of a control volume containing the immersed boundary.
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4.1 Mesh refinement

Mesh refinement is determined by the number of lattices occupied by IB-mesh diameter. Simula-
tions with M1: d = 10, M2: d = 20 and M3: d = 40, were performed for Re = 118; the distance
between IB nodes was fixed at ∼ 1 lattice unit, and Table 1 presents obtained CD results.

Table 1. Coefficients calculated for each mesh refinement compared with literature correlations.

M1 M2 M3 Schiller and Naumann [6] Concha and Almendra [7]

1.117 1.090 1.067 1.012 0.942

Schiller and Naumann [6] results were calculated from their correlation developed through experi-
mental data fit for laminar flows:

CD =

{
24(1+0.15Re0.687)

Re ⇒ Re ≤ 1000;

0.44 ⇒ Re > 1000.
(22)

Whilst Concha and Almendra [7] correlation was obtained combining boundary-layer theory and
experimental data from pressure distribution and boundary-layer thickness, and is written as:

CD = 0.28

(
1 +

9.06

Re1/2

)2

. (23)

The improvement of results through mesh refinement can indicate that the solution converges to an
asymptotic value, being very close from expected results for M2 and M3. Fig. 9 presents streamlines
and pathlines obtained for each simulation.

Figure 9. Streamlines and pathlines for M1, M2 and M3 simulations

It can be seen that the flow pattern changes severely from M1 to M3, indicating that M1 is to
coarse too correctly represent the phenomenon, there is still a small change from M2 to M3 and, to
assure accurate phenomenon representation, other simulations were performed using M3.

4.2 Streamlines and drag coefficient

The streamlines in this work are plotted at plane z = 0 using the velocity components from x and y
directions. For the considered two dimensional plane, a stream function Ψ can be defined as having its
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derivatives matching velocity components u and v.

v = −∂ψ
∂x

; u =
∂ψ

∂y

And being the vorticity ω defined as the curl of velocity vector, for the flow at plane xy with velocity
components u and v:

ω =
∂u

∂y
− ∂v

∂x
=
∂2Ψ

∂y2
− ∂2Ψ

∂x2
. (24)

Using a finite difference scheme to numerically solve this Poisson equation for a given node (i, j)
of a discretized domain, vorticity ω(i,j) can be written as a function of Ψ(i,j) and its neighbor values:

Ψ(i+1,j) − 4Ψ(i,j) + Ψ(i−1,j)

∆x
+

Ψ(i,j+1) − 4Ψ(i,j) + Ψ(i,j−1)

∆y
= −ω(i,j). (25)

The 2-D vorticity is calculated using components x and y from velocity field and a central difference
derivative, which gives:

ω(i,j) =
u(i,j+1) − u(i,j−1)

∆y
−
v(i+1,j) − v(i−1,j)

∆x
. (26)

Using a iterative process, it is possible to find values for the stream function and draw its contour
lines, Fig. 10 shows calculated streamlines and path lines from present work sided with photos from
Taneda [8] experimental study for Re = 9.15 and Re = 25.5.

Figure 10. Comparison of flow patterns with Taneda [8], reproduced by permission of (1956) The Phys-
ical Society of Japan, for Re = 9.15 and Re = 25.5

A coherent flow behavior can be seen from both streamlines and pathlines in comparison to exper-
imental study photos. It is interesting to notice that, since IBM uses a force field instead of a physical
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boundary, there is still flow inside sphere. At higher Reynolds numbers, there is formation of recircula-
tion zones at wake behind the sphere, this phenomena can be seen in Fig. 11.

Figure 11. Comparison of flow patterns with Taneda [8], , reproduced by permission of (1956) The
Physical Society of Japan, for Re = 37.7 and Re = 118

In qualitative terms, through comparison of vortex shape with photos from experimental work, the
simulation plots suggest a consistent model for representation of Newtonian flow at different Reynolds
numbers. Drag coefficient values for performed simulations are presented in Table 2.

Table 2. Drag coefficients obtained for different Reynolds numbers

Reynolds number 9.15 25.5 37.7 118

Present work 4.973 2.446 1.889 1.067

Schiller and Naumann [6] 4.423 2.248 1.792 1.012

Concha and Almendra [7] 4.469 2.186 1.716 0.942

It can be seen a good agreement between values from correlations and obtained from simulations,
especially since the drag coefficient is most of the times presented in logarithmic scale. This indicates a
consistent numerical description; however, the domain size can also affect simulation results.

In order to verify this influence, four simulations with a d = 10 IBM mesh were performed with
different domain dimensions, as shown in Table 3.

Table 3. Simulation parameters given in lattice units

Dimension W H L h

M4 50 50 100 30

M5 100 100 100 30

M6 50 50 200 30

M7 50 50 200 100
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For those parameters, simulations were performed at Re = 9.15 and the obtained drag coefficient
values are presented in Table 4.

Table 4. Coefficients calculated for M4, M5, M6 and M7 compared with literature correlations

M4 M5 M6 M7 Schiller and Naumann [6] Concha and Almendra [7]

5.526 6.070 5.522 5.163 4.423 4.469

From M5, the inlet Dirichlet boundary condition too close from spherical obstacle is insufficient
for flow development and, by changing only domain width, the region before sphere in which the flow
is not well represented increases, causing values obtained for drag coefficient to diverge even more from
correlations. This influence of h becomes evident with M7, for which the drag coefficient results were
the closest from correlations. Repeating one of the previous simulations, with sphere diameter d = 20
and Re = 9.15, but with sphere placed at domain center, the value obtained for CD was 4.835.

5 Conclusion

A proposed IB-LBM numerical model was successfully implemented for simulation of flow over
spherical surface, accurately predicting drag coefficient and flow patterns for different Reynolds numbers,
being therefore, this work main achievement, the development of a highly parallelizable numerical model
that can be used for aerodynamics studies involving drag forces. A next step for algorithm improvement
would be the implementation of a moving boundary for the immersed surface and validation for different
geometries, since the mathematical formulation for this model does not restrict itself only for a sphere
simulation.
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