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Abstract. An optimization method for an ensemble local mean decomposition (ELMD) 

parameters selection was proposed by using evolutionary algorithms. ELMD is an adaptive, non-

stationary and non-linear signal processing method based on the addition of different white 

noises to the target signal to be decomposed into a local mean decomposition (LMD) in order to 

solve its large mode mixing problem. Even though it has satisfactory performance for fault 

diagnosis of rotating machinery and reduced maintenance costs, the execution of this technique 

depends heavily on the correct choice of the parameters of its model. Although it was proposed 

to optimize the selection of these parameters through relative root-mean-square error (RRMSE) 

and signal-to-noise ratio (SNR), the optimized ensemble local mean decomposition (OELMD) 

based its selection by testing several values for amplitude, noise bandwidth and ensemble trials in 

order to obtain the optimum value. However, even with excellent signal processing results, this 

technique can raise computational costs and become prohibitive, especially in real-time analysis. 

Thus, this work also proposed an optimized ELMD, but in this occasion using the inclusion of 

genetic algorithms. The effectiveness of the proposed method was evaluated using synthetic 

signals, which was used by several authors for such purposes. Despite presenting inferior results 

to OELMD in avoiding mode mixing problem, the suggested algorithm obtained better results 

regarding the signal processing time. 
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1  Introduction 

Due to the wide variety of application, several signal processing techniques have been developed 

in recent years [1]–[4]. In 1998, a great progress in so-called decomposition techniques occurred when 

[1] introduced the empirical mode decomposition (EMD) which was an effective tool for non-

linear and non-stationary signal analysis. In this method, a complex signal could be decomposed on a 

series of sum of finite functions that signify the oscillatory components of the signal and are called 

intrinsic mode functions (IMD). However, one the major disadvantages of this technique is its 

susceptibility to the mode mixing phenomenon. [4]. Mode mixing is defined where a unique IMF 

consists in signals with different modes. In this sense, in 2005, the local mean decomposition (LMD) 

[2] was developed in order to solve de mode mixing problem in applications in electrocardiograms and 

electroencephalograms. 

Nevertheless, when tested against highly complex and contaminated signals, such as faulty 

mechanical components vibration, despite presenting superiority to EMD [5] the LMD still presents, 

in a prohibitive way, the mode mixing problem. Therefore, in order to improve its applicability in 

complex signals [3] proposed an ensemble local mean decomposition (EMD), which adds white noise 

to the vibration signals and thus, it is expected to obtain the optimal compositions of the signals. 

Meanwhile, in accord with [4] the effectiveness of ELMD in reducing mode mixing is highly 

influenced by its parameters, such as white noise amplitude, bandwidth and ensemble numbers. 

Although, few studies have been found to optimize the ELMD parameters in order to analyze its 

applicability in real vibration signals. [4] proposed an optimized ensemble local mean decomposition 

(OELMD), an optimization of ELMD, which its parameters are chosen to satisfy the decomposition 

performance. However, the technique used a gross-based method when testing several values for the 

parameters individually in order to find the optimum, leading to a highly prohibitive 

In this scope of optimization, the genetic algorithms (GA) are techniques of search for the best 

result based on the principles of genetics and natural selection strongly studied [6–13] and 

disseminated since 1970s. A GA allows that a population composed of various individuals get 

involved in certain rules that minimize (or maximize) a cost function. This article proposes a new 

approach in the optimization of ELMD parameters to satisfactorily fulfill the decomposition 

performance. Thus, better results than the ELMD with regards to the mode mixing problem are 

expected, as well as better results than OELMD in terms of processing time. Although inspired in 

previously works [4], [14] in which were conceptualized using a method that used a variable relative 

root-mean-square error (RRMSE) and signal-to-noise ratio (SNR) to optimize the white noise 

parameters, none of these studies came to investigate the use of genetic algorithms to reduce the 

number of iterations necessary to search the parameters. Thus, this work brings as contributions: (a) 

development of a new procedure based on genetic algorithms to determination of white noise 

parameters in an ELMD; and, (b) continuation of the work of [4] on the investigation of RRMSE and 

SNR in optimal parameters selection. 

2  Local mean decomposition 

Assuming that a signal can be represented as the sum of a finite set of product function 
from which it is possible extract instantaneous frequency imbued with physical meaning, [2] 

has developed a method that consist basically in decompose the signal in several others 

functions, obtained from the product between an envelope signal and a frequency modulated 

signal, from which is possible extract the instantaneous frequency, thus can be represented as a 
time function and as a frequency function, giving rise to representations time-frequency (RTF). 

In the method proposed by the author, the signal decomposition is performed by 

progressive decoupling of the frequency modulated signal from an amplitude modulated 
envelope, contemplating the following steps: 
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1) Obtaining all the local extremes from the signal 𝑥(𝑛). The extreme points are denoted by and 

the correspondent extremes by. 

2) Calculation of smoothed local mean m(t) and smoothed local amplitude a(t). To acquire these 

values are necessary two preliminary steps. The first one, characterized by the calculation of 
the preprocessed local mean and the local amplitude , it is obtained by: 

 

{
𝑚0(𝑛) =  

𝑥(𝑒𝑘) + 𝑥(𝑒𝑘+1)

2
𝑝𝑎𝑟𝑎 𝑒𝑘 ≤ 𝑛 <  𝑒𝑘+1 

𝑎0(𝑛) =  
|𝑥(𝑒𝑘) − 𝑥(𝑒𝑘+1)|

2
𝑝𝑎𝑟𝑎 𝑒𝑘 ≤ 𝑛 <  𝑒𝑘+1

 
(1) 

 However, despite the simplicity and consistency of equations, Wang et al. [15] warn that 
results cannot be obtained without the signal being extended, which may introduce disagreements in 

the signal end that gradually influence its interior, disturbing the decomposition performance. Thus, 

the authors proposed a treatment for the extremes, which it is called boundaries processing method and 
calculates local mean and local amplitude, by means of giving equations. 

 

{
𝑚0(0) = 

𝑥(𝑒1) + 2𝑥(𝑒2) + 𝑥(𝑒3)

4
 

𝑎0(𝑛) = 
|𝑥(𝑒1) − 𝑥(𝑒2)| + |𝑥(𝑒2) − 𝑥(𝑒3)|

4

 
(2) 

 

{
𝑚0(𝑀) =  

𝑥(𝑒𝑀−2) + 2𝑥(𝑒𝑀−1) + 𝑥(𝑒𝑀)

4
 

𝑎0(𝑀) =  
|𝑥(𝑒𝑀) − 𝑥(𝑒𝑀−1)| + |𝑥(𝑒𝑀−1) − 𝑥(𝑒𝑀−2)|

4

 (3) 

 
Where M is the signal length. By other hand, Liu et al. [17] determined a signal 

extension algorithm, which modified the extremes by a spline interpolation, being this, an 

evolution for the works of Rilling et al. [18], which have applied in an EMD code. 

Posteriorly, from the variables 𝑚0(𝑛) and 𝑎0(𝑛), the smoothed local mean m(t) and 

smoothed local amplitude a(t) are obtained. There are differences in how this smoothing is 

calculated. Although the method proposed by [2], using the moving average algorithm (MA) 
has been studied and with proven efficacy [3, 5, 16, 17, 19], Li et al. [20] argue that this 

methodology could lead the decomposition to incoherent results. Thus, [21] proposed a cubic 

spline interpolation based LMD (SLMD) due its property o good convergence and high 
smoothing. However, [22] affirm that for this method large interpolation errors can occur in the 

local amplitude calculation. Thereby, the authors have proposed a rational Hermite interpolation 

(OLMD), replacing spline interpolation, stating that it could better counteract the waveform of 

the amplitude. Nevertheless, [20] affirm that Hermite interpolation cannot adaptively adjust the 
shape curves with the varying local characteristics of the waveform in the sifting process. 

Therefore, the authors suggest that a rational spline Interpolation coupled with an optimization 

procedure of a tension parameter can control the shape of the cubic spline. According to the 
authors’ studies, their method contributes with more accurate and exact results of 

decomposition as well as reduced the total processing time of the technique. Some smooth 

examples are show in Figure 1. 
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Figure 1. Hypothetical signal x(t) together with the local mean, smoothed local mean, local amplitude 

and local mean 

3) Calculate  the  estimated  zero-mean  signal ℎ11(𝑛) and  FM  signal 𝑠11(𝑛) by  means  of  

the variables x(n), m(n) and a(n). For that, the equation is defined by: 
 

{

ℎ11(𝑛) =  𝑥(𝑛) − 𝑚11(𝑛)

𝑠11(𝑛) =  
ℎ11(𝑛)

𝑎11(𝑛)

 
(4) 

 

It is important make sure that must be a purely FM signal. Otherwise, the function x(n) 

assumes the value of and the steps are repeated until the condition described by the equation is 

satisfied. This condition is so-called sifting process. 

 
lim
𝑝→∞

𝑎1𝑝(𝑛) = 1 (5) 

 

Due to its notorious importance in the LMD final results [20], Liu et al. [17] have 

proposed a method called sifting stopping, which defines an optimal number of iteration for the 
decomposition, which consequently brought better results for the method as well as reduced 

processing time. 

 

4) Calculation of the signal 𝑠1(𝑛), envelope signal 𝑎1(𝑛) and the product function 𝑃𝐹1       

after the execution of the sifting process.  Considering  the  process  with  p  iterations,  

the  values  of 𝑠1(𝑛), 𝑎1(𝑛) e 𝐹𝑃1(𝑛), and are given by: 
 

{
 
 

 
 

𝑠1(𝑛) = 𝑠1𝑝(𝑛)

𝑎1(𝑛) =  ∏𝑎𝑖𝑗(𝑛)

𝑝

𝑗=1

𝐹𝑃1(𝑛) =  𝑎1(𝑛) ∙ 𝑠1(𝑛)

 
(6) 

5) Subtract the product function from the signal x(n). The process must be repeated m times 

until the entire signal is decomposed, so that: 

 

𝑥(𝑛) =  ∑𝐹𝑃𝑖(𝑛)

𝑚

𝑖=1

 (7) 

2.1 Ensemble local mean decomposition 

Components of the product function with different characteristics are obtained by means of the 

LMD method. However, due to signal discontinuity, mode mixing still occurs during the LMD 
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process. This condition causes ambiguity in the physical meaning of the instantaneous frequencies of 

the product function after decomposition. 

In view of this, Yang et al. [3] demonstrated that the addition of different Gaussian white noises 

to the signal prior to its decomposition by the LMD could drastically decrease the mode mixing 

phenomenon. Although it may seem that the addition of the disturbance to the signal could reduce the 

signal-to-noise ratio (SNR) and consequently bring erroneous results to the decomposition, due to the 

addition of a nonexistent product function, the authors proved that because they are several white 

Gaussian noises independent, the average of all added would tend to zero. Thus, the technique 

repeatedly applies the LMD method to the signal along with a Gaussian white noise of finite 

amplitude. The average of the product functions derived from the various applications is used as the 

result of the decomposition. Since the mean noise is zero, all disturbance added can be considered as 

excluded. This technique was known as the ensemble local mean decomposition (ELMD) and added 

far superior to LMD in problems in fault diagnosis in rotating machines [3, 19, 23]. 

According to Sun et al. [24] ELMD can be described by the following steps: 

1) Adding white noise to the signal x(t) thus forming y(t). 

2) Application of the LMD in signal y(t) in order to obtain multiple product functions. 

3) Repeat steps 1 and 2 several times and with different noises added in each iteration. 

4) Calculation of the mean of the PF obtained and consequent use of this as the result of the 

decomposition. 

 

3  Ensemble local mean decomposition based on genetic algorithms 

The operation of a genetic algorithm is based on the principles of genetics and natural selection. 

An GA allows a population composed of many individuals to be involved in some natural selection 

rule so that the final population is the one that fit the most. 

Thus, the first step in GA determination is the definition of the environmental condition for the 

population, in this case, the cost function. For this work, in defining the optimal parameters for the 

white noise to be added to the signal, it is essential that it present a maximum RRMSE value, which 

evaluates the difference between the product functions and the original signal in order to cancel the 

mode mixing, and the SNR, which determines whether the effects of insertion of the noise into the 

signal have been negated. Therefore, it is possible to establish the conforming cost function. 

 
𝐶𝑜𝑠𝑡 =  −𝑅𝑅𝑀𝑆𝐸 ∙ 𝑆𝑁𝑅 (8) 

 

Thence, the definition of an initial population, which can be formed by totally random 

chromosomes or by initial guesses in order to improve the convergence of the algorithm. In the 

proposed methods, populations are defined in two different ways. For the first case, GA1, the 

population is defined totally randomly. 

 
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑎𝑛𝑑(𝑁𝑐𝑟𝑜 ,𝑁𝑣𝑎𝑟) (9) 

 

Where, Ncro represents the number of chromosomes of a population and Nvar represents the 

number of alleles contained in the chromosome. For this work, the number of alleles is equal to three, 

representing the white noise amplitude, bandwidth frequency and number of ensembles. In the second 

case, for the methods proposed in GA2 and GA3, the first allele is given by Eq. 10, while the remnants 

are still randomly chosen. The values chosen for population formation were based on previous studies 

[4], which demonstrate that the optimum amplitude range normally between 20 and 50% of the 

maximum amplitude of the studied signal. 

 
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = max[𝑥(𝑡)] ∙ [0.2; 0.3; 0.4; 0.5] (10) 
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In sequence, the pairing is defined, where the most adapted chromosomes are put in a way to 

cross. Parents and mothers are randomly defined, and each pair produces two descendants that contain 

traits of each parent. Parents still survive to be part of the next generation. The more similar the two 

parents are, the more likely the convergence for a final population. 

Once the pairing has been defined, the crossing step is taken. For this, several methodologies 

were developed to optimize the creation of descendants. The simplest crossing methods are so-called 

point crossing [9]. In these, one or more points of the chromosomes are selected as crossing points. 

Then the variables between these points are exchanged between the two parents. However, the great 

disadvantage of this technique is that there is no new information in the generation of the individuals, 

which are only a replica of the random values provided by the initial population. Thus, a variation of 

this method was suggested, the so-called simple crossing [10]. In this methodology, a descendant 

comes from the combination of parents, but so that the chromosome assumes new values, even if still 

related to the predecessors. The formation of an allele for this chromosome is demonstrated by. 

 
𝑎𝑙𝑙𝑒𝑙𝑒𝑛𝑒𝑤 = ∝∙ 𝑎𝑙𝑙𝑒𝑙𝑒𝑚𝑜𝑚,𝑛 + (1−∝) ∙ 𝑎𝑙𝑙𝑒𝑙𝑒𝑑𝑎𝑑,𝑛  (11) 

 

Being ∝: random number between 0 and 1; allelemom,n: nth allele on the mother chromosome, e; 

alleledad,n: nth allele on the father chromosome. It is noted that at the simple crossing, if the value of ∝
= 0.5, the allele of the descending chromosome becomes a simple mean of the parental variables. 

However, although this method allows the entry of new information combining information from the 

parents, it does not allow the inclusion of values outside the extreme values of the parents. Thus, 

another approach proposed by [10] was the heuristic cross which again uses a random variable, β, to 

define one or more descendant alleles. 

In this work, the use of the heuristic crossing in the implementation of the algorithm was defined 

as it presented better results in the search for the global maximum [11]. In this way, always in the 

generation of a new population lineage, for at least one allele of each descendant is imposed this 

crossing. This is chosen randomly and the remaining variable is fairly distributed to the children, so 

that each parent is always represented. 

 
𝑎𝑙𝑙𝑒𝑙𝑒𝑛𝑒𝑤 =  𝛽 ∙ (𝑎𝑙𝑙𝑒𝑙𝑒𝑚𝑜𝑚,𝑛 − 𝑎𝑙𝑙𝑒𝑙𝑒𝑑𝑎𝑑,𝑛) + 𝑎𝑙𝑙𝑒𝑙𝑒𝑚𝑜𝑚,𝑛 (12) 

 

Finally, some form of mutation can be defined for some chromosomes of the population. The 

mutation process is important in some cases where a function may have several local maxima and the 

cost function converges to one of these minima. If there is no precautionary measure, the result may be 

far from the overall maximum cost. In this work, the mutation process is defined in one of the 

proposed methods, GA3. In this, the mutation is defined totally randomly, where a random value 

between 0 and 1 is calculated. If this is greater than 0.8 (arbitrarily chosen) a chromosome is 

recalculated at random, without any correlation with its parents. The proposed method is exemplified 

by the flowchart shown in Figure 2, which is an application of genetic algorithms in the method 

proposed by [3]. 

 

 

Figure 2. Flowchart of the method defined in the genetic algorithms for parameter selection. 
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4  Simulated single test 

For the evaluation and application of the proposed technique of parameter selection, a synthetic 

signal x(t) is defined (Figure 3) which was proposed by [4] and consists of three components in 

Equation 19, 20 and 21. This specific signal was chosen for no other reason than to compare the 

effectiveness of the proposed method to a widespread recognized research which presents a similar 

approach towards an ensemble local mean decomposition. Therefore, several other signals could be 

used in order to reach the same result with no prejudice to the general understanding of the idea 

presented. Since it is often impossible to know all the compositions of a real signal, the use of 

synthetic signals is very important for the evaluation of a signal processing methodology. 
 

{

𝑥(𝑡) =  𝑥1(𝑡) + 𝑥2(𝑡) + 𝑥3(𝑡)

𝑥1(𝑡) = 1,5 ∙ 𝑒
−800𝑡′ ∙  𝑠𝑒𝑛(2𝜋 ∙ 5000𝑡)

𝑥2(𝑡) = 0,2 ∙ (1 +  𝑐𝑜𝑠(2𝜋 ∙ 100𝑡) ∙ cos(2𝜋 ∙ 1000𝑡))

 
(13) 

 

And, x3(t) is white Gaussian noise with bandwidth from 2 to 4 kHz, and; t’ is a periodic function 

with fundamental period of 1/160s. According to the author, this frequency was chosen because, when 

compared with low frequency noises, high frequencies generally present larger contributions to the 

change in the extremes of the original signal. 

 

 
Figure 3. Waveform in the time domain of the signal x(t), x1(t), x2(t) and x3(t). 

In order to compare the performance of the proposed GAB-ELMD and OELMD and LMD 

methods (using the smoothing method the moving average and the optimization in the proposed sifting 

process) root-mean-square error (RMSE), number of product functions and processing time are 

considered as the three indicators. The expression for the RMSE is given by: 

 

𝑅𝑀𝑆𝐸 = √
∑ [𝑥𝑖(𝑡) − 𝑃𝐹𝑖(𝑡)]

2𝑁
𝑖=1

𝑁
 (14) 
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Where xi(t) and PFi(t) are the original components of the signal and its corresponding 

decomposed by the method, respectively. A lower RMSE value indicates better execution 

performance. The computer used for the simulation is a 2.4 GHz i7-Dual Core processor and 8 GB 

RAM. The software used is MATLAB (R2018b). The tests were run ten times and the results shown 

in Table 1 represent the means of the results obtained. 

The proposed methods, based on genetic algorithms, had presented results similar to OELMD 

technique in relation to decomposition performance. In terms of computational cost, OELMD used a 

much longer time due to its characteristic of test and analysis, while all the techniques proposed 

obtained much shorter times without major losses in the quality of the processed signal. However, still 

searching for better values, we propose another algorithm, GAB, in which some changes are made, as 

in the cost function, which will be described as follows. 

 
𝐶𝑜𝑠𝑡 =  −𝑅𝑅𝑀𝑆𝐸 (15) 

 

Thus, the selection is based on genetic algorithms only for the selection of the amplitude variable 

of the noise. As for the number of compositions, in the GAB, it is selected in a similar way to that 

proposed by [4] in the OELMD, but with the execution of the test without the realization of the 

decompositions by the LMD. This is because, according to the author, the number of compositions is 

inserted as a property to precisely define that the white noise added by the ELMD did not imply any 

influence on the original signal. Therefore, it is expected that there is no need to perform the 

decomposition, a fact that consumes a lot of time in the verification of the signal-to-noise ratio. 

Thus, the simulation performed for the GAB algorithm obtained 0.1743; 0.1183 and 0.1914 of 

root-mean-square error for components 1, 2 and 3 respectively. The results were obtained in 18.6 

seconds, indicating a 94% drop in the time of choice of the parameters for the original OELMD 

algorithm.  

 

5  Proposed algorithm for improvement in decomposition results  

After the signal is decomposed by GAB-ELMD, some product functions still present the mode 

mixing phenomenon, which could be observed in the previous section. Although it is an intrinsic 

phenomenon of the ELMD method, since the mix had also been high values, mainly in PF3, both in 

OELMD and GAB-ELMD, it is proposed in this work the reapplication of the decomposition based on 

RRMSE in order to reduction of the mode mixing problem. Recent works like [14] and [4] have 

already investigated the use of RRMSE as a measure parameter of the mix of modes between product 

functions, but none of them used this parameter in order to reapply the decomposition in the functions 

products that presented the highest RRMSE. Based on the characteristics of this function, 

reapplication of decomposition is based on the following steps. 

 
1)  GAB-ELMD is initially applied to decompose the signal.  

2)  The RRMSE matrix is then calculated. In this, it is possible to compare the relative root-

mean-square-error between the product functions. In this way, it is expected to find the 

product function that presented the greatest mix of modes (minimum value).  

 

Table 1. Performance comparison between OELMD and proposed methods 

Métodos 
RMSE Number 

of PFs 

Tempo 

(s) 
PF1 PF2 PF3 

OELMD 0,171 ± 0,017 0,125 ± 0,006 0,198 ± 0,013 3 310.5 

GAB1 0,174 ± 0,022 0,128 ± 0,007 0,202 ± 0,014 3 140.8 

GAB2 0,163 ± 0,038 0,117 ± 0,038 0,190 ± 0,041 3 131.2 

GAB3 0,161 ± 0,035 0,115 ± 0,034 0,187 ± 0,037 3 132.6 
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𝑀 = [

𝑅𝑀𝑆𝐸(𝑃𝐹𝑖 , 𝑃𝐹𝑖) ⋯ 𝑅𝑀𝑆𝐸(𝑃𝐹𝑖 , 𝑃𝐹𝑗)

⋮ ⋱ ⋮
𝑅𝑀𝑆𝐸(𝑃𝐹𝑗 , 𝑃𝐹𝑖 ⋯ 𝑅𝑀𝑆𝐸(𝑃𝐹𝑗 , 𝑃𝐹𝑗

] (17) 

 

3) The PF that presents the biggest problem of mode mixing is selected.  

4) LMD is applied to the PF previously selected.  

5) Each new product function is compared through the RRMSE with the PFs obtained in step 1. 

The PF of step 1 that obtains the closest resemblance to the new one will be added to it or 

replaced by that one (if the PF is selected in the third step).  

6) The procedure is repeated from step 2 to 5 until the lowest value in the RRMSE array is 

greater than or equal to 1, or the number of desired maximum iterations is reached.  

7) Gets the product functions with the least mix of modes.  

 

In order to compare the effectiveness of the proposed method we used the hypothetical signal 

defined by Equation 13, which was decomposed by the methods mentioned in Section 2 as shown in 

Figure 3, which displays the product functions in both time domain and frequency domain. Thus, the 

PFs obtained (Figures4-8) by them were again compared to the respective components of the original 

signal by means of the RMSE variable and the values are then presented in Table 2. 

 

 
Figure 4. Signal in time domain (left) and frequency domain (right) by SLMD method. 

 

 
Figure 5.  Signal in time domain (left) and frequency domain (right) by OLMD method. 

 

Table 2. Comparison of performance between proposed algorithm and methods discussed in Section 2. 

Methods 
RMSE Number 

of PFs PF1 PF2 PF3 

SLMD 0,3305 0,1343 0,3014 3 

OLMD 

ILMD 

OELMD 

0,3305 0,1335 0,3017 3 

0,2107 0,0862 0,3016 4 

0,1896 0,1242 0,2002 3 

Proposto 0,1202 0,0753 0,1360 3 
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Figure 6. Signal in time domain (left) and frequency domain (right) by ILMD method. 

 
Figure 7. Signal in time domain (left) and frequency domain (right) by OELMD method. 

 
Figure 8. Signal in time domain (left) and frequency domain (right) by proposed method. 

6  Conclusion 

The objective of this work was to apply a well-known genetic based optimization technique to a 

signal processing methodology in order to improve its results. The major drawback in ELMD is its 

dependence on the appropriate choice of the white noise parameters to be added in the signal. In the 

literature, only was found methodology based on brute-force tests for this purpose, however, in this, 

the processing time becomes an inconvenience.  

In the programming of the algorithms, three different cases were initially proposed, varying in 

some known parameters of the genetic algorithms, such as the initial population and the insertion (or 

not) of some form of mutation. Although all the methods showed similarity in the results of the 

OELMD decomposition, all presented much better results in terms of processing time, reducing the 

total time by more than 50%. Also, it had been identified that one of the parameters could be 

determined in a simpler way, without executing the ELMD to identify its results. Thus, another 

algorithm, again based on genetic algorithms, was proposed, which reduced the total processing time 

by more than 90% when compared to OELMD, obtaining slightly higher results.  

The decomposition reapplication based on the RRMSE values was also evaluated in order to 

mitigate the mode mixing problem, which was highly successful in its application to synthetic hybrid 

signals, presenting excellent results as shown in Table 2 and Figure 8.  

Thus, even with some considerations in the execution of the algorithms, the results obtained in 

this work suggest a great applicability of genetic algorithms to obtain the optimal white noise 
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parameters to be added to the signal in the ELMD. It is suggested as future work the application of the 

techniques - both the decomposition based on genetic algorithms and the reapplication of 

decomposition - into real signals. It is also suggested to use other optimization techniques, such as 

neural networks, for example.  
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