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Abstract. The search for optimized projects has led to the design of leaner and lighter structures, which
are more susceptible to dynamic effects. These must be thoroughly analyzed in order to avoid excessive
displacements, structural damage and to guarantee user comfort. However, the analytic solution of
dynamic problems tends to present great difficulties and, in some cases, cannot be obtained. Therefore,
researchers developed approximated methods. The most used approximated method is the Finite
Element Method (FEM). As a well-established method, the main focus of FEM studies has shifted from
the development of the method to the improvement of its results. In this context two lines of research
have provento greatly influence the accuracy and efficiency of the method, the study of refinements
and the study of error indicators. Even though refinements improve the accuracy of solutions they can
lead to greater computational efforts and complexity. A way to balance these drawbacks is to combine
them with error indicators. These allow the engineer to specify which mesh elements have greater
influence onthe resultsand apply refinements selectively. The present study focuses on precisely these
characteristics and evaluates the use of the Friberg Error Indicator in the dynamic analyses of two-
dimensional structures as a mean to the application of a selective p-refinement. Numerical examples,
considering plane stress state, are computationally modeled with the use of Lobatto’s hierarchical shape
functions and trigonometrical enrichments. The results of eigenvalues for the enrichment of different
elements are compared with those present in past literature.
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Dynamic analysis of plane stress problems by the HFEM with the use of error indicators for selective mesh enrichments

1 Introduction

The importance of dynamic analysis is many times associated with extreme loading scenarios such
as those created by earthquakes. However, if the direction, orientation or magnitude of a load changes
over time it will have a dynamic effect on the structure it acts upon. Therefore, common daily activities
such as people transit are dynamic loads. These must be considered in structural analysis to guarantee
not only structural integrity and efficiency, but also user comfort.

Thatbeingstated, alldynamicanalysis is based upon mathematical models that try to represent real
systems as best as possible. Howto construct and solve such models are the main concerns in dynamic
analysis as these directly impact result precision and computational efforts.

Based on Jafari-Talookolaei, Abedi and Attar [1], in the construction of models many structures
can be simplified as being two-dimensional (2D) without compromising most of the systems original
properties. In the study of 2D elements, according to Zhou et al. [2], in plane vibrationsare directly
linked to energy transmission. Furthermore, as stated by Bercin and Langley [3], these gain significance
as higher frequencies are analyzed. Different applications of in plane dynamic analysis can be found in
works such as those proposed by Chen, Jin and Liu [4], Arreola-Lucaset al. [5], Wang et al. [6], Noori,
Aslan and Temel [7] and Lyuetal. [8].

As for the solution, most mathematical models constructed to represent civil engineering structures
do not have known analytical solutions and must be solved through approximated methods. Among
these the Finite Element Method (FEM) is the most well established and widely used. Initially
introduced in the 50°s by Argyris [9] and Turner et al. [10], with the contributions of Clough [11],
Melosh [12], Irons and Barlow [13] and Zienkiewicz and Taylor [14], among others, the method’s main
bases had already been fully established by the early 70’s.

From this pointonward the mainfocus of papers in the field became improving resultprecisionand
h and p refinement procedures were introduced by authors such as Oliveira [15] and Prager [16]
respectively. While these refinements are implemented quite easily, they greatly increase the
computational effort. In this context hierarchical methods, such as the Hierarchical Finite Element
Method (HFEM) and Generalized Finite Element Method (GFEM) were created.

The GFEM incorporates known characteristics of the problem’s differential equation solution into
the approximated space. The method has been successfully applied to the dynamic analysis of different
structures as can be seen, for example, in the works of Arndt, Machado and Scremin [17], Torii and
Machado [18], Piedade Neto and Proenga[19], Shang et al. [20] and Corréa[21].

Although in comparison to traditional refinements the GFEM elevates convergence rates, it also
increases the complexity of the numerical problem. Accordingto Songetal. [22], asaway to counteract
the increase in computational efforts, error estimators and indicators can be used to define which
elements mostaffect the global solution. Oncetheseare identifiedthe enrichment may be locally applied
and the numerical problem reduced. Among the different error indicators presented in previous
literature, as compiled by Mackerle [23], the Friberg error indicator introduced by Friberg [24] has
shown accurate results and has scarcely been applied to 2D dynamic analysis.

Therefore, the objective of this paper is to explore the use of the Friberg indicator as a guide to
selective mesh enrichments. General characteristics and accuracy of the indicator were analyzed by
comparing calculated eigenvalues to indicator values. All numerical results were obtained through
coding in Python.

2 Finite element method

According to Zhao and Steven [25] in two-dimensional (2D) dynamic analysis two main types of
problems may be evaluated: plane strain and plane stress problems. These simplifications can be found
in a series of works such as Leung et al. [26], Kamal et al. [27] and Ho-Nguyen-Tan and Kim [28].
Considering such simplifications, if only free in plane vibration is analyzed and damping is neglected,
a 2D dynamic problem is govemed by:
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in which LT is the matrix of differential operands:
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o is the stress components vector, p is the material’s specific mass and it is the acceleration vector
relative to a 2D displacement field w with horizontal and vertical displacements u and v given by:
u=[u v 3)

Neglecting damping effectsin free vibration analysis is acceptable given that most common civil
engineering structures have, as presented by Chopra[29], damping ratios below 20%. Small damping
ratios lower natural frequencies and lengthen natural periods of vibration to approximately the same
values as the undamped solution.

In accordance to Desai and Abel’s [30] definition, the finite element method (FEM) is a numerical
method through which a continuous system is approximated by a discrete system with a finite number
of elementsconnected by nodal points. The behavior of each element is then obtained by a finite number
of parameters. An assembly of all the elements leads to a global response that closely resembles that of
the original continuous domain. The application of the Finite Element Method to Eq. (1) leads to the
equation of motion:

Mii + Ku =0, 4)

in which M and K are, respectively, the global mass and stiffness matrices. These are obtained through
the assembly of the elementary mass and stiffness matrices:

M® = [, pN"Nav, (5)

K° = [, B'DBaV. (6)

Equations (5) and (6) are formulated for an element with domain V. Inthese N is the matrix of
shape functions, B is given by:
B=1LN (7)

and D is the material properties matrix. In the case of plane stress, as used in this paper, considering E
as the elasticity modulus and v as Poisson’s ratio, D is given by:

1 v 0
p=-Et [v 1 0
1-v2
0 0 (1—-v)/2

Details on the formulation presented until this point are presented in in Soriano [31]. Furthermore,
considering the harmonic behavior of free vibration problems, Eq. (4), as detailed by Arndt [32], isa
generalized eigenvalue and eigenvector problem given by:

Ku— w?Mu=0. 9)

. (8)

2.1 Hierarchical shape functions

Gaininaccuracy in FEManalysisis usually achieved through refinement procedures. As explained
previously by Campion and Jarvis [33] the p refinement focuses on increasing the order of the functions
used to describe the problem’s variables. If standard p refinement is applied it requires that for every
increase in function order a new group of functions be obtained. This greatly elevates comp utational
costsasevery termofthe systemsmatrices needs to be recalculated. To avoid such problems hierarchical
functions are used. When using hierarchical bases, shape functions of order n+1 do not alter those of
order n. This allows matrices of order n be submatrices of those with order n+1.
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Two-dimensional hierarchical shape functions may be obtained by multiplying one-dimensional
hierarchical shape functions (1), as presented by Torii [34]:

N; = lj(f)lk(rl)- (10)

In Eq. (10) N; is a 2D shape function of a nodal point i referenced as j in the normalized £[-1,1]
axisand as k in the normalized n[-1,1] axis. In this work these shape functionswere obtained by the
multiplication of Lobatto’s one dimensional hierarchical polynomials. Lobatto’s seven first original
functions are represented in Fig. 1.

Equation (10)is valid consideringthe use of quadrilateral elements for the problem’s discretization.
This element’s main drawbacks are that it restricts accurate geometry mapping and may lead to locking
problems. However, it’s simplicity greatly facilitates formulation of hierarchical and enriched elements,
which, as previously stated, will be the focus of thisresearch.

104

0.8 4

0.6

0.4 4

0.2 4

0.0 4

T T T T T T T T T
-1.00 —0.75 -0.50 —0.25 0.00 025 0.50 075 1.00

Figure 1. Lobatto’s hierarchical polynomials
When working with 2D elements the increase in approximation order creates bubble and edge
functions aside from the problem’s original four nodal functions. Figure 2 represents the three types of
functions mentioned.

(a) Nodal Function (b) Edge Function (c) Bubble Function

4

Figure 2. Types of hierarchical 2D functions

These functions may be independently inserted into de approximation. However, as presented by
Solin [35], edge functions must be carefully treated once the conformity of adjacent elements must be
maintained. Thus, as this work is the first step in a research that focuseson the accuracy of an error
indicatorandnot, atthe presenttime, in improvingeigenvalue results, only bubble function will be used.
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3 Generalized finite element method

According to Piedade Neto and Proenca [19] the Generalized Finite Element Method (GFEM)
consists in modifying basic partition of unity (PU) interpolation through enrichment functions. These
are defined as functions with good approximation skills based on previous knowledge from known
solutions. One of the main advantages of GFEM, in accordance with Shang et al. [20] is that it does not
change the basic premises of classic FEM formulation, given that the used PU are conventional FEM
functions.

Based on this, Arndt, Machado and Scremin [17] define the GFEM approximated solution u¢ as:

u® = u®ygr + UlpNg, (11)

where u®gr is the classic FEM displacement field, and u¢ gy is the enriched displacement field. The
enriched portion is, as exposed by Corréa[21]:

Upnr = 27—y L (27i1¢’ijaij); (12)

where L; are the PU functions, nl is the level of enrichment, ®; ; are the enrichment base functions and
a;; the field (non-nodal) degrees of freedom.

In this paper the PU was taken as the Lagrangean linear functionsandthe enrichmentbase functions
used were the trigonometric functions proposed by Arndt [32] and later modified by Torii [34]. These
result in the following enriched shape functions written in a ¢ [-1,1] domain:

by =5 s (5] (3
by =5 [eos (H52) 1] (14)
by =i ()] a5
Pay = 2 cos (E2) -1 (16)

where £} isaparameter usually prescribed as 8; = jm. Inthiswork f; = mwillbe used and the enriched
functions can be seenin Fig. 3.

The construction of 2D enriched function follows the same process demonstrated in Section 2.1.
Therefore, the same considerations made in regards to bubble and edge functions are valid in GFEM
examples. Also, for the same reasons previously stated, this work will only apply bubble GFEM
functions to enriched examples.
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Figure 3. GFEM enriched 1D shape functions
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4  Friberg errorindicator

As presented by Song et al. [22] element shape, size and nodal point distribution are all factors
directly linked to errors in discretization based approximated methods. Thus, the final error present in
FEM and GFEM results can be seen as a sum of element error. In this context the importance of error
indicators becomes clear, once these are capable of defining which elements have greater impact on the
global solution. The application of higher levels of enrichments on such elements can greatly improve
results with a computational cost lower than that obtained applying the enrichment on all elements.

In 1996 Friberg [24] proposed an error indicator that identifies the magnitude of eigenvalue
variation in a hierarchical process. The indicator is mainly based on the Rayleigh quotient:

mT Q)
A(n) ¢(n) K(n)(pl( , 17)
¢, My,
the measure of a specific frequency error e; by:
/.L(n)_lgn+m)
e =~ A(.rl;.) — (18)
v
with the representation of the problem’s matrices in submatrices as exemplified:
Koy Kam
K = ) 19
(n+m) K(m n K(m) ( )

InEq. (17)to (19))an original approximation of order n Was hierarchically enhanced to order n+m.
That bem%stated ¢( is the eigenvectorassociated with /1 ) eigenvalue of an approximation order n
and 4; (M) s the refined eigenvalue. Combining these prmmpals the Friberg indicator n; is defined as:

¢(n) [K(mn) ’1( M(mn)] [[K(m) A )M(m)] ] [K(mn) }L( )M(mn)]d’(n)

o K™

The detailed mathematical development of the indicator can be found in Friberg [24], Duarte [36]
and Malacarne [37]. Equation (20) shows that the indicator does not depend on the n+m problem’s
solution. However, the n+m order matrices must still be calculated and for high order enrichments the
indicator can demand high computational costs, especially due to the necessity of matrix inversion.

One of the waysto counteract the increase in computational effortas shown in Friberg[24], Friberg
etal. [38] and Malacarne [37] is the use of the indicator’s element sum property:

Ntotal = z:i'c=1 ni, (21)

where a problem’s Friberg indicator 7¢4¢4; Can be obtained as the sum of each of its k elements
individual n; indicators. This property allows the reduction of the submatricescreated by the enrichment
process and, therefore, simplifiesthe indicator calculation.

Finally, itis importantto note that the indicator isa dimensionless number that can assume negative
values. In general, the higherthe indicator value the greater is an element’s effect on the global solution.
Malacarne [37], showed that, for one-dimensional examples, even when negative values appeared the
closest these were to positive numbers, the greater the element impact on result improvement. These
correlations for two-dimensional analyzes have yet to be detailed.

n = (20)

5 Numerical results

With the intent of evaluating general characteristics of the Friberg indicator as well as it’s accuracy
both the indicator values and natural frequencies of in plane free vibrations were analyzed for different
refinements. All examplesconsidered the plane stress state. The analyzed structure, Fig. 4(a), was a
square plate with dimensions L = H = 1 m, thickness t = 0.05 m, elasticity modulus E = 210 GPa,

CILAMCE 2019
Proceedings of the XL Ibero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,
Natal/RN, Brazil, November 11-14,2019



C.C. Cittadin, M. Arndt

mass density p = 8000 kg /m3 and Poisson ratio v = 0.3. This same structure had been previously
studied by Torii [34] and the author’s results for highly refined HFEM simulations were used as
reference.

Lobatto’s firstorder polynomials were used for geometry mapping. Different meshes were used for
numerical examples. All elements were numbered from bottom to top and right to left. All mesheswill
be referred to according to the number of rows and then columns. Figures 4(b), 4(c) and 4(d)
respectively represent a 2x2, 3x3 and 5x5 mesh.

. o | 6| 3 25|20(15(10 | 5
2 24191419 | 4

T 8 | 5 2 23(18/13| 8 | 3
3 1 1. 2201171127 | 2

| 1 21016116 | 1

L

(a) (b) (c) (d)

Figure 4. (a) Analyzed plate (b) 2x2 mesh (c) 3x3 mesh (d) 5x5 mesh

5.1 Indicator accuracy in HFEM

To determine the accuracy of the indicator all indicator values were calculated as well as all
eigenvaluesafter the refinement was applied to each of the mesh’s elements. Initially a single second
order bubble function Ns:

N5 = (; G 1)) X (§ “(n?- 1>>, (22)

was used in the refinement process. Tables 1 through 3 indicate the results obtained for different target
frequencies and different meshes.

With the intent of facilitating visualization of the indicator accuracy all the tables are divided into
four columns. The firstand third columns contain, respectively, the remaining errors after the bubble
function was added and the Friberg indicator values obtained. The second and fourth columns indicate
which element was refined to obtain the results in the previous column. All results were ordered so that
if the indicator correctly identifies the best refinement order, the second and fourth columns will be the
same. All discrepancies observed were highlighted in yellow.

Based on the results shown in Tables 1 to 3 it can be stated that the Friberg indicator is capable of
correctly identifying the best sequence in which to apply higher order functions selectively. The only
exceptionto this behavior occurs whenthe refinement of differentelements results in very similar errors.

This, however, can be attributed to possible numerical errors present in the analyses. Aside from
that, it must be stated that the great proximity in calculated eigenvalues may be attributed to the
symmetric characteristics of the analyzed structure and proposed meshes. Complex domains and
distorted meshes will most likely lead to greater eigenvalue differences and, hence, indicator precision.
Lastly, considering that rarely will a single element be refined, small discrepancies as observed will not
affect final result precision.
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Table 1. Results for the first frequency of a 3x3 mesh

Error after refmement Refined Element Indlcator\_/alue Indicated Element
(ascending) (descending)
4.69% 70r9 0.006296074 70r9
4.95% 8 0.001622766 8
4.99% 5 0.000765749 5
5.01109% lor3 0.000432685 40r6
5.01110% 40r6 0.000408973 3orl
5.03% 2 0.000099790 2

Table 2. Results for the twelfth frequency of a 3x3x mesh

Error ?::i(;;zfi:ge)ment Refined Element I?j::;:;;i';)e Estimated Element
22.61% 2 0.031331997 2
23.88% 5 0.011536437 7or9
23.99% 7or9 0.009966959 5
24.34% 8 0.002720215 8
24.43% 40r6 0.001901176 40r6
24.47% lor3 0.000986353 lor3

Table 3. Results for the sixth frequency of a 5x5 mesh

Error after refinement Indicator value

Refined Element Indicated Element

(ascending) (descending)

3.830% 6ori0 0.006572255 6or10
3.869% 11or15 0.006172690 11or15
3.984% 3 0.004092441 3
4.065% 12 or14 0.002646015 12 or14
4.065% 7or9 0.002621880 7or9
4.088% 2or4 0.002135207 2or4
4.111% 17 0r19 0.001798393 17 0r19
4.121% lor5 0.001586163 lor5
4.124% 18 0.001560195 18
4.132% 16 or 20 0.001418959 16 or 20
4.171% 23 0.000731346 23
4.171% 8 0.000717640 8
4.187% 22 or24 0.000426887 22 0r24
4.193% 13 0.000299469 13
4.198% 21o0r25 0.000219282 21o0r25

As previously stated in Section 4 the indicator is a dimensionless number that can assume negative
values. These tend to be observed in the last frequencies of an approximation. Table 4 shows negative
indicator results obtained for the analysis of the twenty-third frequency of a 3x3 mesh. For this case,
since reference results were not available, the calculated frequencies were ordered in the first column in
ascending order.
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Table 4. Coefficients in constitutive relations

Calculated Frequency Indicator value

Refined Element Estimated Element

(rad/s) (descending)
60005.72205 2 -0.113538647 8
60128.09292 5 -0.117485905 7or9
60298.08876 40r6 -0.369223106 5
60319.43695 8 -0.373628341 40r6
60354.98693 lor3 -0.682064403 2
60436.19543 7o0r9 -0.691384929 lor3

Contrary to the results obtained by Malacarne [37] for one-dimensional problems, it is shown in
Table 4 that there is no direct relation between the best eigenvalue results and the absolute maximum
indicator. Therefore, the negative Friberg indicator values are not recommended as parameters for
defining the sequence of selective refinements. This does not pose a problem for most dynamic analysis
given that negative values only appear on the last frequencies of an approximation which tend not to be
the focus of most problems.

5.2 Indicator accuracy in GFEM

The same analysis previously demonstrated for HFEM was carried out in a GFEM problem to
verify if the indicator behavior is the same. For this, sixteen enriched bubble functions were added to
the classic FEM problem. These were obtained by multiplying the previously detailed functions shown
in Fig. 3. The results for the first and the twelfth frequencies of a 3x3 mesh are presented in Tables 5
and 6. These are organized in the same way as previous tables.

Table 5. GFEM results for the first frequency of a 3x3 mesh

Error (a::ig rr\z?r:\ge)ment Refined Element l?g;iact:r:(;ilg)e Estimated Element
4.67% 70r9 0.006594 70r9
4.94% 8 0.001701 8
4.99% 5 0.000808 5
5.0094% lor3 0.000461 4or6
5.0095% 4dor6 0.000435 lor3
5.03% 2 0.000111 2

Table 6. GFEM results for the twelfth frequency of a 3x3 mesh

Error afterrefinement Indicator value

(ascending) Refined Element (descending) Estimated Element
20.90% 2 0.062702 2
23.24% 5 0.021136 5
23.35% lor3 0.020002 lor3
23.61% 4or6 0.016229 4or6
23.87% 7o0r9 0.014458 7o0r9
24.18% 8 0.005159 8

The results obtained reiterate the comments made in regards to HFEM. The Friberg indicator
maintains the same precision in GFEM examples as it does in HFEM examples.

CILAMCE 2019
Proceedings of the XL Ibero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,
Natal/RN, Brazil, November 11-14,2019



Dynamic analysis of plane stress problems by the HFEM with the use of error indicators for selective mesh enrichments

5.3 Simplifying the Friberg indicator calculation

The main concernrelated to the Friberg indicator is the computational effort associated with its
calculation. This is especially due to the necessity of inverting a matrix which is a known demanding
process. There are three main ways of reducing this problem, all of whichreducethe order of the inverse
matrix:

[[K(m) — 2 M(m)]_l]T, (23)

The first, as previously presented in Section 4 and indicated by Friberg [24], is the indicator’s
elementsum property. This property states thatif a refinementis applied to each ofthe mesh’s individual
elements, the sum of all the indicators will equal the value that would be obtained if the refinement was
applied to all elements simultaneously. To test this, bubble function N5 was applied individually and
simultaneously to all four of a 2x2 mesh’s elements in HFEM. The results canbe seenin Table 7.

Table 7. Indicator element sum property

Frequencies Simultaneous Sum(1+2+3+4)

1 0.0259665 0.0259665
2 0.0335773 0.0335773
3 0.0998930 0.0998930
4 0.1016362 0.1016362
5 0.0837323 0.0837323
6 0.2761580 0.2761580
7 0.0384843 0.0384843
8 0.3854626 0.3854626
9 0.4473619 0.4473619
10 0.2233309 0.2233309
11 0.2233309 0.2233309
12 -1.6060391 -1.6060391

Asexpected, the results of both tests were the same. Ifasingle new degree of freedomis introduced
in a one-dimensional example, this characteristic automatically reduces the matrix presented in Eq. (23)
to a single value, simplifying the mathematical procedure.

However, in 2D problems when the order of the approximation is elevated it affects two directions
and, therefore, the minimum order of the matrix that must be inverted is two. Based on the same idea as
the element sum procedure, this work tested the validity of dividing refinements in different directions.

A classic FEM approximation field in 2D analysis with the proposed quadrilateral element is made
up of four shape functions (N1, N2, N3, N4) that result in a shape function matrix N:

N=[N10N20N30N40
0 N1 0 N2 0 N3 0 N4F

If a single bubble function N5 is added, as in previous tests, it will affect both the problem’s
horizontal direction (u) and vertical direction (v) and N will be defined as:

N10N20N30N40N50]
0 N1 0 N2 0O N3 0 N4 0 N5F

What this work proposes is, therefore, dividing the problem into its directions by first refining the
horizontal direction (u):

(24)

N=| (25)

N1 0 N2 O N3 O N4 0 N5

Nz[o N1 0 N2 0 N3 0 N4 oF

(26)
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and adding the resulting indicator value of an element with the result obtained by refining only the
vertical direction (v) with:

N10N20N30N400]
0 N1 0O N2 0O N3 0 N4 N5F

This procedure was carried out for all four elements of a 2x2 mesh and the results are presented in
Table 8. The comparison of indicator results obtained by refining both directions simultaneously and by
adding results of individually refining each direction were the same. This allows the reduction of the
matrix in Eq. (23) to a single value for each individual calculation in a case were a n order problem s
elevated to n+1.

N=[ (27)

Table 8. Indicator direction sum property

Element C_Iassm u refinement v refinement Sumofuandv
refinement
1 0.000946855 0.000792984 0.000153871 0.000946855
2 0.000946855 0.000792984 0.000153871 0.000946855
3 0.012036416 0.000118858 0.011917557 0.012036416
4 0.012036416 0.000118858 0.011917557 0.012036416

Up until this point all simplification procedures presented considered the elevation of a single
degree of freedom in each of the problem’s directions. However, most refinement procedures utilize a
high number of new shape function and, hence, lead to a high number of field degrees of freedom. This
implies that even if the element and direction sum properties are utilized, the matrices involved in the
indicator calculation will still pose computational difficulties.

With the objective of alwaysreducing the inverse matrix present in Eq. (23) to a single number,
this work evaluated the possibility of applying shape functions consecutively instead of simultaneously
for the indicator calculation. This example was analyzed through HFEM with the use of four of
Lobatto’s bubble shape functions:

N5=<§ 2(52—1>)x(§£(n2—1>>, (28)
N6=(§ 3(52—1)>x<§ §(n2—1)n), (29)

N; = (; 282 - 1)6) x (; “(n? - 1)) (30)

Ng = (; 22 - 1)5) X (;chnz - 1)n>- (31)

The indicator values were calculated applying all four functions at once, the classic procedure, and
by applying one after the otherand adding up all the indicator results, the consecutive procedure. The
comparison of each of these processes results considering the first frequency of a 3x3 mesh are shown
in Table 9.

The results presented in Table 9 indicate that indicator results obtained through both procedures
are very close in value but are not the same. These discrepancies may be caused by numerical errors.
Thatbeingsaid, eventhough the results are notidentical they indicatethe sameorder of element priority.
In conclusion, both procedures can be used to define which element has the greatest effect on the global
solution.
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Table 9. Consecutive refinement indicator values

Classic Procedure Consecutive Procedure
Indicator Indicated Element Indicator Indicated Element
0.006481530 7o0r9 0.006493820 7o0r9
0.001672178 8 0.001673824 8
0.000794406 5 0.000796035 5
0.000452694 4o0r6 0.000454154 4or6
0.000427656 lor3 0.000430506 lor3
0.000108785 2 0.000108956 2

5.4 Friberg indicator as a global error estimator

Aside from indicating which elements mostly contribute to a global solution an ideal situation is
that in which the indicator can be used as an error estimator. This means that the value of the indicator
is able to represent the global error and based on this the obtained solution can be deemed as acceptable
or not for a certain approximation. Friberg et al. [38] proposed using the sum of all of a refined mesh’s
indicators n;™*1 as a global error estimator £ according to:

e=2xn™1  forn™1>0, (32)

where all negative indicators are not considered.

To test the validity of the Friberg indicator as a global error estimator, HFEM function N5, used in
previousexamples, wasadded to all of the elements of different mesh discretizations. The final indicator
value and the error of the first frequency in comparison to the reference value obtained by Torii [34]
were calculated foreach different discretization. These results are displayed in Fig. 5.
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Figure 5. Error and indicator values for different meshes

Itis clear that the indicator decreases as the global error decreases and both tend to zero as a greater
number of elements is introduced in the mesh. However, the relation between the indicator and the error
is not well defined as seen in Fig. 6. This means that knowing the indicator value cannot be trustfully
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correlated with the error value. Therefore, the definition of a tolerance value that defines a small enough
indicator to represent a desired error is subjective unless accompanied by a previous study of the error
versus indicator variation for a specific problem and frequency.
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Figure 6. Error and indicator relation

6 Final remarks

Based on the examples presented in this work for HFEM and GFEM dynamic analysisit can be
concludedthatthe Fribergindicator isan accurate measure for defining an elementenrichment sequence
in cases of selective enrichments. However, when used as a global error estimator a previous analysis
of the indicator is recommended once it does not clearly relate to error values. Hence, tolerance values
must be carefully chosen.

Finally, it was also shown that the necessity of inverting a matrix, which is a computationally
demanding job, can be avoided with the use of the indicator’s element and direction sum properties. In
cases where higher levels of refinements are applied each shape function may be applied consecutively
and lead to the same resultsas when applied simultaneously. It is important to note that even though this
process reduces computational effort in obtaining each indicator value it requires that the process be
repeated many times. Therefore, a detailed comparison of programming running times must be done to
effectively determine if this process is advantageous.

Itis expectedthatall behaviors observedare maintained in more complex geometries and boundary
conditions as well as in cases of distorted meshes. Nevertheless, these cases must be analyzed in future
works to confirm the indicator behavior.
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