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Abstract. The search for optimized projects has led to the design of leaner and lighter structures, which 

are more susceptible to dynamic effects. These must be thoroughly analyzed in order to avoid excessive 
displacements, structural damage and to guarantee user comfort. However, the analytic solution of 
dynamic problems tends to present great difficulties and, in some cases, cannot be obtained. Therefore, 

researchers developed approximated methods. The most used approximated method is the Finite 
Element Method (FEM). As a well-established method, the main focus of FEM studies has shifted from 
the development of the method to the improvement of its results. In this context two lines of research 

have proven to greatly influence the accuracy and efficiency of the method, the study of refinements  
and the study of error indicators. Even though refinements improve the accuracy of solutions they can 
lead to greater computational efforts and complexity. A way to balance these drawbacks is to combine 

them with error indicators. These allow the engineer to specify which mesh elements have greater 
influence on the results and apply refinements selectively. The present study focuses on precisely these 
characteristics and evaluates the use of the Friberg Error Indicator in the dynamic analyses of two-

dimensional structures as a mean to the application of a selective p-refinement. Numerical examples, 
considering plane stress state, are computationally modeled with the use of Lobatto’s hierarchical shape 
functions and trigonometrical enrichments. The results of eigenvalues for the enrichment of different 

elements are compared with those present in past literature.  
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1  Introduction 

The importance of dynamic analysis is many times associated with extreme loading scenarios such 

as those created by earthquakes. However, if the direction, orientation or magnitude of a load changes 
over time it will have a dynamic effect on the structure it acts upon. Therefore, common daily activities 
such as people transit are dynamic loads. These must be considered in structural analysis to guarantee 

not only structural integrity and efficiency, but also user comfort.  
That being stated, all dynamic analysis is based upon mathematical models that try to represent real 

systems as best as possible.  How to construct and solve such models are the main concerns in dynamic 

analysis as these directly impact result precision and computational efforts.  
Based on Jafari-Talookolaei, Abedi and Attar [1], in the construction of models many structures 

can be simplified as being two-dimensional (2D) without compromising most of the systems original 

properties. In the study of 2D elements, according to Zhou et al. [2], in plane vibrations are directly 
linked to energy transmission. Furthermore, as stated by Bercin and Langley [3], these gain significance 
as higher frequencies are analyzed. Different applications of in plane dynamic analysis can be found in 

works such as those proposed by Chen, Jin and Liu [4], Arreola-Lucas et al. [5], Wang et al. [6], Noori, 
Aslan and Temel [7] and Lyu et al. [8]. 

As for the solution, most mathematical models constructed to represent civil engineering structures 

do not have known analytical solutions and must be solved through approximated methods. Among 
these the Finite Element Method (FEM) is the most well established and widely used. Initially 
introduced in the 50’s by Argyris [9] and Turner et al. [10], with the contributions of Clough [11], 

Melosh [12], Irons and Barlow [13] and Zienkiewicz and Taylor [14], among others, the method’s main 
bases had already been fully established by the early 70’s.  

From this point onward the main focus of papers in the field became improving result precision and 

h and p refinement procedures were introduced by authors such as Oliveira [15] and Prager [16] 
respectively. While these refinements are implemented quite easily, they greatly increase the 
computational effort. In this context hierarchical methods, such as the Hierarchical Finite Element 

Method (HFEM) and Generalized Finite Element Method (GFEM) were created. 
The GFEM incorporates known characteristics of the problem’s differential equation solution into 

the approximated space. The method has been successfully applied to the dynamic analysis of different 

structures as can be seen, for example, in the works of Arndt, Machado and Scremin [17], Torii and 
Machado [18], Piedade Neto and Proença [19], Shang et al. [20] and Corrêa [21]. 

Although in comparison to traditional refinements the GFEM elevates convergence rates, it also 

increases the complexity of the numerical problem.  According to Song et al. [22], as a way to counteract 
the increase in computational efforts, error estimators and indicators can be used to define which 
elements most affect the global solution. Once these are identified the enrichment may be locally applied 

and the numerical problem reduced. Among the different error indicators presented in previous 
literature, as compiled by Mackerle [23], the Friberg error indicator introduced by Friberg [24] has 
shown accurate results and has scarcely been applied to 2D dynamic analysis. 

Therefore, the objective of this paper is to explore the use of the Friberg indicator as a guide to 
selective mesh enrichments. General characteristics and accuracy of the indicator were analyzed by 
comparing calculated eigenvalues to indicator values. All numerical results were obtained through 

coding in Python.  

2  Finite element method 

According to Zhao and Steven [25] in two-dimensional (2D) dynamic analysis two main types of 
problems may be evaluated: plane strain and plane stress problems. These simplifications can be found 

in a series of works such as Leung et al. [26], Kamal et al. [27] and Ho-Nguyen-Tan and Kim [28]. 
Considering such simplifications, if only free in plane vibration is analyzed and damping is neglected, 
a 2D dynamic problem is governed by: 
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 𝑳𝑻𝝈 − 𝜌�̈� = 𝟎, (1) 

 in which 𝑳𝑻  is the matrix of differential operands: 

 𝑳 = [

𝜕

𝜕𝑥
0

𝜕

𝜕𝑦

0
𝜕

𝜕𝑦

𝜕

𝜕𝑥

], (2) 

𝝈 is the stress components vector, 𝜌 is the material’s specific mass and �̈� is the acceleration vector 
relative to a 2D displacement field 𝒖 with horizontal and vertical displacements 𝑢 and 𝑣 given by: 

 𝒖 = [𝑢 𝑣]𝑇. (3) 

Neglecting damping effects in free vibration analysis is acceptable given that most common civil 
engineering structures have, as presented by Chopra [29], damping ratios below 20%. Small damping 

ratios lower natural frequencies and lengthen natural periods of vibration to approximately  the same 
values as the undamped solution. 

In accordance to Desai and Abel’s [30] definition, the finite element method (FEM) is a numerical 

method through which a continuous system is approximated by a discrete system with a finite number 
of elements connected by nodal points. The behavior of each element is then obtained by a finite number 
of parameters. An assembly of all the elements leads to a global response that closely resembles that of 

the original continuous domain. The application of the Finite Element Method to Eq. (1) leads to the 
equation of motion: 

   𝑴�̈� + 𝑲𝒖 = 𝟎, (4) 

in which 𝑴 and 𝑲 are, respectively, the global mass and stiffness matrices. These are obtained through 
the assembly of the elementary mass and stiffness matrices: 

   𝑴𝒆 = ∫ 𝜌𝑵𝑇𝑵𝑑𝑉𝑉 , (5) 

   𝑲
𝒆

= ∫ 𝑩
𝑇

𝑫𝑩𝑑𝑉𝑉 . (6) 

Equations (5) and (6) are formulated for an element with domain 𝑉.  In these N is the matrix of 
shape functions, 𝑩 is given by: 

   𝑩 = 𝑳𝑵 (7) 

and 𝑫 is the material properties matrix. In the case of plane stress, as used in this paper, considering 𝐸 
as the elasticity modulus and  𝜈 as Poisson’s ratio, 𝐃 is given by: 

 𝑫 =
𝐸

1−𝜈2
[
1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈)/2

]. (8) 

Details on the formulation presented until this point are presented in in Soriano [31]. Furthermore, 

considering the harmonic behavior of free vibration problems, Eq. (4), as detailed by Arndt [32], is a 
generalized eigenvalue and eigenvector problem given by: 

   𝑲𝒖 − 𝜔2𝑴𝒖 = 𝟎. (9) 

2.1 Hierarchical shape functions 

 Gain in accuracy in FEM analysis is usually achieved through refinement procedures. As explained 

previously by Campion and Jarvis [33] the p refinement focuses on increasing the order of the functions 
used to describe the problem’s variables. If standard p refinement is applied it requires that for every 
increase in function order a new group of functions be obtained. This greatly elevates comp utational 

costs as every term of the systems matrices needs to be recalculated. To avoid such problems hierarchical 
functions are used. When using hierarchical bases, shape functions of order n+1 do not alter those of 
order n. This allows matrices of order n be submatrices of those with order n+1.  
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Two-dimensional hierarchical shape functions may be obtained by multiplying one-dimensional 
hierarchical shape functions (𝑙), as presented by Torii [34]: 

     𝑁𝑖 = 𝑙𝑗(𝜉)𝑙𝑘(𝜂). (10) 

In Eq. (10) 𝑁𝑖 is a 2D shape function of a nodal point i referenced as j in the normalized 𝜉[-1,1] 

axis and as k in the normalized 𝜂[-1,1] axis. In this work these shape functions were obtained by the 
multiplication of Lobatto’s one dimensional hierarchical polynomials. Lobatto’s seven first original 
functions are represented in Fig. 1. 

Equation (10) is valid considering the use of quadrilateral elements for the problem’s discretization. 
This element’s main drawbacks are that it restricts accurate geometry mapping and may lead to locking 
problems. However, it’s simplicity greatly facilitates formulation of hierarchical and enriched elements, 

which, as previously stated, will be the focus of this research. 

 

Figure 1. Lobatto’s hierarchical polynomials 

When working with 2D elements the increase in approximation order creates bubble and edge 
functions aside from the problem’s original four nodal functions. Figure 2 represents the three types of 
functions mentioned. 

  

Figure 2. Types of hierarchical 2D functions 

These functions may be independently inserted into de approximation. However, as presented by 

Solin [35], edge functions must be carefully treated once the conformity of adjacent elements must be 
maintained. Thus, as this work is the first step in a research that focuses on the accuracy of an error 
indicator and not, at the present time, in improving eigenvalue results, only bubble function will be used. 

 

(a) Nodal Function (b) Edge Function (c) Bubble Function 
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3  Generalized finite element method 

According to Piedade Neto and Proença [19] the Generalized Finite Element Method (GFEM) 

consists in modifying basic partition of unity (PU) interpolation through enrichment functions. These 
are defined as functions with good approximation skills based on previous knowledge from known 
solutions. One of the main advantages of GFEM, in accordance with Shang et al. [20] is that it does not 

change the basic premises of classic FEM formulation, given that the used PU are conventional FEM 
functions.  

Based on this, Arndt, Machado and Scremin [17] define the GFEM approximated solution 𝑢𝑒 as: 

   𝑢𝑒 = 𝑢𝑒
𝑀𝐸𝐹 + 𝑢𝑒

𝐸𝑁𝑅, (11) 

where 𝑢𝑒
𝑀𝐸𝐹 is the classic FEM displacement field, and 𝑢𝑒

𝐸𝑁𝑅 is the enriched displacement field. The 
enriched portion is, as exposed by Corrêa [21]: 

   𝑢𝑒
𝐸𝑁𝑅 = ∑ 𝐿𝑖

2
𝑖=1 (∑ 𝛷𝑖𝑗𝑎𝑖𝑗

𝑛𝑙
𝑗=1 ), (12) 

where 𝐿𝑖  are the PU functions, 𝑛𝑙 is the level of enrichment, Φ𝑖𝑗 are the enrichment base functions and 
𝑎𝑖𝑗 the field (non-nodal) degrees of freedom.  

In this paper the PU was taken as the Lagrangean linear functions and the enrichment base functions 

used were the trigonometric functions proposed by Arndt [32] and later modified by Torii [34]. These 
result in the following enriched shape functions written in a 𝜉 [-1,1] domain: 

   𝜓1𝑗 =
1−𝜉

2
[𝑠𝑖𝑛(

𝛽𝑗(𝜉+1)

2
)], (13) 

   𝜓2𝑗 =
1−𝜉

2
[𝑐𝑜𝑠(

𝛽𝑗(𝜉+1)

2
) − 1], (14) 

   𝜓3𝑗 =
1+𝜉

2
[𝑠𝑖𝑛 (

𝛽𝑗(𝜉−1)

2
)], (15) 

   𝜓4𝑗 =
1+𝜉

2
[𝑐𝑜𝑠 (

𝛽𝑗(𝜉−1)

2
) − 1], (16) 

where 𝛽𝑗 is a parameter usually prescribed as 𝛽𝑗 = 𝑗𝜋. In this work  𝛽𝑗 = 𝜋 will be used and the enriched 

functions can be seen in Fig. 3.  
The construction of 2D enriched function follows the same process demonstrated in Section 2.1. 

Therefore, the same considerations made in regards to bubble and edge functions are valid in GFEM 

examples. Also, for the same reasons previously stated, this work will only apply bubble GFEM 
functions to enriched examples. 

 

Figure 3. GFEM enriched 1D shape functions 
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4  Friberg error indicator 

As presented by Song et al. [22] element shape, size and nodal point distribution are all factors 

directly linked to errors in discretization based approximated methods. Thus, the final error present in 
FEM and GFEM results can be seen as a sum of element error. In this context the importance of error 
indicators becomes clear, once these are capable of defining which elements have greater impact on the 

global solution. The application of higher levels of enrichments on such elements can greatly improve 
results with a computational cost lower than that obtained applying the enrichment on all elements. 

In 1996 Friberg [24] proposed an error indicator that identifies the magnitude of eigenvalue 

variation in a hierarchical process. The indicator is mainly based on the Rayleigh quotient: 

   𝜆𝑖
(𝑛)

=
𝝓𝑖

(𝑛)𝑇
𝑲(𝑛)𝝓𝑖

(𝑛)

𝝓
𝑖
(𝑛)𝑇

𝑴(𝑛)𝝓
𝑖
(𝑛)

, (17) 

the measure of a specific frequency error 𝑒𝑖  by: 

   𝑒𝑖 =
𝜆𝑖

(𝑛)
−𝜆𝑖

(𝑛+𝑚)

𝜆
𝑖
(𝑛) , (18) 

with the representation of the problem’s matrices in submatrices as exemplified: 

   𝑲(𝑛+𝑚) = [
𝑲(𝑛) 𝑲(𝑛,𝑚)

𝑲(𝑚,𝑛) 𝑲(𝑚)
]. (19) 

In Eq. (17) to (19) an original approximation of order n was hierarchically enhanced to order n+m. 
That being stated, 𝝓𝑖

(𝑛)
 is the eigenvector associated with 𝜆𝑖

(𝑛)
 eigenvalue of an approximation order n 

and 𝜆𝑖
(𝑛+𝑚)

 is the refined eigenvalue. Combining these principals, the Friberg indicator 𝜂𝑖 is defined as: 

   𝜂𝑖 ≈
𝝓𝑖

(𝑛)𝑇
[𝑲(𝑚,𝑛)−𝜆𝑖

(𝑛)
𝑴(𝑚,𝑛)]

𝑇
[[𝑲(𝑚)−𝜆𝑖

(𝑛)
𝑴(𝑚)]

−1
]

𝑇

[𝑲(𝑚,𝑛)−𝜆𝑖
(𝑛)

𝑴(𝑚,𝑛)]𝝓𝑖
(𝑛)

𝝓
𝑖
(𝑛)𝑇

𝑲(𝑛)𝝓
𝑖

(𝑛)
. (20) 

The detailed mathematical development of the indicator can be found in Friberg [24], Duarte [36] 

and Malacarne [37]. Equation (20) shows that the indicator does not depend on the n+m problem’s 
solution. However, the n+m order matrices must still be calculated and for high order enrichments the 
indicator can demand high computational costs, especially due to the necessity of matrix inversion.  

One of the ways to counteract the increase in computational effort as shown in Friberg [24], Friberg 
et al. [38] and Malacarne [37] is the use of the indicator’s element sum property: 

   𝜂𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜂𝑖
𝑘
𝑖=1 , (21) 

where a problem’s Friberg indicator  𝜂𝑡𝑜𝑡𝑎𝑙 can be obtained as the sum of each of its k elements 

individual 𝜂𝑖 indicators. This property allows the reduction of the submatrices created by the enrichment 
process and, therefore, simplifies the indicator calculation.  

Finally, it is important to note that the indicator is a dimensionless number that can assume negative 

values. In general, the higher the indicator value the greater is an element’s effect on the global solution. 
Malacarne [37], showed that, for one-dimensional examples, even when negative values appeared the 
closest these were to positive numbers, the greater the element impact on result improvement. These 

correlations for two-dimensional analyzes have yet to be detailed.  

5  Numerical results 

With the intent of evaluating general characteristics of the Friberg indicator as well as it’s accuracy 
both the indicator values and natural frequencies of in plane free vibrations were analyzed for different 
refinements. All examples considered the plane stress state. The analyzed structure, Fig. 4(a), was a 

square plate with dimensions 𝐿 = 𝐻 = 1 𝑚, thickness 𝑡 = 0.05  𝑚, elasticity modulus 𝐸 = 210 𝐺𝑃𝑎, 
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mass density 𝜌 = 8000 𝑘𝑔/𝑚3 and Poisson ratio 𝜈 = 0.3. This same structure had been previously 
studied by Torii [34] and the author’s results for highly refined HFEM simulations were used as 
reference.  

Lobatto’s first order polynomials were used for geometry mapping. Different meshes were used for 
numerical examples. All elements were numbered from bottom to top and right to left. All meshes will 
be referred to according to the number of rows and then columns. Figures 4(b), 4(c) and 4(d)  

respectively represent a 2x2, 3x3 and 5x5 mesh. 

 

Figure 4. (a) Analyzed plate (b) 2x2 mesh (c) 3x3 mesh (d) 5x5 mesh 

5.1 Indicator accuracy in HFEM  

To determine the accuracy of the indicator all indicator values were calculated as well as all 

eigenvalues after the refinement was applied to each of the mesh’s elements. Initially a single second 
order bubble function 𝑁5: 

  𝑁5 = (
1

2
√

3

2
(𝜉2 − 1)) × (

1

2
√

3

2
(𝜂2 − 1)), (22) 

was used in the refinement process. Tables 1 through 3 indicate the results obtained for different target 
frequencies and different meshes. 

 With the intent of facilitating visualization of the indicator accuracy all the tables are divided into 
four columns. The first and third columns contain, respectively, the remaining errors after the bubble 
function was added and the Friberg indicator values obtained. The second and fourth columns indicate 

which element was refined to obtain the results in the previous column. All results were ordered so that 
if the indicator correctly identifies the best refinement order, the second and fourth columns will be the 
same. All discrepancies observed were highlighted in yellow.  

Based on the results shown in Tables 1 to 3 it can be stated that the Friberg indicator is capable of 
correctly identifying the best sequence in which to apply higher order functions selectively. The only 
exception to this behavior occurs when the refinement of different elements results in very similar errors.  

This, however, can be attributed to possible numerical errors present in the analyses. Aside from 
that, it must be stated that the great proximity in calculated eigenvalues may be attributed to the 
symmetric characteristics of the analyzed structure and proposed meshes. Complex domains and 

distorted meshes will most likely lead to greater eigenvalue differences and, hence, indicator precision. 
Lastly, considering that rarely will a single element be refined, small discrepancies as observed will not 
affect final result precision.  
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Table 1. Results for the first frequency of a 3x3 mesh 

Error after refinement 
(ascending) 

Refined Element 
Indicator value 
(descending) 

Indicated Element 

4.69% 7 or 9 0.006296074 7 or 9 

4.95% 8 0.001622766 8 

4.99% 5 0.000765749 5 

5.01109% 1 or 3 0.000432685 4 or 6 

5.01110% 4 or 6 0.000408973 3 or 1 

5.03% 2 0.000099790 2 

Table 2. Results for the twelfth frequency of a 3x3x mesh 

Error after refinement 
(ascending) 

Refined Element 
Indicator value 
(descending) 

Estimated Element 

22.61% 2 0.031331997 2 

23.88% 5 0.011536437 7 or 9 

23.99% 7 or 9 0.009966959 5 

24.34% 8 0.002720215 8 

24.43% 4 or 6 0.001901176 4 or 6 

24.47% 1 or 3 0.000986353 1 or 3 

Table 3. Results for the sixth frequency of a 5x5 mesh 

Error after refinement 
(ascending) 

Refined Element 
Indicator value 
(descending) 

Indicated Element 

3.830% 6 or 10 0.006572255 6 or 10 

3.869% 11 or 15 0.006172690 11 or 15 

3.984% 3 0.004092441 3 

4.065% 12 or 14 0.002646015 12 or 14 

4.065% 7 or 9 0.002621880 7 or 9 

4.088% 2 or 4 0.002135207 2 or 4 

4.111% 17 or 19 0.001798393 17 or 19 

4.121% 1 or 5 0.001586163 1 or 5 

4.124% 18 0.001560195 18 

4.132% 16 or 20 0.001418959 16 or 20 

4.171% 23 0.000731346 23 

4.171% 8 0.000717640 8 

4.187% 22 or 24 0.000426887 22 or 24 

4.193% 13 0.000299469 13 

4.198% 21 or 25 0.000219282 21 or 25 
 
As previously stated in Section 4 the indicator is a dimensionless number that can assume negative 

values. These tend to be observed in the last frequencies of an approximation. Table 4 shows negative 

indicator results obtained for the analysis of the twenty-third frequency of a 3x3 mesh. For this case, 
since reference results were not available, the calculated frequencies were ordered in the first column in 
ascending order.  
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 Table 4. Coefficients in constitutive relations 

Calculated Frequency 
(rad/s) 

Refined Element 
Indicator value 
(descending) 

Estimated Element 

60005.72205 2 -0.113538647 8 

60128.09292 5 -0.117485905 7 or 9 

60298.08876 4 or 6 -0.369223106 5 

60319.43695 8 -0.373628341 4 or 6 

60354.98693 1 or 3 -0.682064403 2 

60436.19543 7 or 9 -0.691384929 1 or 3 
 

Contrary to the results obtained by Malacarne [37] for one-dimensional problems, it is shown in 
Table 4 that there is no direct relation between the best eigenvalue results and the absolute maximum 
indicator. Therefore, the negative Friberg indicator values are not recommended as parameters for 

defining the sequence of selective refinements. This does not pose a problem for most dynamic analysis 
given that negative values only appear on the last frequencies of an approximation which tend not to be 
the focus of most problems. 

5.2 Indicator accuracy in GFEM  

The same analysis previously demonstrated for HFEM was carried out in a GFEM problem to 
verify if the indicator behavior is the same. For this, sixteen enriched bubble functions were added to 

the classic FEM problem. These were obtained by multiplying the previously detailed functions shown 
in Fig. 3. The results for the first and the twelfth frequencies of a 3x3 mesh are presented in Tables 5 
and 6. These are organized in the same way as previous tables.  

Table 5. GFEM results for the first frequency of a 3x3 mesh 

Error after refinement 
(ascending) 

Refined Element 
Indicator value 
(descending) 

Estimated Element 

4.67% 7 or 9 0.006594 7 or 9 

4.94% 8 0.001701 8 

4.99% 5 0.000808 5 

5.0094% 1 or 3 0.000461 4 or 6 

5.0095% 4 or 6 0.000435 1 or 3 

5.03% 2 0.000111 2 

Table 6. GFEM results for the twelfth frequency of a 3x3 mesh 

Error after refinement 
(ascending) 

Refined Element 
Indicator value 
(descending) 

Estimated Element 

20.90% 2 0.062702 2 

23.24% 5 0.021136 5 

23.35% 1 or 3 0.020002 1 or 3 

23.61% 4 or 6 0.016229 4 or 6 

23.87% 7 or 9 0.014458 7 or 9 

24.18% 8 0.005159 8 
 
The results obtained reiterate the comments made in regards to HFEM. The Friberg indicator 

maintains the same precision in GFEM examples as it does in HFEM examples.  
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5.3 Simplifying the Friberg indicator calculation 

The main concern related to the Friberg indicator is the computational effort associated with its 
calculation. This is especially due to the necessity of inverting a matrix which is a known demanding 
process. There are three main ways of reducing this problem, all of which reduce the order of the inverse 

matrix: 

   [[𝑲(𝑚) − 𝜆𝑖

(𝑛)
𝑴(𝑚) ]

−1
]

𝑇

. (23) 

 
The first, as previously presented in Section 4 and indicated by Friberg [24], is the indicator’s 

element sum property. This property states that if a refinement is applied to each of the mesh’s individual 
elements, the sum of all the indicators will equal the value that would be obtained if the refinement was 

applied to all elements simultaneously. To test this, bubble function 𝑁5 was applied individually and 
simultaneously to all four of a 2x2 mesh’s elements in HFEM. The results can be seen in Table 7. 

Table 7. Indicator element sum property 

Frequencies Simultaneous Sum (1 + 2 + 3 + 4) 

1 0.0259665 0.0259665 

2 0.0335773 0.0335773 

3 0.0998930 0.0998930 

4 0.1016362 0.1016362 

5 0.0837323 0.0837323 

6 0.2761580 0.2761580 

7 0.0384843 0.0384843 

8 0.3854626 0.3854626 

9 0.4473619 0.4473619 

10 0.2233309 0.2233309 

11 0.2233309 0.2233309 

12 -1.6060391 -1.6060391 

 

As expected, the results of both tests were the same. If a single new degree of freedom is introduced 
in a one-dimensional example, this characteristic automatically reduces the matrix presented in Eq. (23) 
to a single value, simplifying the mathematical procedure.  

However, in 2D problems when the order of the approximation is elevated it affects two directions 
and, therefore, the minimum order of the matrix that must be inverted is two. Based on the same idea as 
the element sum procedure, this work tested the validity of dividing refinements in different directions.  

A classic FEM approximation field in 2D analysis with the proposed quadrilateral element is made 
up of four shape functions (𝑁1, 𝑁2, 𝑁3, 𝑁4) that result in a shape function matrix 𝑵: 

  𝑵 = [
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]. (24) 

If a single bubble function 𝑁5 is added, as in previous tests, it will affect both the problem’s 
horizontal direction (u) and vertical direction (v) and 𝑵 will be defined as: 

  𝑵 = [
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0 𝑁5 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0 𝑁5

]. (25) 

What this work proposes is, therefore, dividing the problem into its directions by first refining the 
horizontal direction (u): 

  𝑵 = [
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0 𝑁5
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0

], (26) 
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and adding the resulting indicator value of an element with the result obtained by refining only the 
vertical direction (v) with: 

  𝑵 = [
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 𝑁5

]. (27) 

This procedure was carried out for all four elements of a 2x2 mesh and the results are presented in 
Table 8. The comparison of indicator results obtained by refining both directions simultaneously and by 
adding results of individually refining each direction were the same. This allows the reduction of the 

matrix in Eq. (23) to a single value for each individual calculation in a case were a n order problem is 
elevated to n+1.  

Table 8. Indicator direction sum property 

Element 
Classic 

refinement 
u refinement  v refinement Sum of u and v 

1 0.000946855 0.000792984 0.000153871 0.000946855 

2 0.000946855 0.000792984 0.000153871 0.000946855 

3 0.012036416 0.000118858 0.011917557 0.012036416 

4 0.012036416 0.000118858 0.011917557 0.012036416 

 

Up until this point all simplification procedures presented considered the elevation of a single 
degree of freedom in each of the problem’s directions. However, most refinement procedures utilize a 
high number of new shape function and, hence, lead to a high number of field degrees of freedom. This 

implies that even if the element and direction sum properties are utilized, the matrices involved in the 
indicator calculation will still pose computational difficulties.  

With the objective of always reducing the inverse matrix present in Eq. (23) to a single number, 

this work evaluated the possibility of applying shape functions consecutively instead of simultaneously 
for the indicator calculation. This example was analyzed through HFEM with the use of four of 
Lobatto’s bubble shape functions: 

  𝑁5 = (
1

2
√

3

2
(𝜉2 − 1)) × (

1

2
√

3

2
(𝜂2 − 1)), (28) 

  𝑁6 = (
1

2
√

3

2
(𝜉2 − 1)) × (

1

2
√

5

2
(𝜂2 − 1)𝜂), (29) 

  𝑁7 = (
1

2
√

5

2
(𝜉2 − 1)𝜉) × (

1

2
√

3

2
(𝜂2 − 1)), (30) 

  𝑁8 = (
1

2
√

5

2
(𝜉2 − 1)𝜉) × (

1

2
√

5

2
(𝜂2 − 1)𝜂). (31) 

The indicator values were calculated applying all four functions at once, the classic procedure, and 
by applying one after the other and adding up all the indicator results, the consecutive procedure. The 
comparison of each of these processes results considering the first frequency of a 3x3 mesh are shown 

in Table 9. 
The results presented in Table 9 indicate that indicator results obtained through both procedures 

are very close in value but are not the same. These discrepancies may be caused by numerical errors. 

That being said, even though the results are not identical they indicate the same order of element priority. 
In conclusion, both procedures can be used to define which element has the greatest effect on the global 
solution. 
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Table 9. Consecutive refinement indicator values 

Classic Procedure Consecutive Procedure 

Indicator Indicated Element Indicator Indicated Element 

0.006481530 7 or 9 0.006493820 7 or 9 

0.001672178 8 0.001673824 8 

0.000794406 5 0.000796035 5 

0.000452694 4 or 6 0.000454154 4 or 6 

0.000427656 1 or 3 0.000430506 1 or 3 

0.000108785 2 0.000108956 2 

 

5.4 Friberg indicator as a global error estimator 

Aside from indicating which elements mostly contribute to a global solution an ideal situation is 
that in which the indicator can be used as an error estimator. This means that the value of the indicator 
is able to represent the global error and based on this the obtained solution can be deemed as acceptable 

or not for a certain approximation. Friberg et al. [38] proposed using the sum of all of a refined mesh’s 
indicators 𝜂𝑖

𝑛+1 as a global error estimator 𝜀 according to: 

  𝜀 = ∑ 𝜂𝑖
𝑛+1      𝑓𝑜𝑟 𝜂𝑖

𝑛+1 > 0, (32) 

where all negative indicators are not considered. 
To test the validity of the Friberg indicator as a global error estimator, HFEM function N5, used in 

previous examples, was added to all of the elements of different mesh discretizations. The final indicator 
value and the error of the first frequency in comparison to the reference value obtained by Torii [34] 
were calculated for each different discretization. These results are displayed in Fig. 5. 

 

Figure 5. Error and indicator values for different meshes 

It is clear that the indicator decreases as the global error decreases and both tend to zero as a greater 

number of elements is introduced in the mesh. However, the relation between the indicator and the error 
is not well defined as seen in Fig. 6. This means that knowing the indicator value cannot be trustfully 
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correlated with the error value. Therefore, the definition of a tolerance value that defines a small enough 
indicator to represent a desired error is subjective unless accompanied by a previous study of the error 
versus indicator variation for a specific problem and frequency.  

 

Figure 6. Error and indicator relation  

6  Final remarks 

Based on the examples presented in this work for HFEM and GFEM dynamic analysis it can be 
concluded that the Friberg indicator is an accurate measure for defining an element enrichment sequence 
in cases of selective enrichments. However, when used as a global error estimator a previous analysis 

of the indicator is recommended once it does not clearly relate to error values. Hence, tolerance values 
must be carefully chosen.  

Finally, it was also shown that the necessity of inverting a matrix, which is a computationally 

demanding job, can be avoided with the use of the indicator’s element and direction sum properties. In 
cases where higher levels of refinements are applied each shape function may be applied consecutively 
and lead to the same results as when applied simultaneously. It is important to note that even though this 

process reduces computational effort in obtaining each indicator value it requires that the process be 
repeated many times. Therefore, a detailed comparison of programming running times must be done to 
effectively determine if this process is advantageous.  

It is expected that all behaviors observed are maintained in more complex geometries and boundary 
conditions as well as in cases of distorted meshes. Nevertheless, these cases must be analyzed in future 
works to confirm the indicator behavior.  
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