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Abstract. This work presents a comparison of the novel virtual element method and the traditional finite 

element method for Prandtl’s solution to the St. Venant torsion problem. The solved field is the Prandtl 

function for a given cross-section that experiences torsion. This function is approximated using both 

methods with a collection of different meshes. These meshes vary in properties such as the element size, 

geometry (Delaunay triangulations and Voronoi tessellations are employed), and polynomial order 

(linear and quadratic elements). The numerical error measurement is based on the torsion constant, a 

global scalar associated with the solution, with physical significance for the problem. Two different 

cross-sections with analytical solutions are used as benchmarks. The results are presented in a set of 

convergence curves for each cross-section geometry. The virtual element method showed more 

versatility regarding element geometry, while retaining the same convergence properties of the finite 

element method. 
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1  Introduction 

Understanding torsion is important for structural engineering. There are direct applications such as 

in torque-transmission elements, e.g. axles connecting rotors and turbines. While in other applications 

torsion emerges as consequence of eccentrically applied loads; this is usual in steel-framed structures 

due to the demands of practical construction. 

According to Vlasov’s torsion theory [1], the structural elements response to the torsional load 

comprise two components: uniform torsion and warping torsion. The former is obtained considering that 

the cross-section warps freely; and the latter concerns the effects of warping restriction. The relative 

relevance of each component depends on the cross-section geometry. 

This paper focuses on the uniform torsion component, which is obtained via St. Venant torsion 

theory. The full characterization of the stresses and the torsion constant (IT) are obtained by solving a 

differential equation for the warping function (ψ) or, alternatively, Prandtl’s function (ϕ). For this paper 

the latter is adopted. 

The virtual element method (VEM) and the finite element method (FEM) are used to solve for 

Prandtl’s function. Two cross-section geometries are considered. The results are compared to the 

analytical results provided by Timoshenko [2]. 

The VEM for solving partial differential equations was introduced by Beirão da Veiga, et al. [3] as 

a reinterpretation of the mimetic finite difference method through the finite element paradigm. This 

method also constitutes a generalization of the finite element method which permits more geometrically 

versatile elements while retaining convergence properties. Further works by several authors explore the 

method itself [4]–[10]; show its applicability for elliptic, parabolic and hyperbolic differential equations 

[11]–[13]; and explore a posteriori error estimation [14]–[17]. Other works present the method in a more 

practical way, focusing on its computational implementation, such as Sutton [18] and Beirão da Veiga, 

et al. [19]. 

The paper is structured as follows: Section 2 states the mathematical model for St. Venant torsion 

and Prandtl’s solution. Section 3 contains the methodology, including a brief explanation for both 

methods and the parameters considered in the numerical study. Section 4 shows the results of the latter 

followed by section 5 with the conclusions. 

2  St. Venant torsion theory 

The first known theory regarding the torsion concept, according to Timoshenko [2], is from 

Coulomb. It explains the uniform torsion for rods of circular cross-section; failing, however, to explain 

the warping that occurs for non-circular geometries. The following theory was developed by St. Venant. 

This theory takes warping into account, and assumes the cross-section is free to warp. Later theories, 

such as Vlasov’s torsion theory, take into account the effects of warping restriction and non-uniform 

torsion. While all the aforementioned theories are based on linear elasticity, there are others which 

explore geometrical nonlinearity (Trahair [20]) and inelasticity (Sapountzakis and Tsipiras [21]). 

The theory presented by St. Venant is developed using the semi-inverse method, in which a 

proposed displacement field is shown to satisfy, under a set of hypotheses, the balance and boundary 

equations, constituting a solution. It is formulated based on a prismatic rod considering a generic cross-

section made of material with shear modulus G, subject only to pure twisting moment (MT) as in Figure 

1. The z-axis is parallel to that of the rod’s length and goes through its twist center. The set of hypotheses 

is presented as follows: 

I. Each individual cross-section (z = constant) rotates as a rigid body; 

II. The rate of twist dθ/dz = θ’ is constant (uniform torsion); 

III. The cross-sections are free to warp. However, the warping is the same for all of them; 

IV. Small rotations (θ ≈ 0); 

V. Material linearity (σxz=Gγxz and σyz=Gγyz). 
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Figure 1. Coordinate system and twisting moment. 

The warping of the cross-section is defined as the warping function ψ(x,y) scaled by the twist rate 

θ’. Then, from I and IV, the proposed displacement field is as presented in Eq. (1). 

 {

u = −θ′yz;

v =  +θ′xz;
w = θ′ψ.     

 (1) 

The strain field is obtained via differentiation; its only non-zero terms are γxz and γyz. From V, the 

tangential stresses are obtained, Eq. (2a). The balance equations lead to only one non-trivial equation, 

Eq. (2b). With some manipulations Eq. (2c) is obtained, being valid for the whole domain. 

 {
σxz = Gθ

′(ψ,x− y);

σyz = Gθ
′(ψ,y+ x);

 (2a) 

 
∂σxz

∂x
+
∂σyz

∂y
= 0; (2b) 

 Gθ′(ψ,x+ψ,y ) = 0 ∴ ∆ψ = 0. (2c) 

There being no load other than the twisting moment, the Neumann boundary condition (equilibrium 

on the boundary) is expressed by Eq. (3) on the whole boundary. For a given point on the boundary, n 

is the unit outward pointing normal vector; r is the position vector; and τ is the unit tangent vector of 

the boundary, as illustrated in Figure 2. 

 𝐓𝐧 = 𝟎 ∴ ∇ψ ∙ 𝐧 = 𝐫 ∙ 𝛕. (3) 

 

Figure 2. Position (r), normal (n) and tangent (τ) vectors. 

The problem is, therefore, fully characterized once the warping function ψ is known; Its formulation 

is summarized by Eq. (4). 

 {
∆ψ = 0 in Ω;              
∇ψ ∙ 𝐧 = 𝐫 ∙ 𝛕 in ∂Ω.

 (4) 
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2.1 Prandtl’s solution 

Prandtl presented an alternative formulation for this problem, which leads to simpler boundary 

conditions. This version is based on a new function ϕ(x,y), called Prandtl’s function, which Eq. (5) 

defines. 

 {
ϕ,x= −σyz;

ϕ,y= σxz.
 (5) 

The balance equation for this function, Eq. (2b), is inherently satisfied because of the Clairaut-

Schwartz theorem, also known as the equality of mixed partials. Another equation is obtained by taking 

the Laplacian of ϕ and expressing it in terms of the warping function, Eq. (6a). The Clairaut Schwartz 

theorem leads to Eq. (6b) being valid for the whole domain. 

 ∆ϕ = ϕ,xx+ϕ,yy= Gθ
′(ψ,yx−ψ,xy− 2); (6a) 

 ∆ϕ = −2Gθ′. (6b) 

The Neumann boundary condition, Eq. (4), can be expressed in terms of Prandtl’s function, Eq. (7). 

This last equation can be interpreted as the function being constant along the boundary; The arbitrary 

constant 0 is adopted. This degenerates the Neumann boundary condition into a homogeneous Dirichlet 

boundary condition. 

 ∇ϕ ∙ 𝛕 =
∂𝜙

∂𝛕
= 0. (7) 

The torsion problem is also characterizable in terms of Prandtl’s function. Its formulation in terms 

of Prandtl’s function is Eq. (8). 

 {
∆ϕ = −2Gθ′ in Ω;
ϕ = 0 in ∂Ω.

 (8) 

2.2 Weak formulation 

The numerical methods around which this work revolves are designed to obtain weak solutions for 

partial differential equations. The weak formulation, for the differential form in Eq. (8), is obtained by 

integrating the main equation, weighted by a test function δϕ, over the domain. Using Green’s first 

identity and introducing the boundary condition results in the weak form, in Eq. (9). 

 ∫ ∇ϕ ∙ ∇δϕ
Ω

𝑑Ω = ∫ −2Gθ′δϕ
Ω

𝑑Ω. (9) 

In this form, ϕ requires integrable first derivatives, i.e. ϕ ϵ ℋ10 (space of square integrable 

functions whose first derivatives are also square integrable and satisfy the Dirichlet boundary condition). 
In the differential form, presented in Eq. (8), it required a constant Laplacian inside the domain, i.e. ϕ ϵ 

C2. This drop in requirement characterizes the weak form. The weak version of the problem is expressed 

in Eq. (10), where 𝑎 is a bilinear form given by the left-hand side of Eq. (9) and 𝑓 is a linear form given 

by the right-hand side. 

 Find ϕ ∈  ℋ0
1 such that for all 𝛿ϕ ∈  ℋ0

1:  

 𝑎(ϕ, 𝛿ϕ) = 𝑓(𝛿ϕ). (10) 

3  Methodology 

Any comparison requires established parameters and cases. For this case, the two must take into 

consideration the characteristics of both the compared methods and the problem. The solution to the 

problem in Prandtl’s formulation is given by a function associated with a stress field. 

Pointwise values of the function (or the stresses) do not serve as good basis for comparison, because 

both methods make approximations based on an input meshes. Therefore, in order to compare pointwise 
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results adequately the meshes should coincide. As one of VEM’s advantages over FEM is its element 

geometry versatility; comparing both methods for the same mesh would be unsatisfactory. 

This section presents the framework used to compare both methods, and is organized as follows: 

The torsion constant is presented as a parameter to globally evaluate the result in subsection 3.1. 

Subsections 3.2 and 3.3 comprise a brief presentation of both numerical methods. The cases are 

presented in the following subsections. The two different cross-section geometries in subsection 3.4, 

followed by the mesh parameters varied throughout the analyses (element geometry and characteristic 

size) in subsection 3.5. 

3.1 Torsion constant 

In the torsion theory, the relationship between the rate of twist (θ’) and the twisting moment (MT) 

can be written as in Eq. (11). 

 
MT

GIT
= θ’. (11) 

The twisting moment is expressed in terms of the stress field in Eq. (12). 

 MT = ∫ (σyzx − σxzy)dΩΩ
. (12) 

Substituting the definition of Prandtl’s function, Eq. (5), and integrating by parts results in a 

simplified expression for the moment, Eq. (13). 

 MT = 2∫ ϕdΩ
Ω

. (13) 

From Eq. (11) and (13), the torsion constant is formulated in Eq. (14). 

 IT =
2∫ ϕdΩ

Ω

Gθ’
. (14) 

This constant constitutes a parameter which has physical relevance to the problem and evaluates 

the solution globally. Additionally, as both problems described in Eq. (4) and Eq. (8) are classic 

problems in the field of partial differential equations (namely Laplace and Poisson problems, 

respectively), there are analytical solutions for simple cross-section geometries. Consequently, there are 

also solutions for the torsion constant to which the numerical results can be compared. These are 

presented in subsection 3.4 alongside the chosen cross-sections. 

3.2 Finite element method 

The finite element method is a numerical method for obtaining approximate weak solutions for 

systems of partial differential equations. The method works, in present application, by projecting the 

real solution, resident of the infinite dimensional space C2, into a piecewise polynomial space of finite 

dimension. This piecewise polynomial space is composed by the polynomial spaces associated with 

each subdomain; therefore, it is directly associated with the partitioning of the problem’s domain Ω into 

a collection (mesh) of non-overlapping subdomains ΩE (elements). 

According to Ciarlet [22], each element can be defined as a subdomain ΩE (usually triangles for 

2D domains) associated with a set of nodes and a polynomial space which contains the full polynomial 

space up to degree k (Pk). The nodes must be chosen in a way that the set of nodal values determines 

uniquely a member of that space. The shape functions are the canonical basis for that space using the 

nodal values as degrees of freedom. Note that the dimension of the polynomial space and the number of 

degrees of freedom are connected. 

Globally, the union of all the finite elements spaces becomes the piecewise polynomial function 

space in Ω (subspace of ℋ1), onto which the solution is projected in order to obtain the weak solution. 

The weak solution, uh(x,y), is associated with the set of nodal values for which the functions defined in 

the elements, together, construct the best approximation in that subspace, based on an input mesh. 

Inside each element (ΩE), uh can be written as Eq. (15), where h(x,y) is the row vector of shape 
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functions and u is the column vector of nodal values for that element. 

 uh(x, y) = 𝐡(x, y)𝐮. (15) 

The bilinear and linear forms presented in Eq. (9) and Eq. (10) can be assembled from their element 

counterparts. The approximation presented in Eq. (15) can be introduced in both forms, which become 

the element stiffness matrix (KE) and load vector (fE), respectively Eq. (16a) and Eq. (16b). 

 ∫ ∇𝐡𝑇∇𝐡
Ω𝐸

𝑑Ω 𝐮 = −2Gθ′ ∫ 𝐡𝑇
Ω𝐸

𝑑Ω; (16a) 

 𝐊E𝐮 = 𝐟E. (16b) 

The global system is obtained by assembling the global stiffness matrix and the load vector from 

their element components. Solving the global system provides the nodal values to construct the 

approximated solution. 

3.3 Virtual element method 

The virtual element method can be seen as a generalization of the finite element method. The main 

difference is the way the function spaces are designed. Instead of restricting the space to polynomials, 

the virtual element space contains the full polynomial space associated with the element order plus other 

additional functions, called virtual functions. The choice for the degrees of freedom is made 

systematically and not restricted to nodal values. 

The difficulty in using general shape elements with the FEM is to find the shape functions which 

form a basis for the polynomial space. For the VEM, the larger function space allows the dissociation 

between the number of nodes and the dimension of the polynomial space, using the virtual functions as 

a buffer. For handling these unknown virtual functions, the method splits the functions into their 

projection into the polynomial space and the residual of this projection. This allows the method to retain 

the same convergence properties as the finite element method for the same polynomial space. The 

degrees of freedom are carefully chosen so that the virtual functions need not be known explicitly to 

obtain the stiffness matrix and load vector. This result is what gives the method its name and elegance. 

The additional virtual functions along with the systematical choice of degrees of freedom allow arbitrary 

degree polynomial interpolation in arbitrarily shaped elements. 

 

Figure 3. Nomenclature for a generic polygon (ΩE). 

The virtual element formulation requires some notation to be introduced. Consider the domain (Ω), 

partitioned into a collection of non-overlapping polygons (ΩE). Each polygon has nv vertices and edges. 
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The vertices are denoted Vi, with index i starting at 0 and ending at nv-1 incrementing 

counterclockwise. The union of the edges forms the boundary of the polygon (∂ΩE). The edge referred 

to as ei is the one that connects Vi to Vi+1, as shown in Figure 3. 

The polygon area is denoted by |ΩE| and is synonymous to the subdomain measure. The largest 

distance between two points inside the polygon is called its diameter and denoted hE. For convex 

polygons, this is the largest distance between two vertices. 

The function space associated with each element is called the local virtual element space Vk(ΩE). 

By definition, this space contains the space Pk(ΩE), the full space of polynomials up to degree k (of 

dimension nk), plus the additional virtual functions. The local virtual element space, according to Beirão 

da Veiga, et al. [3], is formed by all functions vh which satisfy the following properties: 

{

i) vh is a polynomial of degree k on each edge e of ΩE → vh|e ϵ 𝑃k(ΩE);    

ii) vh on ∂E is globally continuous → vh|e ϵ C
0(∂ΩE);                                       

iii) ∆vh is a polynomial of degree k − 2 in ΩE  → ∆vhϵ 𝑃k−2(ΩE).                      

 

The definition of the degrees of freedom for the virtual element, as presented in Beirão da Veiga, 

et al. [19], uses a basis (Mk) for the space Pk, called the scaled monomials. Their definition is presented 

using multi-index notation, where each monomial is associated with a coordinate pair α = (α1, α2) as 

stated in Eq. (18). Each coordinate pair can also be mapped to a one-dimensional index α as shown in 

Eq. (17). 

 𝛼 = 1 ↔ (0,0), 𝛼 =  2 ↔ (1,0), 𝛼 = 3 ↔ (0,1), 𝛼 = 4 ↔ (2,0), 𝛼 = 5 ↔ (1,1),… (17) 

 𝑚𝛼 = (
𝒙−𝒙𝑬

ℎ𝐸
)
𝜶
= (

𝑥−𝑥𝐸

ℎ𝐸
)
𝛼1
(
𝑦−𝑦𝐸

ℎ𝐸
)
𝛼2
. (18) 

The degrees of freedom of Vk(ΩE) are defined and ordered as follows: 

{
  
 

  
 
∎ the value of vh at the n𝑣  vertices of ΩE;                                       
∎ the value of vh at the k − 1 internal points of the                    

(k + 1) − point Gauss − Lobatto rule on each edge e; 
∎ the moments up to order k − 2 of vh in ΩE:                                    

1

|ΩE|
∫ vhmα
ΩE

, 𝛼 = 1, 2, … , 𝑑𝑖𝑚(𝑃𝑘−2) .

 

The canonical basis for the local virtual element space is the set of functions {φi}, the index going 

from 0 to the ndof-1, where ndof is the dimension of the space given by the expression in Eq. (19). 

 dimVk(ΩE) = nvk +
(k−1)k

2
. (19) 

Given the basis for Vk, the solution can be approximated inside the element in the same way as 

shown in Eq. (15). However, these functions need to be split into their projection onto Pk(ΩE) and the 

residue, as in Eq. (20), where I is the (ndof x ndof) identity matrix. 

 φi = 𝚷
𝛁φi + (𝐈 − 𝚷

𝛁)φi. (20) 

This is done with a projection operator (𝚷𝛁), which is the matrix representation of the projection 

stated in Eq. (21a) and defined by Eq. (21b). 

 Π∇E,𝑘: 𝑉𝑘(Ω𝐸) → 𝑃𝑘(Ω𝐸); (21a) 

 ∫ ∇mα∇((𝐈 − 𝚷
𝛁)vh)ΩE

= 0, α = 1,… , dim (𝑃𝑘). (21b) 

Beirão da Veiga, et al. [19] present a more pragmatic approach to compute the projection operator 

as shown in Eq. (22), by using intermediary matrices B (nk x ndof) and D (ndof x nk). These matrices are 

defined in Eq. (23a) and Eq. (23b), respectively, where (u, v)0,ΩE is the L2(ΩE) internal product (the 

integral of the product of u and v over ΩE); and dofi(vh) is the ith degree of freedom of vh, as defined 

previously. 
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 𝚷𝛁 = 𝐃(𝐁𝐃)−𝟏𝐁. (22) 

 𝐁 =

[
 
 
 
 𝑃0φ0
(∇𝑚2, ∇φ0)0,Ω𝐸

⋯
⋯

𝑃0φndof−1

(∇𝑚2, ∇φndof−1)0,Ω𝐸
⋮

(∇𝑚nk , ∇φ0)0,Ω𝐸

⋱
⋯

⋮
(∇𝑚nk , ∇φndof−1)0,Ω𝐸]

 
 
 
 

; (23a) 

 𝐷𝑖,𝛼 = 𝑑𝑜𝑓𝑖(𝑚𝛼). (23b) 

The first row of B is defined differently; this is done to circumvent the kernel of the projection 

operator by using another projection operator P0 as presented in Eq. (24a), and Eq. (24b). This kernel 

exists because the projection operation is based on the internal product of the gradients of the two 

functions, therefore the projection would only be determined up to a constant. 

 P0: 𝑉𝑘(Ω𝐸) → 𝑃0(Ω𝐸); (24a) 

 {
P0vℎ ≔

1

𝑛𝑣
∑ vℎ(Vi)
𝑛𝑣−1
𝑖=0 , 𝑘 = 1;

P0vℎ ≔
1

|Ω𝐸|
∫ vℎΩ𝐸

𝑑Ω, 𝑘 ≥ 2.
 (24b) 

Further explanations on the inner workings of virtual element formulation and guidance for the 

computational implementation can be found in Beirão da Veiga, et al. [19] and Sutton [18]. 

The split of each basis function can be extended to the shape function row vector h, although this 

vector is already implied in the matrix formulation of the projection operator. The stiffness matrix for a 

virtual element is expressed in Eq. (25); it is obtained by introducing the split into the bilinear form, 

while remembering the orthogonality between the projection and residue. The term of the product 

involving the residues can be substituted by a stabilization term SE shown in Eq. (26). 

 𝐊𝐄 = ∫ ∇[𝚷𝛁]𝑇∇[𝚷𝛁]𝑑Ω
Ω𝐸

+ ∫ ∇[(𝐈 − 𝚷𝛁)]𝑇∇[(𝐈 − 𝚷𝛁)]𝑑Ω
Ω𝐸

. (25) 

 ∫ ∇[(𝐈 − 𝚷𝛁)]𝑇∇[(𝐈 − 𝚷𝛁)]𝑑Ω
Ω𝐸

≈ 𝐒𝐄 = (𝐈 − 𝚷𝛁)
𝑇
∙ (𝐈 − 𝚷𝛁). (26) 

The expression for the virtual element stiffness matrix is summarized in Eq. (27a) and Eq. (27b). 

A more practical expression for calculating the first term is presented in the aforementioned works. 

 𝐊𝐄 = 𝐊𝐂
𝐄 + 𝐒𝐄; (27a) 

 𝐊𝐄 = ∫ ∇[𝚷𝛁]𝑇∇[𝚷𝛁]𝑑Ω
Ω𝐸

+ (𝐈 − 𝚷𝛁)
𝑇
∙ (𝐈 − 𝚷𝛁). (27b) 

The first term in Eq. (27b) is called the consistency matrix; it guarantees exactness when the 

solution is polynomial and is important for the convergence properties. There are other formulations for 

the stabilization term, which work better for different problems. Hudobivnik, et al. [23] presented a 

comparison of three stabilization terms for linear elasticity. 

The element counterpart of load vector can be approximated using the same projector for k ≤ 2, as 

shown in Eq. (28). For other element orders another projector must be used, for this situation one should 

refer to the literature. 

 (𝐟𝐄)𝐢 = −2Gθ
′ ∫ Π∇φidΩΩ𝐸

. (28) 

The assemblage of the element matrices and vectors to obtain the global system is done in the same 

way as for the finite element method. 

3.4 Numerical examples 

Two different cross-section geometries were selected for the comparisons: a square and an 

equilateral triangle. As elementary geometric shapes, both have analytical solutions easily found in the 

literature. The dimensions were chosen for the unitary area of both shapes, as shown in Figure 4. The 
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analytical solutions for the square and triangle cross-section are presented in Eq. (29) and Eq. (30) 

respectively. 

 

Figure 4. Dimensions of the cross-sections. 

 IT
□ = l4 [

1

3
−
64

π5
∑

tanh(
(2n+1)π

2
)

(2n+1)5
∞
n=0 ] =  0.140577… . (29) 

 IT
∆ =

l4√3

80
=  0.127323… . (30) 

3.5 Meshes 

The two methods under comparison work based on the input of a domain partition (mesh). The 

finite element method for two-dimensional problems is typically used with triangular meshes, which are 

easily generated using existing software. However, one of the great advantages of the virtual element 

method is its versatility regarding the element geometry. 

In order to explore this as a possible parameter for the analysis, a routine was implemented to 

generate Voronoi tessellations based on the triangular meshes. The tessellation is obtained by connecting 

the centers of the triangles; as is illustrated in Figure 5. When all the centers of all the triangles that share 

a node are connected, they form a polygon around that node. 

Some adaptations were needed to handle the boundary and to preserve the shape of the original 

triangulations. The triangulation and Voronoi tessellation are dual graphs in the Graph theory, from 

which came the intuition behind the transformation. Additional routines were developed to handle 

varying size geometry for elements and to convert linear polygonal meshes to a second-or-higher order 

meshes. 

In this work, the triangular meshes (Delaunay triangulations) were generated and the post-

processing was conducted by using the software GMSH by Geuzaine and Remacle [24]. 

There are certain parameters that can be used to globally characterize a mesh. One example is the 

maximum element diameter (h). This parameter, as shown in Ciarlet [22], is exponentially related to the 

superior a priori error estimations. This relationship is shown in convergence curves, which plot an error 

estimate against the maximum element diameter. These are usually plotted with both axes 

logarithmically scaled so that the curves appear as lines. This parameter is varied by generating meshes 

with 4 different levels of refinement, resulting in four different points in the convergence curve for each 

combination of element geometry and method. 

Another important parameter is the number of degrees of freedom (n). This is a direct measure of 

the size of the system that needs to be solved for obtaining the solution. It is correlated to the 

computational cost of solving the problem. 
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Figure 5. Generation of a Voronoi tessellation (d) from a Delaunay triangulation (a). Elect nodes on the 

barycenter of each triangle (b) and associate with each node a polygon connecting the centers of all the 

triangles sharing the node (c). 

All the varying parameters in this study effectively reflect different meshes. These parameters are 

the method (Finite elements or Virtual elements), cross-section geometry (Square or Triangle), the 

element geometry (Delaunay triangulation or Voronoi tessellation), order of the element (1st or 2nd 

order), element size (4 different discretizations for each geometry, code 1 corresponding to the coarsest 

mesh and 4 to the finest, as exemplified in Figure 6). The virtual element method is applied to both the 

triangular and polygonal element meshes. The set of meshes generated for this study is organized on a 

basis which incorporates these parameters and is coded following the nomenclature summarized in 

Figure 7. 

 

Figure 6. The different refinement levels for the Voronoi tessellations on Triangle cross-section. 
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Figure 7. Mesh codification. 

The meshes used and their characterizing parameters are summarized in Table 1. 

Table 1. Set of meshes and their respective parameters. 

Code h n Code h n 

FDSM1O1 1.37E-01 105 FDTM1O1 1.28E-01 124 

FDSM2O1 9.67E-02 230 FDTM2O1 9.76E-02 225 

FDSM3O1 6.62E-02 493 FDTM3O1 7.26E-02 496 

FDSM4O1 3.43E-02 2057 FDTM4O1 3.58E-02 2014 

FDSM1O2 1.37E-01 457 FDTM1O2 1.28E-01 541 

FDSM2O2 9.67E-02 973 FDTM2O2 9.76E-02 960 

FDSM3O2 6.62E-02 2049 FDTM3O2 7.26E-02 2074 

FDSM4O2 3.43E-02 8385 FDTM4O2 3.58E-02 8236 

VDSM1O1 1.37E-01 105 VDTM1O1 1.28E-01 124 

VDSM2O1 9.67E-02 230 VDTM2O1 9.76E-02 225 

VDSM3O1 6.62E-02 493 VDTM3O1 7.26E-02 496 

VDSM4O1 3.43E-02 2057 VDTM4O1 3.58E-02 2014 

VDSM1O2 1.37E-01 705 VDTM1O2 1.28E-01 835 

VDSM2O2 9.67E-02 1487 VDTM2O2 9.76E-02 1471 

VDSM3O2 6.62E-02 3113 VDTM3O2 7.26E-02 3157 

VDSM4O2 3.43E-02 12657 VDTM4O2 3.58E-02 12445 

VVSM1O1 1.44E-01 248 VVTM1O1 1.46E-01 294 

VVSM2O1 1.09E-01 514 VVTM2O1 1.06E-01 511 

VVSM3O1 7.41E-02 1064 VVTM3O1 7.63E-02 1083 

VVSM4O1 3.89E-02 4272 VVTM4O1 4.13E-02 4209 

VVSM1O2 1.44E-01 785 VVTM1O2 1.46E-01 931 

VVSM2O2 1.09E-01 1599 VVTM2O2 1.06E-01 1597 

VVSM3O2 7.41E-02 3273 VVTM3O2 7.63E-02 3343 

VVSM4O2 3.89E-02 12977 VVTM4O2 4.13E-02 12811 

4  Results 

There are three main results from a given solution for Prandtl’s function around which the 

organization of this section is made. The first is the function itself; its general shape is a first visual 

qualitative indicator of the solution adequacy, as explained alongside sampled results, in subsection 4.1. 

The next result is the stress field, which is another visual qualitative indicator. This is further developed 

in subsection 4.2. The third result is the torsion constant obtained via Eq. (14); the convergence curves, 

which comprise a summary of the torsion constant results, are presented in subsection 4.3. All the results 

were obtained for unitary Gθ’.  
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4.1 Prandtl’s function 

The differential equations associated with Prandtl’s function, Eq. (8), is analogous to the equations 

that describe the displacement field (w) of a homogeneous membrane, continuously supported (w = 0) 

along its boundary, which is loaded by a constant pressure (q), Eq. (31). This is known as the membrane 

analogy, as presented by Timoshenko [2]. This analogy was used to empirically estimate the torsion 

constant for cross-section geometries without known analytical solutions, in the time before the 

ascension of computational methods. 

 ∆𝑤 = −
𝑞

|Ω|
. (31) 

The results reflect this analogy, as is evident in Figure 8 and in Figure 9. 

 

Figure 8. Prandtl's function result for VVSM4O2. (a) 2D colormap, (b) 3D colormap, (c) 3D colormap 

flipped. 

 

Figure 9. Prandtl's function result VVTM4O2. (a) 2D colormap, (b) 3D colormap, (c) 3D colormap 

flipped. 
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4.2 Tangential stresses 

The tangential stresses are obtained from the derivatives of Prandtl’s function as stated in Eq. (5). 

The stress field should obey certain requirements implicit in the problem. On the boundary there should 

be no stress in the normal direction, as expressed in the balance equation, Eq. (3). There should be no 

resultant force in any particular direction, only a resulting moment that balances the applied twisting 

moment (MT). The results for the tangential stress fields (Figure 10 and Figure 11) satisfy these 

requirements. 

 

Figure 10. Stress field result for VVSM2O2. (a) Vector field and (b) tangential stress norm colormap. 

 

Figure 11. Stress field result for VVTM2O2. (a) Vector field and (b) tangential stress norm colormap. 

4.3 Torsion constant convergence curves 

The convergence curves (Figure 12 and Figure 13) show the relation between the error based on 

the torsion constant evaluation (e) of the approximated solution and the maximum element diameter (h). 

Note that the nomenclature adopted in the curves is an abbreviated version of the one established earlier; 

the cross-section geometry is presented in the title, and the element sizes are explicit in the four points 

in the curves. The relationship is shown, in the literature, to be expressed in the general form shown in 

Eq. (32). In this equation, C is a constant and k is a parameter that depends on the norm used to measure 

the error and the order of the full polynomial space contained in the element spaces. 

 e ≤ Chk. (32) 
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Table 2. Set of meshes, parameters, and errors. 

Code h n e Code h n e 

FDSM1O1 1.37E-01 105 1.76E-02 FDTM1O1 1.28E-01 124 1.88E-02 

FDSM2O1 9.67E-02 230 9.00E-03 FDTM2O1 9.76E-02 225 1.12E-02 

FDSM3O1 6.62E-02 493 4.24E-03 FDTM3O1 7.26E-02 496 5.30E-03 

FDSM4O1 3.43E-02 2057 1.07E-03 FDTM4O1 3.58E-02 2014 1.36E-03 

FDSM1O2 1.37E-01 457 1.19E-04 FDTM1O2 1.28E-01 541 1.30E-05 

FDSM2O2 9.67E-02 973 2.57E-05 FDTM2O2 9.76E-02 960 4.19E-06 

FDSM3O2 6.62E-02 2049 5.82E-06 FDTM3O2 7.26E-02 2074 9.40E-07 

FDSM4O2 3.43E-02 8385 4.79E-07 FDTM4O2 3.58E-02 8236 6.09E-08 

VDSM1O1 1.37E-01 105 1.76E-02 VDTM1O1 1.28E-01 124 1.88E-02 

VDSM2O1 9.67E-02 230 9.00E-03 VDTM2O1 9.76E-02 225 1.12E-02 

VDSM3O1 6.62E-02 493 4.24E-03 VDTM3O1 7.26E-02 496 5.30E-03 

VDSM4O1 3.43E-02 2057 1.07E-03 VDTM4O1 3.58E-02 2014 1.36E-03 

VDSM1O2 1.37E-01 705 8.06E-05 VDTM1O2 1.28E-01 835 5.07E-06 

VDSM2O2 9.67E-02 1487 1.31E-05 VDTM2O2 9.76E-02 1471 1.57E-06 

VDSM3O2 6.62E-02 3113 2.49E-06 VDTM3O2 7.26E-02 3157 3.99E-07 

VDSM4O2 3.43E-02 12657 2.48E-07 VDTM4O2 3.58E-02 12445 2.58E-08 

VVSM1O1 1.44E-01 248 1.52E-02 VVTM1O1 1.46E-01 294 1.56E-02 

VVSM2O1 1.09E-01 514 7.67E-03 VVTM2O1 1.06E-01 511 9.37E-03 

VVSM3O1 7.41E-02 1064 3.74E-03 VVTM3O1 7.63E-02 1083 4.58E-03 

VVSM4O1 3.89E-02 4272 1.02E-03 VVTM4O1 4.13E-02 4209 1.15E-03 

VVSM1O2 1.44E-01 785 1.92E-05 VVTM1O2 1.46E-01 931 2.87E-06 

VVSM2O2 1.09E-01 1599 3.08E-06 VVTM2O2 1.06E-01 1597 8.17E-07 

VVSM3O2 7.41E-02 3273 1.06E-06 VVTM3O2 7.63E-02 3343 2.64E-07 

VVSM4O2 3.89E-02 12977 7.01E-08 VVTM4O2 4.13E-02 12811 1.68E-08 

 

 

Figure 12. Convergence curves for square cross-section.  
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Figure 13. Convergence curves for triangle cross-section. 

Thes curves show the total coincidence between the finite and virtual element methods when using 

linear polynomials on triangular meshes: FDO1 and VDO1 are both shown in all figures presenting 

convergence curves, but completely coincide; this is evident in the torsion constant error values 

presented in Table 2. This coincidence arises because, for this specific geometry, the local virtual 

element space coincides exactly with the full polynomial space, requiring no additional virtual functions. 

In the second order elements this no longer happens, because the virtual element function space has one 

more dimension, associated with the internal degree of freedom related with the function’s Laplacian. 

The differences between the first and second order elements are evident, as expected, in the 

exponent of the relationship, which can be clearly seen in the slope of the curves. 

The convergence curves are traditionally presented associating the error with the element diameter. 

However, in order to compare two methods, it is important to consider the computational resources 

requirements. A superficial way to consider this is to plot the error’s relationship with the number of 

degrees of freedom of the system. This result is presented in Figure 14 and Figure 15. 

5  Conclusion 

The VEM was successful in producing weak solutions for Prandtl’s formulation of St. Venant 

torsion. The results from both FEM and VEM were very similar, and in one case even exactly the same. 

The VEM allows the use of meshes of generically shaped elements, while retaining the same 

convergence properties as the finite element method. This is shown with the use of Voronoi tessellations. 

This versatility may not provide an advantage for this specific problem; however, it has been explored 

in other works as a mean to allow for easier mesh refining algorithms such as quadtrees; allowing for 

more efficient contact processing algorithms; and for non-conforming meshes compatibilization. 

The generalization of both geometry and order of the polynomial spaces provide the method with 

immense potential for applications. 
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Figure 14. Convergence curves for square cross-section. 

 

Figure 15. Convergence curves for triangle cross-section. 
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