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Abstract. Over the past years several numerical methods have been formulated so as to not only find the
numerical solution of a mathematical model that describes a phenomenon, but also to find this solution
in the fastest way, with low computational cost and especially, in the most accurate way. One of the
characteristics of the enriched methods based on the Finite Element Method (FEM) is the possibility of
including new shape functions, which are not necessarily polynomial, in the approximate solution space.
The Wavelet Finite Element Method (WFEM) is an example of an enriched method that seeks to find
numerical solutions to engineering problems using the adaptability that Wavelet functions present. The
WFEM is the combination of FEM and Wavelets. WFEM uses the so-called scaling functions as shape
functions, whose linear combination, using the FEM techniques, will describe the approximate solution
space. In this sense, the objective of this work is to study the use of trigonometric Wavelets as enrichment
functions in WFEM for dynamic analysis of structures, seeking to combine the high convergence rates
of enriched methods with the trigonometric Wavelet properties. In this work the trigonometric WFEM
method is applied to free vibration analysis of Euler Bernoulli beams in order to verify its efficiency in
dynamic analysis. The natural frequencies obtained by the WFEM are compared with those obtained
from analytical solutions and by other numerical methods such as the traditional FEM.
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1 Introduction

In numerical analysis, classical methods such as the Finite Element Method, the Finite Difference
Method, the Spectral Finite Element Method and the Generalized Finite Element Method, are powerful
tools for solving partial differential equations.

The Finite Element Method (FEM) is an approximate method that seeks to find the solution of dif-
ferential equations from the construction of approximation spaces. Being a robust and easily accessible
method, it is widely used in dynamic analysis.

Therefore, this method has become the basis of other methods such as the Generalized Finite Ele-
ment Method (GFEM), proposed by Babuška et al. [1], which is a combination of FEM and the Partition
of Unit Method. Another method based on FEM is the Wavelet Finite Element Method (WFEM), pro-
posed by Ko et al. [2]. The WFEM is a numerical method developed in recent years, using wavelet
functions or scale functions as interpolating functions to construct the approximated space.

As the family of wavelets is large, there are countless applications that can be found. For He and Ren
[3] the advantages of wavelets are the multiresolution, localization properties and various basis functions
that are suitable for the structural problems with local high gradient. Trigonometric wavelets are the
simplest periodic analytic wavelets that can be used as interpolating functions. Thus the combination of
trigonometric wavelets and multiresolution analysis is very advantageous [3].

The use of trigonometric wavelets was proposed by Chui and Mhaskar [4]. They constructed
wavelets in terms of sine and cosine functions, using the multiresolution properties to map the space.

Inspired by this previous work, Quak [5] presented two approaches for the construction of the
trigonometric scale functions: the first one selecting the mesh as a dyadic mesh and imposing the condi-
tions of the Kronecker delta on the derivatives and functions in their extremes; and the second approach
using the interpolation properties for the construction of the derivative, using the 2-scale scheme, to apply
the multiresolution analysis.

The approach presented by Quak [5] inspired other works such as Gao and Jiang [6] that applies Her-
mitian trigonometric wavelets (which are nothing more than combination of the trigonometric wavelet
functions with the Hermite polynomials) in the Galerkin method, in cases where the problem has singu-
larities.

He and Zhu [7], He and Ren [8, 9] applied Hermitian trigonometric wavelets, as in Quak [5], play-
ing the role of interpolation functions in the FEM and in the Composite Element Method. Even with
different approaches focusing on beam and plate elements, the results were satisfactory, showing good
convergence with a small number of degrees of freedom.

Inspired by He and Ren [3] this work aims to analyze how a Hermitian trigonometric WFEM be-
haves in dynamic analysis of Euler-Bernoulli beams. For this purpose an analysis of the frequency
spectrum will be made, comparing WFEM performance with FEM performance.

2 Dynamic Analysis of Structures

The problem of free vibration of non-damped structures can be described by [10]:

Kφ = ω2Mφ (1)

where K is the stiffness matrix, M is the mass matrix, ω is the natural frequency and φ is the mode

vector of natural vibration. The matricesK andM derived from Galerkin’s form concerning the dynamic
equilibrium of the system for Euler-Bernoulli beams, are given by:

K = [kij ] = EI

∫
Ω

∂2Φi

∂x2

∂2Φj

∂x2
dΩ (2)

M = [mij ] = ρA

∫
Ω

ΦiΦjdΩ (3)
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where Φ’s are the interpolation functions, E is the Young modulus, I is the moment of inertia, A is the

cross sectional area, ρ is the density and Ω the global domain of the problem.

3 Trigonometric Hermite Wavelet

Wavelets are described as a class of functions that are represented locally in both space and time.
They are used as a representation of a function base and derived from a specific function called the

mother wavelet ψ(x). For a chosen mother wavelet, one can apply translations and dilations.

{
ψ

(
x+ b

a

)
, (a, b) ∈ R× R, a 6= 0

}
, (4)

so that, it will cover the entire space if the choice of these parameters is made conveniently [11]. Quak
[5] presented one-dimensional trigonometric wavelets for Hermite interpolation, where the trigonometric
Hermite wavelet scale functions are defined for any j ∈ N as:

ϕ0
j,0(x) =


1

22j+2

sin2(2jx)

sin2
(x

2

) x /∈ 2πZ

1 x ∈ 2πZ

(5)

ϕ1
j,0(x) =


1

22j+2

(
1− cos

(
2j+1x

))
cot
(x

2

)
x /∈ 2πZ

0 x ∈ 2πZ
(6)

The figures 1 and 2, show the scale functions with j = 2.
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Figure 2. Scale function ϕ1
2,0

And the corresponding trigonometric Hermite wavelet functions are given by:

ψ0
j,0(x) =

1

2j+1
cos2j+1x+

1

3· 22j+1

2j+2−1∑
l=2j+1+1

(3· 2j+1 − l)coslx (7)

ψ1
j,0(x) =

1

22j+3
sin2j+2x+

1

3· 22j+1

2j+2−1∑
l=2j+1+1

sinlx (8)

The figures 3 and 4 show the trigonometric wavelet functions with j = 2.
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The nodes for the interpolation processes are equally spaced on the interval [0, 2π) according to the
step in the dyadic mesh, that is:

xj,n =
nπ

2j
, j ∈ N, n = 0, 1, 2, ..., 2j+1 − 1 (9)

setting ϕ in the dyadic mesh as:

ϕ0
j,n(x) = ϕ0

j,n(x− xj,n)

ϕ1
j,n(x) = ϕ1

j,n(x− xj,n)
(10)

By satisfying the properties of Eq. (10) for each k, n = 0, 1, 2, ..., 2j+1 − 1 one obtains:

ϕ0
j,n(xj,k) = δk,n,

(
ϕ0
j,n(xj,k)

)′

= 0

ϕ1
j,n(xj,k) = 0,

(
ϕ1
j,n(xj,k)

)′

= δk,n

(11)

ψ0
j,n(xj,k) = δk,n,

(
ψ0
j,n(xj,k)

)′

= 0

ψ1
j,n(xj,k) = 0,

(
ψ1
j,n(xj,k)

)′

= δk,n

(12)

where (· )′ denotes the derivative of the function and

δk,n =

 1, k = n

0, k 6= n
(13)

The space of the scale functions in L2(0, 2π), given by its translations Eq. (10), presents properties
of the multiresolution analysis with trigonometric functions, that is, this space is formed by a measurable
collection of functions defined in the interval (0, 2π). Thus we can define the space of the scale functions
as:

Vj = span
{
ϕ0
j,n, ϕ

1
j,n : n = 0, 1, 2, ..., 2j − 1

}
(14)

=
{

1, cosx, ..., cos(2j+1 − 1)x, sinx, ..., sin 2j+1x
}

(15)

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



THE TRIGONOMETRIC WAVELET FINITE ELEMENT METHOD APPLIED TO FREE VIBRATION ANALYSIS OF
EULER-BERNOULLI BEAMS

And by multiresolution, the orthogonal complement space of Vj relative to Vj+1, is the space formed
by the wavelet functions denoted by Wj , and defined as:

Wj = span
{
ψ0
j,n, ψ

1
j,n : n = 0, 1, 2, ..., 2j+1 − 1

}
(16)

=
{
cos2j+1x, ..., cos(2j+2 − 1)x, sin(2j+1 + 1)x, ..., sin2j+2x

}
(17)

3.1 Adaptive Interpolation

He and Ren [3] present a set of functions based on the trigonometric wavelets, with scale j = 1, to
be appointed as shape functions in the Wavelet Finite Element Method (WFEM).

The set of scale functions, which were obtained through a modification in the translation of the scale
functions of the Equations 5 and 6, with multiresolution level j = 1, are defined as (Fig. 5) [3]:


ϕ0

1,m = cos2(x−m)π cos2 (x−m)π

2

ϕ1
1,m = sin(x−m)π cos2(x−m)π cos2 (x−m)π

2

(m = 0, 0.5, 1, 1.5; 0 ≤ x ≤ 1) (18)

The functions ϕn
1,m (m = 0, 0.5, 1, 1.5;n = 0, 1) have the properties:

ϕn
1,m(0) =

 1, if n = 0,m = 0 ou m = 1

0, otherwise
(19)

(ϕn
1,m(0))

′
=

 1, if n = 1,m = 0 ou m = 1

0, otherwise
(20)
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Figure 5. Adaptive Trigonometric Wavelet Functions
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Defined in the interval [0, 1], this set of functions presents the characteristics of good approxima-
tion presented by the trigonometric functions of Hermite and the characteristic of multiresolution, local
characteristic of the wavelets.

Due to the interpolation properties of the trigonometric Hermite wavelets, the boundary conditions
and the connection between the adjacent elements can be processed in a conventional manner, without
the need to introduce an additional transformation matrix that connects the element parameters to the
wavelet coefficients. Moreover, the trigonometric wavelets make the best use of the high accuracy of the
trigonometric series, due to the multiresolution tool.

Assuming that the element is a three-node beam element, the displacement field is expressed as:

w =
8∑

i=1

aiϕi(ξ) = Φ {a} (21)

where ξ ∈ [0, 1] denotes the local coordinate, and

Φ =
[
ϕ0

1,0 ϕ1
1,0 ϕ0

1,0.5 ϕ1
1,0.5 ϕ0

1,1.5 ϕ1
1,1.5 ϕ0

1,1 ϕ1
1,1

]
(22)

{a} contains the coefficients to be determined (degrees of freedom), in the form:

{a} =
[
u1 u

′
1 u2 u

′
2 a5 a6 u3 u

′
3

]
(23)

where u1, u2 and u3 are the nodal displacements, u
′
1, u

′
2 and u

′
3 are the nodal rotations and, a5 and a6

are the field degrees of freedom (non nodal), those that have no physical meaning.
The stiffness and mass matrices are defined as in MEF by Eq. (2) and Eq. (3).

4 Numerical Results

In order to evaluate the eficiency of the trigonometric WFEM, it was considered an Euler-Bernoulli
beam in two cases: a clamped-free beam (Fig. 6) and a simply supported beam (Fig. 8). The results ob-
tained using the WFEM were compared to those obtained by FEM using 3 elements and the trigonometric
approach of the Generalized Finite Element Method (GFEM), as presented in [12], using 1 element and
2 levels of enrichment in order to use the same number of degrees of freedom.

4.1 Clamped-free beam

For comparison purposes, the beam has unit size L = 1.

Figure 6. Clamped-free beam

The natural analytic frequencies (ωr) are obtained by the solution of the frequency equation in the
classical form:
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cos(κrL)cosh(κrL) + 1 = 0 r = 1, 2, ... (24)

κr =

(
ω2
rρA

EI

) 1
4

(25)

The analytical dimensionless eigenvalues (χr = κrL) and those obtained by FEM (3 elements),
GFEM (1 element and 2 levels of enrichment) and WFEM (1 element) are presented in Table 1.

Table 1. Eigenvalues of the clamped-free beam

r Analytic1 FEM - 6 DOF WFEM - 6 DOF GFEM - 6 DOF

1 1.875104 1.875199 1.876902 1.875138

2 4.694091 4.701793 4.697806 4.695443

3 7.854757 7.903542 7.858735 7.880210

4 10.99554 11.86048 11.02735 11.016307

5 14.13717 16.27093 14.17883 14.158541

6 17.27876 22.97381 25.57236 17.410848
1 Arndt [12].

It is possible to observe that only the last dimensionless eigenvalue is not close to the analytic
response. Such behavior can also be analyzed through the graph of the frequency spectrum, showed in
Fig. 7.
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Figure 7. Clamped-free beam frequency spectrum
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It can be observed that the beginning of the FEM, GFEM and WFEM spectrum is very similar.
A zoom in the Fig. 7 was given in order to better observe this behavior. Observing the graph of the
frequency spectrum it is possible to notice that the WFEM presents a better performance only than the
FEM, however at the end of the graph in Fig. 7 the WFEM shows results worse than the GFEM.

4.2 Simply supported beam

As previously stated, the beam has a unity length L = 1.

Figure 8. Simple Supported beam

The natural analytic frequencies (ωr) obtained by the solution of the frequency equation are:

κr =
rπ

L
r = 1, 2, ... (26)

κr =

(
ω2
rρA

EI

) 1
4

(27)

As in the previous case the dimensionless WFEM (1 element) eigenvalues (χr = κrL) presented in
Table 2 are compared to the analytical, to the FEM (3 elements) and GFEM (1 element and 2 levels of
enrichment) responses.

Table 2. Eigenvalues of the simple supported beam

r Analytic FEM - 6 DOF WFEM - 6 DOF GFEM - 6 DOF

1 3.141592 3.142864 3.015588 3.142283

2 6.283185 6.320210 6.834799 6.283284

3 9.424777 9.929252 9.013347 9.434429

4 12.566370 13.53960 13.33643 12.601550

5 15.707963 18.11118 19.75921 18.533003

6 18.849555 21.25550 26.27953 25.718526

The frequency spectrum behavior can be analyzed through the graph in Fig. 9:
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Figure 9. Simple supported beam frequency spectrum

In this example it may be noted that the WFEM don’t have the best behavior, showing that in this
case GFEM is better than WFEM.

5 Conclusion

This work presents the dynamic analysis of the Wavelet Finite Element Method (WFEM). The
WFEM joins the Finite Element Method (FEM) and wavelet functions. As already seen, such a method
inherits the properties of wavelets, such as multiresolution.

Based on the adaptive formulation presented by He and Ren [3] a frequency spectrum analysis
was performed for the cases of a clamped-free beam and simply supported beam, and the results were
compared with the FEM and the trigonometric approach of the Generalized Finite Element Method
(GFEM), as presented in Arndt [12].

Through the graphical analysis on the clamped-free beam, it was possible to conclude that the
WFEM presents a good approximation and better performance for the first frequencies. But at the end of
the spectrum there was a certain divergence in the results. About the case of the simply supported beam,
the behavior wasn’t satisfatory, showing that GFEM presents the best results. However it is worth noting
that, 3 elements were used in the FEM analysis against a single element in the WFEM analysis. As the
formulation is simple this is a valid method, in the sense that it is possible to exploit it better applying
the multiresolution in order to increase the precision, for example.
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