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Abstract. The traditional Finite Element Method (FEM) is widely applied in the dynamic analysis of
structures, but, mostly, for higher frequencies, a great computational effort is required. In order to de-
crease this computational effort, the Generalized Finite Element Method (GFEM) arise as an alternative.
The GFEM is based on the Partition of Unity Method and it has as its main characteristic the ability to
incorporate aspects of the problem solution into the approximation space, which may decrease the com-
putational effort involved. The curved beam element has received much attention from researchers for
two main reasons: firstly, because it is a very efficient structural element that can span large distances;
and secondly because it provides insight into various aspects of shell element behavior. The curved beam
element is very sensitive to membrane and shear locking. In order to avoid these issues, trigonometric
functions are used to expand the traditional FEM approximation space using the GFEM approach. In this
paper the application of the GFEM for modal and transient analysis of thick curved beams is proposed.
The GFEM results are compared to reference solutions found in literature and traditional FEM results.

Keywords: Thick Curved Beams, Dynamic Analysis, Generalized Finite Element Method.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019
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1 Introduction

The Finite Element Method (FEM) has been successfully applied in dynamic analysis but the tra-
ditional h-version of the method, when looking for higher frequencies, requires a higher computational
effort (Arndt et al. [1]). On the other hand, the polynomial p FEM refinement presents convergence rates
greater than h-version but high-order polynomials can result in an ill conditioned (Leung and Chan [2]
and Ribeiro [3]).

In recent years, some enrichment methods based on the FEM have been developed, seeking to
increase the accuracy of the solutions with lower computational effort. In this context, the Generalized
Finite Element Method (GFEM) arises.

The GFEM was developed by several authors: Melenk and Babuska [4]; Duarte and Oden [5]; Oden
et al. [6]; Duarte et al. [7] and Babuska et al. [8]. The method uses the Partition of Unity Method (PUM)
concepts to expand the traditional FEM approximation space, using a previously knowledge about the
expected solution. The GFEM has been successfully applied to dynamics analysis as shown in Arndt
et al. [1], Arndt et al. [9], Torii and Machado [10], Shang et al. [11] and Weinhardt et al. [12]. The works
also show some issues with the GFEM, such as the mass matrix condition number accentuated growth,
that may cause numerical instability of the solution.

According to Leung and Zhu [13], the interest of researchers in curved beam elements has been
increased for two main reasons: the first is the increased use of such structural element and the second
is that the understanding of its behavior provides a view of various aspects of shell elements behavior.
Some studies about finite elements for thin and thick curved beams, mostly to free vibration analisys, are
found in the literature.

Petyt and Fleischer [14] proposed a thin curved beam element with two nodes and some alternatives
of shape functions using polynomials and trigonometric functions. The use of higher order polynomials
in order to describe the displacement fields was proposed by Dawe [15] for static problems and by
Raveendranath et al. [16] for free vibration analysis of thin curved beams.

Rossi and Laura [17] presented a free vibration analysis of a cantilever arch with non-uniform cross-
sectional area using a FEM formulation of thick curved beam. Auciello and De Rosa [18] presented
a comparison between some approximated methods such as the Ritz Method, the Rayleigh-Schmidt
Method, the Galerkin Method and the Finite Element Method for free vibration of arches, also using a
thick curved beam formulation.

A two node element was presented by Raveendranath et al. [19], while a three node element, both
for thick curved beams in static problems, was proposed by Raveendranath et al. [20]. A four node C0

finite element for free vibration analysis of thick curved beam with constant and variable curvatures was
proposed by Yang et al. [21].

Leung and Zhu [13] proposed an enrichment method based on the FEM, called Fourier p-Elements,
for thin and thick curved beams. This approach uses trigonometric functions to expand the traditional
FEM approximation space.

In this paper the use of the GFEM, with trigonometric enrichment, for modal and transient analysis
of thick curved beam element is proposed. The solutions are compared to reference solutions found in
literature and to the FEM.

2 Thick Curved Beam Formulation

The thick curved beam formulation is presented by Leung and Zhu [13], Raveendranath et al. [16],
Raveendranath et al. [20] and Yang et al. [21]. In this formulation the effects of the shear strain are
considered. The energy parcels are described by the tangential displacement (u), the radial displacement
(w) and the rotation of the cross-section (θ) in curvilinear coordinate system s-z, as shown in Fig. 1
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Figure 1. Thick curved beam element.

The extensional strain (ε), change of curvature (χ) and the shear rotation (γ) are expressed in terms
of the displacements and their derivatives by the following expressions:

ε =
du

ds
+
w

R
, (1)

χ =
dθ

ds
, (2)

γ = θ +
dw

ds
− u

R
, (3)

where R is the curvature radius.
The strain energy (U ), the kinetic energy (T ) and the work done by the external forces (W ) expres-

sions are:

U =
1

2

∫ Le

0

(
E Aε2 + E I χ2 + k GAγ2

)
ds, (4)

T =
1

2

∫ Le

0

(
ρA u̇2 + ρA ẇ2 + ρ I θ̇2

)
ds, (5)

W =
1

2

∫ Le

0
(pα u+ pnw +mn θ) ds, (6)

where E is the Young’s modulus, A is the cross-sectional area, I is the moment of inertia, ρ is the
material density, Le is the element length, k is the shear correction factor, G is the shear modulus and
pα, pn, and mn are, respectively, the distributed tangential load, radial load and moment.

The displacement fields are describes as:

u = PT · q, (7)

w = QT · q, (8)

θ = JT · q, (9)

where:

q =
{

u w θ
}T

, (10)

P =
{

P∗ 0 0
}T

, (11)
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Q =
{

0 Q∗ 0
}T

, (12)

J =
{

0 0 J∗
}T

, (13)

where u, w and θ are vectors containing, respectively, the degrees of freedom related to u, w and θ and
P∗, Q∗ and J∗ are vectors containing, respectively, the shape functions related to u, w and θ.

The equations of motion can be derived by employing the Hamilton’s principle:∫ t1

t0

δ (U − T −W ) dt = 0. (14)

Through Eq. (14) the equation of motion are given by:

Mq̈+ Kq = f . (15)

where the terms of the elementary mass matrix, elementary stiffness matrix and the force vector are:

Ke
ij =

∫ Le

0



dPi
ds

+
Qi
R

dJi
ds

Ji +
dQi
ds

− Pi
R



T 
E A 0 0

0 E I 0

0 0 k GA





dPj
ds

+
Qj
R

dJj
ds

Jj +
dQj
ds

− Pj
R


ds, (16)

M e
ij =

∫ Le

0


Pi

Qi

Ji


T 

ρA 0 0

0 ρA 0

0 0 ρ I




Pj

Qj

Jj

 ds, (17)

fei =

∫ Le

0


pα

pn

mn


T 

Pi

Qi

Ji

 ds. (18)

and q̈ is the generalized acceleration vector related to u, w and θ.

3 Generalized Finite Element Method

The GFEM is a Galerkin method with the main goal is to enrich the traditional FEM approximation
space using previously knowledge about the solution in order to increase the precision of the approxi-
mated solution. The GFEM approximation space is obtained applying the Partition of Unity Method.

The approximated solution of a generic displacement field (v) can be written as the sum of two
components:

veh = veFEM + veENR, (19)

where:

veFEM (ξ) =

2∑
i=1

ηi(ξ) ai, (20)
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and

veENR(ξ) =

2∑
i=1

ηi(ξ)

 n∑
j=1

φj(ξ) bij

 , (21)

where η(ξ) are the Partition of Unity functions, ai are the nodal degrees of freedom, φj(ξ) are the
enrichment functions and bij are the non nodal degrees of freedom.

In this paper, the linear Partition of Unity functions are used, which are in domain [−1, 1]:

η1(ξ) =
1− ξ

2
(22)

and
η2(ξ) =

1 + ξ

2
, (23)

with ξ =
2 s

Le
− 1.

The enrichment functions used are based on Leung and Zhu [13], and are given by the following
expression:

φj(ξ) = sin

[
j π

(
ξ + 1

2

)]
with j ≥ 1. (24)

It is important to highlight that although the enrichment functions used in this work are the same
employed by Leung and Zhu [13] in p-Fourier curved beam elements, the GFEM elements proposed here
use the partition of unity technique (Eq. (21)) resulting in an enrichment different from those proposed
by [13].

All the three displacement fields cited in previously section (u, w and θ) are described by the ap-
proach proposed in this section to construct the GFEM approximation.

4 Numerical Results

In this section two examples of thick curved beams are analyzed: a pinned-pinned arch and a
clamped-clamped arch. In order to evaluate the performance of the GFEM proposed, modal and transient
analyses are made.

The modal analysis results are compared to reference solutions found in the literature and the tran-
sient analysis results are compared to a reference FEM model that has the same formulation of the GFEM
model, but without the veERN component (Eq. (21)) and a higher number of degrees of freedom. In tran-
sient analysis the two examples have the same load (P (t)) given by:

P (t) = 10000 sin(10 t), (25)

with time (t) in seconds and the load (P (t)) in Newton.
For the time integration the Newmark method with constant acceleration and time step of 0.0001

seconds are used.

4.1 Pinned-Pinned Arch

The arch studied here has the load applied in the middle of the arch in radial direction, as shown
in Fig. 2. The arch has the Young’s module of 70 GPa, curvature radius of 0.75 m, cross section area
of 4 m2, inertia moment of 0.01 m4, shear correction factor of 0.85, material density of 2777 kg/m3 and
Poisson coefficient of 0.3.

The first analysis is a modal analysis, without load. The results are compared to those found in
Einsenberger and Efraim [22] and Yang et al. [21] and are presented in function of the adimensional
parameter, given by:

Cn = ωnR

√
ρA

E I
, (26)
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where ωn is the frequency obtained in model, R is the curvature radius, ρ is the material density, A is the
cross section area, E is the Young’s module and I is the inertia moment.

R

P (t)

45◦ 45◦

Figure 2. Pinned-Pinned arch scheme.

All the GFEM models analyzed have only one finite element and increasing number of enrichment
levels are increases. The results are presented in Table 1.

Table 1. Adimensional parameters of pinned-pinned arch.

Mode

GFEM

Ref 1* Ref 2**2 levels 4 levels 6 levels 8 levels

18 d.o.f. 30 d.o.f. 42 d.o.f. 54 d.o.f.

1 29.37551 29.27996 29.27990 29.27990 29.280 29.304

2 33.30563 33.30493 33.30492 33.30492 33.305 33.243

3 68.83937 67.12352 67.12352 67.12352 67.124 67.123

4 80.47276 79.97083 79.97081 79.97081 79.971 79.950

5 133.59291 107.85168 107.85111 107.85111 107.851 107.844

6 152.47795 143.66392 143.61754 143.61754 143.618 143.679

7 227.73503 156.78591 156.66557 156.66557 156.666 156.629

8 304.81366 193.55645 190.47711 190.47709 190.477 190.596

9 312.86477 225.86638 225.36120 225.36115 225.361 225.349

10 321.77082 280.13587 234.53334 234.52351 234.524 234.809

Note: * - Einsenberger and Efraim [22] and ** - Yang et al. [21].

The GFEM modal analysis shows good agreement with the references solutions of Einsenberger
and Efraim [22] and Yang et al. [21].

The next analysis performed is the transient analysis with the external load as described in Eq. (25).
Now the GFEM model has only two finite elements and six enrichment levels, resulting in 81 degrees of
freedom. The reference FEM model has 400 finite elements, resulting in 1203 degrees of freedom. The
results are presented in Fig. 3, 4 and 5 in terms of displacements, velocity and acceleration, respectively,
all three in radial direction in the middle point of the arch.
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Figure 3. Pinned-Pinned Arch displacement.
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Figure 4. Pinned-Pinned Arch velocity.
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Figure 5. Pinned-Pinned Arch acceleration.
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The GFEM results show good agreement for displacement and velocity compared to the reference
FEM solution, with much less degrees of freedom. But the GFEM acceleration results present some
differences compared to with FEM results.

4.2 Clamped-clamped arch

The arch studied here also has the load applied in the middle of the arch in radial direction, as shown
in Fig. 6. The arch has the Young’s module of 70 GPa, curvature radius of 0.6366 m, cross section area
of 1 m2, inertia moment of 0.0016 m4, shear correction factor of 0.85, material density of 2777 kg/m3

and Poisson coefficient of 0.3.

R

P (t)

45◦ 45◦

Figure 6. Clamped-clamped arch scheme.

The first analysis is a modal analysis, without load. The results are also compared with those found
in Einsenberger and Efraim [22] and Yang et al. [21] and are presented in function of the adimensional
parameter, Eq. (26).

All the GFEM models analyzed have only one finite element and increasing number of enrichment
levels are increases. The results are presented in Table 2.

Such as the previous example, the results present good agreement with references solutions of
Einsenberger and Efraim [22] and Yang et al. [21].

The next analysis is the transient analysis also with the external load as described in Eq. (25). The
GFEM model has only two finite elements and six enrichment levels, resulting in 81 degrees of freedom.
The FEM model has 400 finite elements, resulting in 1203 degrees of freedom. The results are presented
in Fig. 7, 8 and 9 in terms of displacements, velocity and acceleration, respectively, all three in radial
direction in the middle point of the arch.

The GFEM results shows goods agreement for displacement and velocity compared to the FEM
reference solution, with much less degrees of freedom. But the GFEM acceleration results presented
some differences compared to FEM reference solution, such as in the pinned-pinned example.

5 Conclusion

In this paper the application of GFEM for dynamic, modal and transient, analysis of thick curved
beams was presented. A generalized element for thick curved beam was proposed using trigonometric
functions as enrichment functions.

Both examples presented good agreement with references results for modal analysis, as shown in
Tables 1 and 2. In transient analysis the results were very satisfactory for displacement and velocity, with
much less degrees of freedom compared to implemented FEM reference, but the accelerations results
were not so satisfactory.

In general, for the first application of GFEM for thick curved beams, the results are satisfactory,
demonstrating the potential of the GFEM in dynamics analysis of thick curved beams.
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Table 2. Adimensional parameters of clamped-clamped arch.

Mode

GFEM

Ref 1* Ref 2**2 levels 4 levels 6 levels 8 levels

18 d.o.f. 30 d.o.f. 42 d.o.f. 54 d.o.f.

1 36.72935 36.70221 36.70219 36.70219 36.703 36.657

2 42.41161 42.26315 42.26293 42.26293 42.264 42.289

3 85.20288 82.23165 82.23159 82.23159 82.233 82.228

4 90.86340 84.48906 84.48904 84.48904 84.491 84.471

5 161.84674 122.30335 122.30289 122.30289 122.305 122.298

6 167.23451 155.01386 154.94066 154.94066 154.945 154.998

7 241.63618 168.52165 168.19834 168.19834 168.203 168.174

8 338.73814 208.88817 204.46725 204.46723 204.472 204.599

9 354.41808 239.53494 238.98475 238.98467 238.992 238.973

10 384.12593 300.96222 249.02336 249.00551 249.011 249.320

Note: * - Einsenberger and Efraim [22] and ** - Yang et al. [21].
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Figure 7. Clamped-clamped Arch displacement.
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Figure 8. Clamped-clamped Arch velocity.
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Figure 9. Clamped-clamped Arch acceleration.
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