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Abstract. The Finite Element Method (FEM) is widely used in the dynamic analysis of structures, how-
ever it has some limitations. In order to improve the numerical response, enriching functions can be
incorporated to FEM approximation space using the Generalized Finite Element Method (GFEM) pro-
cedure. Several studies have already been carried out to prove the efficiency of GFEM in the dynamic
analysis of bars, Euler-Bernoulli beams, trusses, among other structural elements, but few studies have
investigated the application of GFEM in the dynamic analysis of Timoshenko beams. The present work
aims to contribute to this field presenting modal and transient analyses of Timoshenko beams using the
GFEM technique. Three different trigonometric enrichments are used to perform modal and transient
analyses of Timoshenko clamped-free beams without damping and the results are compared with those
obtained by FEM. The normalized spectrum is obtained by the modal analysis and displacements, ve-
locities and accelerations of the beam along the time are also calculated by transient analysis. In that
manner the efficiency of each GFEM enrichment in modal and transient analysis of Timoshenko beams
is discussed.

Keywords: Generalized Finite Element Method, Timoshenko beams, trigonometric enrichments, dy-
namic analysis.
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1 Introduction

Dynamic phenomena are usually divided into free vibrations and forced vibrations. The first ones
occur when a system, after an initial disturbance, vibrates on its own freely, that is, without external
forces acting on the system. In this context, natural vibration modes and frequencies are analyzed in
free vibration. This procedure is called modal analysis and has great relevance in structural dynamic
analysis. Analyzing the modes and frequencies of vibration aims to characterize the structural behavior,
since whenever the natural frequency of a structure or machine coincides with the frequency of external
excitation, a phenomenon known as ressonance occurs. That generates amplification of displacements
and possible damages to the structure [1, 2].

On the other side, forced vibration occurs when the system is subjected to an time-dependent exter-
nal force (usually generated by a repeated force type). In a forced vibration case, the external energy can
be supplied by an applied force or imposed displacement excitation. What is sought to reproduce with
a forced vibration modeling is the displacements variation, as well as velocities and accelerations of the
structure over time, known as structural transient responses [1].

In order to obtain the modal and transient responses, a mathematical model of the problem must be
well stated and then some eficient computational modeling. A physical model is the first to be developed
embedding ordem further modeling procedures from the structural system that will be analyzed. In this
sequence, it is performed the mathematical modeling where the physical model is described in terms of
equations to be applied to the computational model. The equations of motion must be solved to find
the responses of the vibration system, and for this, among several techniques, numerical methods can be
used [1, 3].

Some numerical methods can be used to solve those problems numerically. Among them, one can
refer to the Finite Element Method (FEM) [4–6], to the Differential Quadrature Method (DQM) [7, 8]
and to the Method of Isogeometric Analysis [9]. Among those, FEM is widely used in the industry to
model structural vibration problems, despite its limitations [10].

The FEM technique consists of dividing the solution region, also called the solution domain, into
small parts known as elements and expressing the unknown field variables in terms of assumed approx-
imation functions, also known as interpolation functions or shape functions, in each element. Shape
functions are defined in field variables of specified points designated by nodes or nodal points. Thus,
in finite element analysis, the unknown variables are the field variables of the nodal points. Once these
are calculated, the field variables at any point can be found using the shape functions to interpolate the
seeked field [11].

The technique requires, among other things, a continuity between the elements, because in this
way the local unknowns are interconnected, generating a solvable global system. This requirement
historically discouraged the use of non-polynomial fucntions and a variety of approaches have been
suggested to create finite element spaces that contain non-polynomial functions and satisfy some form
of continuity between elements [12].

One approach, proposed by Melenk [13], presents a method where local approximation spaces are
multiplied by a Partition of Unit to build the global approximation space. This approach was modified
by Melenk [12] embeddeding it mathematically. This new approach was later called Partition of Unit
Method (PUM). As a consequence of the applied methodologies, the approximation properties of the
local spaces are inherited by the global space of finite elements [12], allowing to take advantage of prior
knowledge of the problem to enrich the approximation space.

The FEM is a conforming method, however, it does not present the ability to systematically explore
prior knowledge about the problem to be solved. If it is necessary to use custom functions it is necessary
to reconstruct a computational model for each application. Therefore, to solve this issue, the General-
ized Finite Element Method (GFEM) can be used. GFEM is a method in which special functions are
multiplied by partition of unit of the PUM, without the need to reconstruct the whole model [14].

Another GFEM feature is that special functions and finite element functions can be mixed in the
approximation, and used only when necessary. The only difficulty presented for this implementation
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of GFEM is that the functions used in the construction of the approximation should not be linearly
dependent or almost linearly dependent [14].

The GFEM has already presented good results in the dynamic analysis of bars; Euler-Bernoulli
beams; trusses; frames; two-dimensional wave equation; plane stress state; and, curved beams [2, 15–
21].

However, few studies have investigated the application of GFEM in the dynamic analysis of
Timoshenko beams [22–24]. This beam theory proposed by Timoshenko [25] includes the rotation in-
ertia and shear deformation to the Euler-Bernoulli beam model. Timoshenko’s model brings a great
improvement to non-thin beams and high frequency responses in which the shear or rotationary effects
are not negligible [25].

In this escope, this work aims to contribute with the investigation of modal and transient analyses
of Timoshenko beams applying the GFEM. This work use three different trigonometric enrichments to
perform modal and transient analyses of Timoshenko clamped-free beams without damping, comparing
their results with those obtained by FEM.

2 Timoshenko finite element beam model

Firstly, it’s important to note that will be used the approach presented in the work of Hsu [22] to
obtain the mass and stiffness matrices.

Considering the dynamic equilibrium equation of Timoshenko beams in free vibration, based on the
principle of virtual work, the weak form of the equation can be written as [26]:

∫ l

0
EI

∂φ

∂x
δ
∂φ

∂x
dx+

∫ l

0
ksGA

(
∂y

∂x
− φ

)
δ

(
∂y

∂x
− φ

)
dx =

∫ l

0
δyρA

∂2y

∂t2
dx+

∫ l

0
δφρI

∂2φ

∂t2
dx, (1)

where l denotes total beam length, E denotes the modulus of longitudinal elasticity, I denotes moment
of inertia, φ is the rotation, δ denotes that the terms are virtual, ks is the shear correction factor, G is the
transverse modulus of elasticity, A is the cross sectional area, y is the displacement and ρ is the density
of material.

The discretization of Eq. (1) can be made by unidirectional linear finite elements, with two nodes
and two degrees of freedom at each node, namely transverse displacement and in-plane rotation. The
approximated solution in the displacement field is given by:

y(x) =

n∑
i=1

yiγi(x), (2)

φ(x) =

n∑
i=1

φiγi(x), (3)

where yi denotes the i-th displacement φi is the i-th rotation and γi is the i-th shape functions.
Considering the natural coordinate ξ = [−1, 1] in the element domain, the approximated solution in

the field of displacements can be expressed using linear shape functions:

y(ξ) = y1γ1(ξ) + y2γ2(ξ), (4)

φ(ξ) = φ1γ1(ξ) + φ2γ2(ξ). (5)

They can be expressed in matrix form as:
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y(ξ) = [Hy] {w}, (6)

φ(ξ) = [Hφ] {w}, (7)

where [Hy] is the matrix of displacement shape functions, [Hφ] is the matrix of rotation shape functions
and {w} is the nodal displacement vector, given by:

[Hy] =
[
γ1 0 γ2 0

]
, (8)

[Hφ] =
[
0 γ1 0 γ2

]
, (9)

and

{w} =



u1

φ1

u2

φ2


. (10)

After replacing Eq. (2) and Eq. (3) in Eq. (1), it is possible to determine the mass matrix, [M e] and
stiffness matrix in the element domain, [ke],

[ke] =

∫ 1

−1
[B]T [D][B]|J |dξ, (11)

[M e] =

∫ 1

−1
(ρA)[Hy]

T [Hy]|J |dξ +

∫ 1

−1
(ρI)[Hφ]T [Hφ]|J |dξ, (12)

where [B] is the deformation matrix, [D] is the constitutive matrix and |J | is the Jacobian determinant,
given by:

[B] =

 0 1
|J |

(
dγ1
dξ

)
0 1

|J |

(
dγ2
dξ

)
1
|J |

(
dγ1
dξ

)
−γ1 1

|J |

(
dγ2
dξ

)
−γ2

 , (13)

[D] =

EI 0

0 ksGA

 . (14)

After proper algebraic manipulations in Eq. (1) and considering that the nodal displacement vector
can be expressed by w = Φne

iωnt, Eq. (1) can be expressed as a quadratic matrix eigenvalue problem

[K− ω2
nM]Φn = 0, (15)
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where ωn are the natural frequencies and Φn are the vibration modes.
The frequencies obtained from Eq. (15) will be dimensionless by:

β2n = ωnl
2

√
ρA

EI
, (16)

where βn are approximated dimensionless eigenvalues.

3 Generalized finite element method

The approximated solution proposed by the GFEM can be written as a combination of the compo-
nents [27]:

yh(ξ) = yhFEM + yhGFEM . (17)

The FEM shape functions used in this work are the linear Lagrange polynomials given by:

γ1 =
1− ξ

2
, (18)

γ2 =
1 + ξ

2
, (19)

with domain ξ = [−1, 1].
As stated earlier, the solution approach is a combination of components presented in Eq. (17). The

FEM component is then given by:

yhFEM (ξ) =
2∑
i=1

γi(ξ)yi. (20)

Lagrange’s linear functions also form a partition of unit. Therefore, these functions will also be
used as a partition of unity in GFEM displacement component, such as:

η1 =
1− ξ

2
, (21)

η2 =
1 + ξ

2
. (22)

This paper presents three different sets of enrichment functions. The first set of enriching functions
was presented by Arndt [15] for bars and is used here for comparison purposes. In Torii [2], the size of
the element within the formulation proposed by Arndt [15] was removed and Weinhardt [17] presents a
modification in the parameter βj . The enrichment is given by Eq. (23) to Eq. (26), shown in the following
form:
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ψ1j = sin(βj(ξ + 1)), (23)

ψ2j = sin(βj(ξ − 1)), (24)

φ1j = cos(βj(ξ + 1))− 1, (25)

φ2j = cos(βj(ξ − 1))− 1, (26)

where the parameter βj , with j = 1, 2, 3, ...,m and m is the number of enrichment levels, is given by:

βj = π

(
2(j − 1) +

3

4

)
. (27)

The GFEM component of Eq. (17) for this enrichment is given by:

yhGFEM =
2∑
i=1

ηi(ξ)

 m∑
j=1

(ψijaij + φijbij)

 , (28)

where aij and bij are the field degrees of freedom.
The second set of enrichment functions used in this work was also presented by Arndt [15] for

modelling Euler-Bernoulli beams, a more similar problem, and it is given by:

ψ1j = cos

(
(j − 1)π(ξ + 1)

2

)
− cos

(
(j + 1)π(ξ + 1)

2

)
, (29)

where j = 1, 2, 3, ...,m.
The GFEM component of Eq. (17) for this enrichment is given by:

yhGFEM =

2∑
i=1

ηi(ξ)

 m∑
j=1

ψ1j(ξ)aij

 . (30)

Finally, the third enrichment was presented by Hsu [22], for Timoshenko beams, and is given by:

ψ1j = sin

(
βj(ξ + 1)

2

)
, (31)

ψ2j = sin

(
βj(ξ − 1)

2

)
, (32)

being in this case βj = jπ, with j = 1, 2, 3, ...,m.
The GFEM component of Eq. (17) for this enrichment is given by:

yhGFEM =
2∑
i=1

ηi(ξ)

 m∑
j=1

ψij(ξ)aij

 . (33)
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4 Numerical results

In the examples presented in this section a clamped-free beam is studied. In order to illustrate this
beam boundary condition, the Fig. 1 is presented. In the following examples the beam properties are
l = 1, 0; b = 1, 0; E = 1, 0; ρ = 1, 0; ks = 5/6; ν = 0, 3; G = E/(2(1 + ν)); A = bh; I = (bh3)/12 e
le = l/Nelem, where b is the cross-section base of the beam, ν is the Poisson coefficient, h is the height
of the cross section of the beam and Nelem is the total number of elements in numerical analysis.

Figure 1. Clamped-free beam

It’s well known that Timoshenko beams presents some shear locking effect and to overcome this
problem a reduced integration is adopted for FEM analysis using Gaussian quadrature with a fixed order
of one point. For the GFEM analysis the element domain was sub-divided into 10 intervals, with three
numerical integration points at each interval, with no need of sub-integration procedures.

4.1 Modal analysis

The modal analysis aims to obtain the vibration frequencies of structure through the solution of the
eigenproblem given in Eq. (15). The beam has a ratio between the cross-sectional height and the beam
length of 0.1. This value of relation is considered high, and the shear effect must be taken into account,
making Timoshenko model necessary.

Frequency results are presented by normalized frequency spectrum plots. In them, the resulting
frequencies of each enrichment function set for the GFEM with five levels of enrichment are displayed.
At the end, a frequency spectrum graph with the fifth level of enrichment is presented with the three sets
of enrichment functions for the GFEM and the FEM frequencies.

Modal analytical solution is very difficult to obtain and therefore a reference solution using a very
refined mesh FEM model was adopted. Taking into consideration that it is possible to obtain precise
values for about 20% of the frequencies generated by FEM, a model with 8000 degrees of freedom was
adopted so that the quantity of frequencies with good precision that can be taken by this model exceeds
those obtained with the other analyzes, validating a sufficiente reliabe reference.

The spectrum, shown in Fig. 2, is for the set of enrichment functions presented by Arndt [15] for
bars.
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Figure 2. Enrichment Arndt [15] for bars

For a better observation, a zoom at the end of the spectrum is presented in Fig. 3.
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Figure 3. Zoom of enrichment Arndt [15] for bars

It is possible to observe in the frequency spectra of the enrichment presented by Arndt [15] for bars
that as the level of enrichment increases the accuracy also improves. However, all enrichment levels
show good frequency responses up to approximately 80% of the frequencies obtained.
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The spectrum, shown in Fig. 4, is for the set of enrichment functions presented by Arndt [15] for
beams.
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Figure 4. Enrichment Arndt [15] for beams

For a better observation, a zoom at the end of the spectrum is presented in Fig. 5.
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Figure 5. Zoom of enrichment Arndt [15] for beams

For this enrichment the increase in the level of enrichment is not so beneficial to the model of

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Comparative analysis of trigonometric enrichments used in dynamic analysis of Timoshenko beams by the Generalized Finite
Element Method

Timoshenko. In the Fig. 5, it can be seen that the fifth level of enrichment has the best responses to close
to 83% up to 95% of the frequencies, while for the other frequencies presented in this same Fig. the fifth
level of enrichment presents the results farthest from the reference solution.

The spectrum, shown in Fig. 6, is for the set of enrichment functions presented by Hsu [22] for
beams.
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Figure 6. Enrichment Hsu [22] for beams

For a better observation, a zoom at the end of the spectrum is presented in Fig. 7.
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Figure 7. Zoom of enrichment Hsu [22] for beams

The frequencies found with the first level of enrichment obtained the best responses than to the fifth
level of enrichment, as can be seen in the Fig. 7.

In order to compare the three enrichments, a frequency spectrum graph with the FEM response and
the fifth level of enrichment for the three GFEM enrichment function sets is presented in the Fig. 8.
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Figure 8. Fifth level of enrichment

For a better observation, a zoom at the end of the spectrum is presented in Fig. 9.
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Figure 9. Zoom of fifth level of enrichment

The responses presented by the three GFEM enrichments are better than the FEM response. The fre-
quencies of FEM begin to distance themselves from the reference response from 40% of the frequencies,
whereas for the three enrichments it occurs only from 80%. Comparing the three different enrichments
of GFEM in Fig. 9, one can conclude that the Arndt [15] enrichments for bars and beams have the best
answers for this example.

Table 1 shows the first 15 dimensionless eigencalues βn, so that it is possible to compare the results
obtained by GFEM enrichments with the results of different authors and methods. GFEM results were
obtained using three enrichment levels, the FEM results are from the reference solution and from HFEM
are taken from the (Hsu2016) with the employment of 6 enriching functions and 10 elements.

In Table 1 one can see that the results obtained with the three enrichments are close to the results
obtained by other authors. The enrichment of Arndt [15] for bars presents results lower than those
obtained by FEM, results that are the same as those obtained by HFEM, so they are presumably more
accurate. Thus, analyzing only the table for the first 15 eigenvalues the enrichment of Arndt [15] for bars
is the best among the three enrichments.

In order to be able to evaluate the convergence of the different enrichments used, in order to compare
the performance and the convergence rate of the set of enriching functions, the graphs on Fig. 10 and
Fig. 11 are presented with the evolution of the relative errors of some frequencies. The value of the error
is obtained by Arndt [15]:

error = 100
| ωn − ω |

ω
(%). (34)

The graphs obtained with the relative error are shown in the Fig. 10 and Fig. 11. The first shows the
relative errors for the first frequency and the second presents the relative errors for the second frequency.

The relative error presented for the first two frequencies, considering the enrichment of Arndt [15]
for bars and Hsu [22] are similar. The enrichment of Hsu [22] shows a higher convergence rate for the
first frequency. The enrichment of Arndt [15] for beams seems to presents higher error values, and also
a low convergence rate, but to be a monotonic convergence.
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Table 1. Dimensionless eigenvalues βn

Modes FEM
HFEM Isog. Analysis GFEM - [15] GFEM - [15] GFEM -

[22] [26] for bars for beams [22]

1 1,867714 1,867714 1,8677 1,867715 1,872548 1,867715

2 4,572409 4,572408 4,5724 4,572410 4,585042 4,572411

3 7,415417 7,415415 7,4154 7,415419 7,438700 7,415419

4 9,987355 9,987350 9,9874 9,987355 10,024300 9,987357

5 12,322442 12,322432 12,3224 12,322439 12,376532 12,322442

6 14,445910 14,445893 14,4459 14,445900 14,520763 14,445906

7 16,388350 16,388325 16,3883 16,388332 16,487471 16,388340

8 18,176654 18,176619 18,1767 18,176626 18,303226 18,176637

9 19,832883 19,832836 19,8330 19,832841 19,989543 19,832855

10 21,374112 21,374051 21,3743 21,374054 21,562664 21,374072

11 22,812558 22,812481 22,8130 22,812485 23,033447 22,812502

12 24,153727 24,153634 24,1546 24,153635 24,404440 24,153654

13 25,387630 25,387523 25,3892 25,387523 25,654369 25,387541

14 26,218679 26,218657 26,2191 26,218657 26,255349 26,218660

15 26,555938 26,555856 26,5577 26,555856 26,738758 26,555866

The condition numbers of the matrices for each example will also be evaluated. The condition
number of a matrix A, denoted as C(A), provides an estimate of the number of precision digits required
in solving equations such as Eq. (15). The condition number is the ratio of the largest to the smallest
eigenvalue of the matrices. The closer to the unit the greater the stability of the method [28]. The
condition number according to Bazan [29] is given by:

C(A) =‖ A ‖‖ A−1 ‖, (35)

where the norm used in this work is the Euclidian.
The Fig. 12 and Fig. 13 show the condition number plots of the stiffness and mass matrices, respec-

tively.
In the graphs, the FEM matrices have better condition numbers for the first 10 levels of enrich-

ment. The Arndt [15] enrichment condition numbers for bars vary greatly from the highest to the lowest.
Among the other two enrichments, the Hsu [22] has the most well-conditioned matrices.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Comparative analysis of trigonometric enrichments used in dynamic analysis of Timoshenko beams by the Generalized Finite
Element Method

102 2 × 102 3 × 102 4 × 102

number of degrees of freedom

10 6

10 5

10 4

10 3

10 2

10 1

100

re
la

tiv
e 

er
ro

r (
%

)

Enrichment Arndt bars
Enrichment Arndt beams
Enrichment Hsu

Figure 10. Graphics of convergence for the first frequency
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Figure 11. Graphics of convergence for the second frequency

4.2 Transient analysis

For the transient analysis it was chosen a beam with a relationship between the cross-sectional height
and the beam length of 0.2.

For time discretization, the study time interval is 200 seconds, which was analyzed in steps of 10−2
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Figure 12. Graphics of the condition number of the stiffness matrices
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Figure 13. Graphics of the condition number of the mass matrices

seconds. To provide better visibility of responses, the time interval shown in some figures is smaller.
For the integration in time was used the method of Newmark. The graphs are relative to the free end
node. An external step-type excitation of 1 N is applied at the free end of the beam. A model with 8000
degrees of freedom was adopted as reference solution validating a sufficiente reliabe reference.

The Fig. 14 and Fig. 15 show the displacement responses with one and five enrichment levels,
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respectively, they also show a zoom so that the behavior of the enrichments can be observed in more
detail.
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Figure 14. Transient response in displacement terms with one level of enrichment.
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Figure 15. Transient response in displacement terms with five levels of enrichment.

In the Fig. 14 it can be seen that Arndt [15] enrichment for beams is not the most accurate. However,
by increasing the level of enrichment the curves are very similar. The other enrichments present results
almost equal to those of FEM, being difficult to perceive the difference between them.
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Figure 16 and Fig. 17 show the velocity responses with one and five enrichment levels, respectively.
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Figure 16. Transient response in velocity terms with one level of enrichment.
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Figure 17. Transient response in velocity terms with five levels of enrichment.
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The behavior of the four velocity curves is similar. Even if they do not show the same results it is
difficult to distinguish which enrichment behaved more efficiently.

Figure 18 and Fig. 19 show the acceleration responses with one and five enrichment levels, respec-
tively.
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Figure 18. Transient response in acceleration terms with one level of enrichment.
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Figure 19. Transient response in acceleration terms with five levels of enrichment.
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The acceleration results of FEM have higher peaks than GFEM, but the values of these peaks de-
crease with increasing degrees of freedom. However, for the GFEM results the opposite is the result, as
there is an increase in the number of degrees of freedom there is an increase in the peak values of the
acceleration responses.

5 Concluding remarks

This work aimed to apply the GFEM to dynamic analysis of Timoshenko beams and to analyze the
behavior of different sets of trigonometric enrichment functions. The enrichments were presented in the
following order, the first enrichment presented was that shown in Arndt [15] for bars, with modifications
proposed by Torii [2] and Weinhardt [17]. The second enrichment was also presented in the work of
Arndt [15] for Euler-Bernoulli beams. The last enrichment used was presented in the work of Hsu
[22], already employed in Timoshenko beams. This work compiled all these strategies and presented
insightfull discussion that may guide further researches.

In order to perform the modal analysis and to compare the three different enrichments, applied with
the GFEM, with FEM, a clamped-free beam with a ratio between the cross-sectional height and the beam
length of 0.1 was chosen. Frequency spectrum were obtained, comparing the enrichment functions with
FEM. The spectra results indicated that the enrichment of Arndt [15] for beams obtains better results
than the others, thus following the enrichment of Arndt [15] for bars. This result brings new perpectives
to the subject, thus contributing to the field.

A table was then presented in which the GFEM results with three enchment levels were compared
with the results obtained by other authors and FEM. It was concluded that the results obtained with
the three trigonometric enrichments were similar to those obtained by other authors. The results that
presented a greater precision were obtained with the enrichment of Arndt [15] for bars, followed by the
enrichment of Hsu [22]. A question left over in this aspect consists in studying numerical stability issues,
following research trends in the application o GFEM to Dynamics.

The convergence plots showed that the enrichment of Arndt [15] for beams has a high relative
error for this example and a low convergence rate for the first two frequencies, which is not possible
to observe in the frequency spectra. The other two enrichments presented, at the highest enrichment
level, very close error values. The rate of convergence of the enrichment of Hsu [22] was higher but the
enrichment of Arndt [15] for bars although with lower convergence rate was more accurate, suggesting
that new enrichment strategies may be proposed aiming an optimized procedure.

A preliminary numerical statility analysis of the matrices was presented using the condition num-
ber as a representative measure. The condition number of mass and stiffness matrices were presented
showing that the matrices related to Hsu [22] enrichment are more stable. This result incorporates a
contribution to the discussion and aims to foment new discussion branches featuring numerical stability.

For the transient analysis, a clamped-free beam was chosen as main example. Three different en-
richments and their results were compared to those obtained with FEM analysis. The transient analysis
responses were presented in terms of displacement, velocity and acceleration. FEM already has very
accurate results for displacements and the enrichment does not improve approximation greatly. Another
aspect worth highlighting is the fact that the three enrichments present similar results, always very sim-
ilar to the FEM solution. Thus, for the transient analysis it is not possible to highlight or discard any of
the enrichments, it was only possible to observe that they have good application for the transient analysis
of Timoshenko beams as well.

As a main observation, it’s interesting to sumarize that two enrichments presented good results for
the example. The enrichment of Arndt [15] for bars obtained a better overall frequency spectrum, while
the convergence plots pointed to a higher convergence rate for Hsu [22] enrichment. Enrichment of Hsu
[22] also presents condition number lower than the enrichment of Arndt [15] for bars, for the higher
levels. Finally, the discussion is open and further investigations may follow threads presented in this
paper.
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[3] Chopra, A. K., 2011. Dynamics of Structures. Pearson, fourth edition.

[4] Becker, E. B., Carey, G. F., & Oden, J. T., 1981. Finite Elements: An Introduction, volume I. Prentice
Hall.

[5] Bathe, K., 1982. Finite Element Procedures in Engineering Analysis. Prentice Hall.

[6] Hughes, T. J. R., 1987. The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Prentice Hall.

[7] Bellman, R. & Casti, J., 1971. Differential quadrature and long-term integration. Journal of Mathe-
matical Analysis and Applications, vol. 34, pp. 235–238.

[8] Jang, S. K., Bert, C. W., & Striz, A. G., 1989. Application of differential quadrature to static analysis
of structural components. International Journal of Numerical Methods in Engineering, vol. 28, pp.
561–577.

[9] Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y., 2005. Isogeometric analysis: Cad, finite elements,
nurbs, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineer-
ing, vol. 194, pp. 4135–4195.

[10] Palazzolo, A., 2016. Vibration Theory and Applications with Finite Elements and Active Vibration
Control. Wiley, Texas.

[11] Bhavikatti, S. S., 2005. Finite element analysis. New Age International (P) Limited.

[12] Melenk, J. M., 1995. On generalized finite element methods. PhD thesis, Faculty of the Graduate
School of The University of Maryland, Maryland.

[13] Melenk, J. M., 1992. Finite element methods with harmonics shape functions for solving laplace’s
equation. Master’s thesis, Faculty of the Graduate School of the University of Maryland, Maryland.
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