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Abstract. The Generalized Finite Element Method (GFEM) is a Galerkin method based on augmenting
low-order FE approximation spaces with functions that well represent local behaviors of the solution.
Since its proposition, the method has demonstrated good performance and has provided higher-order
convergence rates. A particular drawback related to it, however, is the possibility of linear dependencies
between its shape functions, which leads to loss of accuracy and convergence rates decrease. In this
context, stable versions for the method, with modifications in the enrichment functions and Partitions of
Unity (PU), were developed aiming to eliminate these dependencies and keep GFEM optimal conver-
gence rates. On the other hand, it is known that for displacement formulations the stress field coming
from numerical approaches is less accurate than the main displacement field. Very recently, a stress
recovery procedure was proposed for Stable GFEM (SGFEM). This process is based on a weighted L2

inner product, which leads to a block-diagonal matrix, being therefore very efficient. In this work, we
aim to assess this recovery procedure when applied to SGFEM using Flat-Top PU for quadrilateral FE
meshes. In particular, we evaluate the effect of using Lagrangian PU for weighting the L2 inner product
used to generate the recovered stress field and the conditioning of this system coefficient matrix. Numer-
ical examples show that the combination of this GFEM version and the recovery procedure in addition
to guaranteeing stability for the solution also provides very accurate stress distributions.
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1 Introduction

The use of numerical methods to solve complex engineering problems has become quite common
since exact solutions are very limited. One of these methods that is currently applied as an efficient
alternative to obtain solutions with good accuracy is the Generalized Finite Element Method (GFEM)
(Duarte et al. [1], Strouboulis et al. [2]). The GFEM is a Galerkin method that proposes the generation
of numerical approximations belonging to a space obtained by augmenting low-order standard finite
element approximation spaces by enrichment functions that can well represent local behaviors of the
solution.

Problems presenting special features such as discontinuities or high gradients can be efficiently
solved by the GFEM. In particular, it is possible to insert into its approximation space functions that
represent these discontinuities and high displacement gradients. This can deliver higher convergence
rates and makes the mesh independent of the crack, which greatly facilitates the initial mesh generation
and the possibility of crack propagation analyses (Belytschko and Black [3], Duarte et al. [4]).

Despite its efficacy, a particular drawback related to the GFEM, in general, is the possibility of
linear dependencies between its shape functions. In this context, stable versions for the method are
being developed aiming to eliminate these dependencies and keep GFEM optimal convergence rates. A
recent stable version (Zhang et al. [5]) indicates the use of modified enrichment functions as proposed
by Babus̆ka and Banerjee [6] along with special Partitions of Unity (PU) for construction of the enriched
space. These modifications in both the enrichment functions and the PU tries to eliminate dependencies
between the conventional finite element space and the enriched one, besides some dependencies that can
appear in the basis functions used in the enriched space generation.

Conventionally, displacement formulations of the Principle of Virtual Work (PVW) are used to
construct the weak form of the variational problem to be studied. For problems of Continuum Mechanics,
all expressions related to stress and strain fields are written in function of the displacement field using the
stress-strain (constitutive equations) and strain-displacement (compatibility) relations. The only variable
to be approximated in the problem is thus the displacement field. Consequently, the stress and strain
fields computed by a numerical approach (GFEM or its related versions) end up being less accurate than
the displacement field, once those fields are related to its derivative. One possibility to overcome this
issue is to use a stress recovery procedure. This idea was explored by Lins et al. [7] very recently for the
Stable GFEM (SGFEM) (Babus̆ka and Banerjee [6] and Gupta et al. [8]). Fundamentally, this recovery
procedure is based on a weighted L2 inner product, which leads to a system of equations formed by a
block-diagonal matrix, being therefore very efficient and expending few computational resources.

In this work, we aim to assess the recovery procedure exposed in the last paragraph when applied
to SGFEM with Flat-Top PU (SGFEMFT) for the construction of the enrichment function space for 2D
quadrilateral finite element meshes (Sato et al. [9]). In particular, we evaluate the effect of adopting La-
grangian PU for weighting the L2 inner product used to construct the system of equations that generates
the recovered stress field. Following this introduction, the problem type formulation and the numerical
methods used herein are addressed in Section 2. Section 3 presents the stress recovery procedure pro-
posed by Lins et al. [7]. Section 4 shows some numerical examples related to the application of the stress
recovery procedure and, finally, Section 5 exhibits the main conclusions of this work.

2 Numerical Approaches

2.1 Problem formulation

Consider a two-dimensional domain Ω ⊂ R2 with boundary ∂Ω that can be decomposed in the
regions ∂Ωu and ∂Ωσ where Dirichlet and Neumann boundary conditions are applied, respectively. ∂Ωu

and ∂Ωσ consists of a partition of ∂Ω, i.e., ∂Ωu∪∂Ωσ = ∂Ω and ∂Ωu∩∂Ωσ = ∅. In addition, consider
a traction-free domain crack ΓC where the displacement field is discontinuous.
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The problem consists of finding a displacement field u, such that it satisfies the governing equations,
which can be separated in equilibrium, constitutive and compatibility equations:

div (σ) + b̄ = 0 (1)

σ = C : ε, (2)

ε = ∇su =
1

2

(
(∇u)T +∇u

)
. (3)

In equations 1–3, σ and ε represents the Cauchy stress and the infinitesimal strain tensors, respec-
tively. C represents the fourth-order elastic constitutive tensor and b̄ the domain forces vector.

Besides the relations 1–3, the solution fields have to satisfy all boundary conditions applied to the
solid, i.e., u = ū on ∂Ωu, and σ .n = t̄ on ∂Ωσ. In these relations, ū and t̄ are prescribed displacements
and tractions and n is an outward unit vector normal to ∂Ωσ. Finally, along the crack line the traction
vector vanishes, i.e., σ .n = 0 on ΓC .

In a weak sense, the same problem can be formulated using the PVW, which states:
Find u ∈ X(Ω) ⊂ (H1(Ω))2, that ∀δu ∈ Y(Ω) ⊂ (H1(Ω))2,

∫
Ω
σ(u) : ε(δu) dΩ =

∫
Ω
b̄ · δudΩ +

∫
∂Ωσ

t̄ · δudΓ. (4)

In Eq. 4, X(Ω) and Y(Ω) are respectively the spaces used for the definition of trial functions, in
which u(x) = ū for x ∈ ∂Ωu, and test functions, in which δu(x) = 0 for x ∈ ∂Ωu. In addition, H1(Ω)
is the Sobolev space of functions on Ω with generalized derivatives L2(Ω).

2.2 GFEM

The Generalized Finite Element Method (GFEM) is a Galerkin method that generates numerical
solutions belonging to a space obtained by augmenting low-order finite element approximation spaces
with functions that well represent local behaviors of the problem solution. In its context, these functions
are known as enrichment functions and they are usually introduced by previous knowledge about the
problem exact (or, at least, expected) solution.

Accordingly, the GFEM approximation space can be written as the sum between the conventional
FEM approximation space SFEM and the space SENR spanned by the adopted enrichment functions, i.e.,

SGFEM := SFEM + SENR. (5)

For being an instance of the Partition of Unity Methods (PUM) (Melenk and Babus̆ka [10]), the
GFEM shape functions are build as the product between nodal linear or bi-linear Lagrangian PU (which
also defines FEM shape functions) and a set of enrichment functions defined on each node:

φαi = ϕαLαi (no summation on α). (6)

In Eq. 6, ϕα refers to a PU component related to discretization cloud α, and Lαi, i ∈ Iα refers
to the ith enrichment function belonging to the vector Lα, with Iα being an index set associated to the
adopted enrichment functions.

A global approximation û for displacement vector field can now be defined using that shape func-
tions (Eq. 6). Equation 7 presents this approximation where uαi refers to the coefficients (generalized
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degrees of freedom) used for constructing û as a linear combination of φαi.

û =

N∑
α=1

∑
i∈Iα

uαiφαi =

N∑
α=1

ϕα
∑
i∈Iα

uαiLαi =

N∑
α=1

ϕαûα. (7)

Noticeably, the global approximation can be understood in Eq. 7 as gluing local approximation
functions ûα ∈ χα(ωα) = span(Lαi)i∈Iα using a PU to construct globally conforming approximate
solutions.

In the GFEM context, it is usually considered Lα1 = 1, ∀α, and thus GFEM can restore FEM
solutions. Hence, Eq. 7 can be conveniently split into two parts, as:

û =
N∑
α=1

uα1ϕα +
N∑
α=1

ϕα
∑

i∈Iα, i 6=1

uαiLαi = ûFEM + ûENR. (8)

Based on Eq. 8, the GFEM approximation spaces can be expressed by:

SFEM =

{
ζ : ζ =

N∑
α=1

cαϕα, cα ∈ R

}
(9)

SENR =

{
ζ : ζ =

N∑
α=1

ϕαχ
ENR
α , χENR

α = span(Lαi)i∈Iα, i 6=1

}
. (10)

2.3 A GFEM stable version

Firstly, we define the measure used herein to evaluate the stiffness matrix conditioning. Let R(K)
be the Scaled Condition Number (SCN) of a stiffness matrix K given by GFEM or its stable versions.
Because K is a symmetric positive-definite matrix, Babus̆ka and Banerjee [6] define R(K) := κ2(H),
where κ2(H) = ‖H‖2‖H−1‖2 is the condition number of H based on the L2 matrix norm and H =
DKD, where D is a diagonal matrix with diagonal entries Dii = 1/sqrt(Kii). It must be highlighted
that the SCN also can be defined as κ2(H) = λM/λm, in which λM and λm are the largest and smallest
eigenvalues of H, respectively.

Babus̆ka and Banerjee [6] and Gupta et al. [8] have already presented that even for smooth en-
richment functions Lαi ∈ χα(ωα) the stiffness matrix SCN rate is orders of R(KGFEM) = O(h−4),
with h being a finite element size for uniform meshes. This rate is orders of magnitude greater than
R(KFEM) = O(h−2).

Trying to reduce the SCN when GFEM is used, Babus̆ka and Banerjee [6] propose a simple modi-
fication to be applied in the enrichment functions that generates the enriched approximation space S̃ENR.
The modified enrichment functions L̃αi are given by

L̃αi(x) = Lαi(x)− Iωα [Lαi](x) (11)

where Iωα [Lαi] is the piecewise linear or bi-linear finite element interpolant ofLαi, which for an arbitrary
integration point (ξ, η) is given by

Iωα [Lαi](ξ, η) =
n∑
j=1

ϕj(ξ, η)Lαi(xj) (12)
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with n equals to the finite element number of nodes.
Even with the modifications proposed by Babus̆ka and Banerjee [6], the stiffness matrix condition-

ing could not be controlled in 2D and 3D analysis when some combinations of enrichment functions
were applied (Zhang et al. [5]). Later, Zhang et al. [5] have then proposed another modification to be
imposed in the enriched approximation space generation.

This modification consists of using another PU ϕ ∗ to generate S̃ENR. In this case, the approximation
û can be written as:

û =
N∑
α=1

uα1ϕα +
N∑
α=1

ϕ ∗α
∑

i∈Iα, i 6=1

uαi (Lαi − Iωα [Lαi]) (13)

In this paper, we adopt to ϕ ∗ a Flat-Top PU as proposed by Zhang et al. [5] and used by Sato et al.
[9] in 2D analysis with quadrilateral finite elements.

For a 1D master element, the Flat-Top PU components are illustrated in Fig. 1 and the reader is
referred to Zhang et al. [5] and Sato et al. [9] for their expressions. In this paper, we adopt the values
suggested by Sato et al. [9] for the parameters that define the Flat-Top PU, i.e., σ = 0.1 and l = 1.

Figure 1. 1D Flat-Top PU components on a master element
τL = {ξ ∈ R/− 1 ≤ ξ ≤ 1}.

For a 2D master quadrilateral element τQ =
{

(ξ, η) ∈ R2/− 1 ≤ ξ ≤ 1 and − 1 ≤ η ≤ 1
}

, the
Flat-Top PU components are obtained by a tensorial product between ϕ ∗1 and ϕ ∗2 , resulting:

ϕ
τQ ∗
1 (ξ, η) = ϕ ∗1 (ξ) ϕ ∗1 (η) (14)

ϕ
τQ ∗
2 (ξ, η) = ϕ ∗2 (ξ) ϕ ∗1 (η) (15)

ϕ
τQ ∗
3 (ξ, η) = ϕ ∗1 (ξ) ϕ ∗2 (η) (16)

ϕ
τQ ∗
4 (ξ, η) = ϕ ∗2 (ξ) ϕ ∗2 (η) (17)

Figure 2 presents a illustration of 2D Flat-Top PU for quadrilateral elements. The method in which
the approximation û is constructed based on Eq. 13 with Flat-Top PU is herein denoted as SGFEMFT.

3 A Stress Recovery Procedure

In this section, the stress recovery procedure to be evaluated in this paper is addressed. This recovery
procedure, recently proposed by Lins et al. [7], introduces a generalization of the recovery procedures
developed by Prange et al. [11] for the eXtended Finite Element Methof (XFEM) (Belytschko and Black
[3], Moes et al. [12]) and also by Lins et al. [13] for the SGFEM.

For stress recovery procedures, the components of the recovered stress field σ∗ are written as a
linear combination of the shape functions used to define the approximate displacement field, i.e.,
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Figure 2. 2D Flat-Top PU components on quadrilateral finite elements.
Adapted from Ramos [14].

σ∗ =

N∑
α=1

ϕαaα1 +

N∑
α=1

ϕα
∑

i∈Iα, i 6=1

aαi L
∗
αi. (18)

In Eq. 18, the same enrichment functions that generate û are used to construct the recovered stress
field, i.e., L ∗αi = Lαi, except for the cases of branch functions as those adopted in Example 4.2. The
functions used for these cases can be found in Lins et al. [7].

The new methodology proposed by Lins et al. [7] is based on a local weighted L2 projection as
the one presented by Schweitzer [15] for construction of lumped mass matrices for dynamic problems
using Partition of Unity Methods (PUM). Basically, a system of equations is solved for obtaining all
components of the recovered stress field and this system can be written as

Ã d
(α,i),(β,j) · ã

d
(α,i) = f d(β,j), (19)

in which α and β refer to discretization clouds, i and j to each component of the enrichment functions
vectors Lα and Lβ , respectively, and d = 1, 2, 3 refers to each stress field component (for the 2D case).

The methodology proposed by the authors understands the entries of the independent vector of Eq.
19, f d(β,j), as the L2 inner product between σ̂d and Ldβj weighted by the PU component ϕβ , i.e.,

f d(β,j) =

∫
Ω
σ̂dϕβL

d
βj dΩ =

∫
ωβ

σ̂dϕβL
d
βj dΩ :=

(
σ̂d, Ldβj

)ϕβ

L2(ωβ)
(20)

where σ̂d represents the components of the raw stress field given by GFEM (and its stable versions) and
Ldβj represents a generic enrichment function defined over ωβ .

The same strategy can be used to calculate the entries of Ãd, i.e.,

Ã d
(α,i),(β,j) =


0 if α 6= β(

Ldαi, L
d
βj

)ϕβ

L2(ωβ)
if α = β

(21)

with (
Ldαi, L

d
βj

)ϕβ

L2(ωβ)
=

∫
ωβ

(LdαiL
d
βj)ϕβ dΩ (22)
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This methodology generates a symmetric positive-definite and block-diagonal matrix Ãd. Each of
its blocks relates to one node of the adopted discretization and the dimension of this block depends on
dim(Lγ), i.e., the number of enrichment functions defined over the cloud node (including Lγ1 = 1).
This matrix can be written as follows:

Ãd = B̃d
1 � · · ·� B̃d

N =



B̃d
1 · · · 0

. . .
... B̃d

γ

...
. . .

0 · · · B̃d
N


(23)

where B̃d
γ = [(Ldγi, L

d
γj)

ϕγ

L2(ωγ)
], with i, j ∈ Iγ .

The recovery procedure herein presented is denoted by the original authors as ZZ-BD (Zienkiewicz
and Zhu block-diagonal) for being based on the original Zinkiewicz and Zhu [16] recovery process. The
reader is referred to Lins et al. [7] for details and results about the stress recovery procedure and the
a-posteriori error estimator based on it with conventional SGFEM.

It is important to mention that Prange et al. [11] and Lins et al. [13] did not apply the modifications
in the enrichment functions for construction of the recovered stress fields. In this paper, we follow this
methodology and also did not apply modifications in both the enrichment functions and the PU. As a
result, the matrix Ãd is equal for GFEM, SGFEM and SGFEMFT.

4 Numerical Examples

4.1 Cylinder under internal pressure

The first example presented in this paper consists of a cylinder under internal pressure pi = 1.0.
Its geometry and boundary conditions are illustrated in Fig. 3. It was assumed Young’s modulus
E = 21000.0, Poisson’s ratio ν = 0.30 and plane stress conditions. The essential (Dirichlet) boundary
conditions were applied using a penalization technique, with a penalization parameter η = 1010.

Figure 3. Cylinder under internal pressure pi = 1.0.

For all analyses presented in this section, it was adopted polynomial enrichment functions of type
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Lαi =
(x− xα)m (y − yα)n

(λα)m+n
. (24)

In Eq. 24, (xα, yα) are the coordinates of node α and λα is a cloud property known as its radius,
i.e., λα = maxj dist(xα,xj), with j ∈ nodes(ωα).

For this example, it was assumed second-order complete polynomial functions Lαi ∈ P 2
ωα
, ∀α

(including those in which essential boundary conditions were applied), in which (m,n) = (1, 0) +
(0, 1) + (2, 0) + (1, 1) + (0, 2). It is important to highlight that, for the functions generated by Eq. 24
that presents the monomials x, y and xy, the linear interpolant Iωα [Lαi] was not subtracted from them
because the result, in these cases, would be null modified functions.

In the examples presented herein, it was firstly evaluated the convergence of relative global errors
measured by the energy norm (Szabo and Babus̆ka [17]). The exact relative global error ε can be calcu-
lated as

ε =
‖u− û‖E(Ω)

‖u‖E(Ω)
=

√∫
Ω

(σ − σ̂)T C−1 (σ − σ̂) dΩ√∫
Ω
σT C−1 σ dΩ

. (25)

The estimated relative error is obtained using the stress recovery procedure presented in Section 3
and replacing the exact stress field by the recovered one in Eq. 25.

Regarding the convergence analysis, five distinct mapped meshes were used in all results that follow.
These meshes were obtained using the following number of divisions for the straight lines and arcs of
the cylinder, respectively: 4×8, 8×16, 16×32, 32×64 and 64×128.

Figure 4. Error convergence in energy norm for SGFEM and SGFEMFT.

The plots presented in Fig. 4 compares the relative exact and estimated global errors (both measured
by the energy norm) against the finite element size h−1. Fundamentally, exact errors compare the raw
stress field σ̂ with the exact one σ (Eq. 25), while estimated errors compares the raw stress field with the
recovered one σ∗. The proximity of these values can indicate the accuracy of the adopted stress recovery
procedure.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



M. H. C. Bento, C. S. Ramos, R. M. Lins, S. P. B. Proença

All results depicted in Fig. 4 indicates clear agreement between the estimated and exact stresses
since the estimated error line plot is very close to the reference one. This feature is even more accentuated
for the SGFEMFT case. Furthermore, in these cases, we can conclude that the error in the recovered
stresses will be much smaller than the reference one and this fact also confirms the notable accuracy
of the stress recovery procedure for both methods. It can also be observed that the recovered stress
results are quite good for both methods, even the error in raw stresses for SGFEMFT being greater than
conventional SGFEM. The plots illustrated in Fig. 4 shows that the convergence rates for the exact and
estimated error measures (for both SGFEM and SGFEMFT) is close to the optimal value.

Figure 5 illustrates the raw and recovered stresses σ̂xy and σ∗xy distribution for both the SGFEM and
SGFEMFT, considering the 4×8 mesh, along with the exact stress distribution.

Figure 5. (a) σ̂xy and (b) σ∗xy distribution for SGFEM and (c) σ̂xy and (d) σ∗xy
distribution for SGFEMFT. The exact stress distribution σxy is presented in (e).
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From Fig. 5, we can visually notice a worse initial stress distribution for the SGFEMFT case, prob-
ably caused by the constant regions of ϕ ∗ which restricts the polynomial representation of the resulting
shape functions. Even with a greater initial global error, the SGFEMFT can deliver an accurate recovered
stress distribution.

Next, Table 1 presents the Scaled Condition Number (SCN) for the matrices K and Ã. As already
commented in Section 3, Ã matrix is equally computed for SGFEM and SGFEMFT, and, by this reason,
R(Ã) is the same for both methods.

Table 1. Scaled Condition Number for matrices K and Ã for SGFEM and SGFEMFT.

h−1 Ndof R(KSGFEM) R(KSGFEMFT) R(Ã)

0.4 540 5.49E+19 6.04E+02 1.65E+03

0.8 1836 2.41E+18 5.87E+02 1.72E+03

1.6 6732 3.82E+19 5.72E+02 1.71E+03

3.2 25740 - 1.55E+05 5.64E+02

6.4 100620 - 6.34E+05 5.59E+02

Regarding the results presented in Table 1, it can be noticed the K conditioning control when
SGFEMFT is applied. Accordingly, one can conclude that the use of different PU along with modified
enrichment functions for S̃ENR construction controls the SCN even when smooth polynomial enrich-
ment functions are applied. In general, these functions would induce linear dependencies between the
generalized shape functions, a fact that is avoided in the SGFEMFT.

Finally, aiming to compare the stress recovery procedure applied to SGFEM and SGFEMFT, it is
then presented the error estimator effectivity index. This measure establishes a comparison between the
estimated and the reference global errors and, the closer to the unity is its value, the better the estimator
is.

The effectivity index can be calculated as θ = ‖e∗‖E(Ω)/‖e‖E(Ω). Table 2 presents the effectivity
index for both SGFEM and SGFEMFT.

Table 2. Effectivity indexes θ for SGFEM and SGFEMFT.

h−1 Ndof θSGFEM θSGFEMFT

0.4 540 0.81489 0.93216

0.8 1836 0.85476 0.95304

1.6 6732 0.88383 0.96553

3.2 25740 0.90135 0.97288

6.4 100620 0.91091 0.97697

The results show that the effectivity indexes for the SGFEMFT are closer to unity than in the SGFEM
case. For both methods, the results are suitable, since the effectivity index values tend to unity. The
results showed by Table 2 also corroborate to demonstrate the robustness of the ZZ-BD stress recovery
procedure since now the raw stresses were provided by SGFEMFT.
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4.2 Edge crack panel

The example presented in this section consists of a square panel with an edge crack as that illustrated
in Fig. 6. This figure also presents the Dirichlet and Neumann boundary conditions applied to the model.
It was assumed Young’s modulus E = 1.0, Poisson’s ratio ν = 0.30 and plane strain conditions.

Figure 6. Edge crack panel.

The pressures applied in the panel boundaries (see Fig. 6) refer to the first terms of the asymptotic
expansions of the exact solution of pure mode-I stress distribution from Fracture Mechanics, given by
the following expressions:

σI
xx =

1

4
√
r

(
3 cos

θ

2
+ cos

5θ

2

)
(26)

σI
yy =

1

4
√
r

(
5 cos

θ

2
− cos

5θ

2

)
(27)

σI
xy =

1

4
√
r

(
− sin

θ

2
+ sin

5θ

2

)
(28)

For all analyses performed in this section, it was adopted polynomial enrichment functions Lαi ∈
P2
ωα
, ∀α, and branch functions for the nodes α such as xα ∈ B(C,r) =

{
x ∈ R2/dist(x, C) ≤ r

}
, with

C = (0, 0) and r = 0.25. The branch functions adopted herein correspond to the displacement exact
solution around the crack tip (Oden and Duarte [18], Kanninen and Popelar [19]).

Lx1α =

{√
r cos

θ

2

[
κ− 1 + 2 sin2 θ

2

]
,

√
r sin

θ

2

[
κ+ 1 + 2 cos2 θ

2

]}
(29)

Lx2α =

{√
r sin

θ

2

[
κ+ 1− 2 cos2 θ

2

]
,

−
√
r cos

θ

2

[
κ− 1− 2 sin2 θ

2

]}
(30)
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with (r, θ) a polar coordinate system attached to the crack tip and κ the Kolosov constant, in which
κ = 3− 4ν for plane strain conditions and κ = (3− ν)/(1 + ν) for plane stress conditions.

It is important to mention that when the enrichment functions expressed in Eq. 29 and 30 are used,
the recovered stress field is constructed using enrichment functions L∗αi (see Eq. 18) equals to the first
terms of the asymptotic expansions of the exact solution of modes I and II stress distributions (these
expressions can be found in Lins et al. [7]).

Concerning the convergence analysis, four uniform mapped meshes were used in all results that fol-
low. These meshes were obtained by subdividing the panel sides with the following number of divisions:
8, 16, 32 and 64. As the number of divisions is even, the crack line lies on finite element sides and it was
used double nodes to capture its discontinuity.

The plots presented in Fig. 7 exhibits the convergence analysis performed for this example. The
plots compare the different error types against the finite element size h−1 for SGFEM and SGFEMFT.

Figure 7. Error convergence in energy norm for (a) SGFEM and (b) SGFEMFT.

As in the previous example, the results presented in Fig. 7 also show good agreement between the
exact and estimated error since these line plots are very close to each other. This indicates a desirable
performance of the stress recovery procedure for both SGFEM and SGFEMFT since the recovered stress
field can approximate well the exact one. Hence, it can be concluded that the recovered stress field is
much more accurate than the raw stress field.

Figure 8, presented next, depicts the von Mises raw and recovered stress distributions for SGFEM
and SGFEMFT. Again for the SGFEMFT case, one can notice a well-behaved recovered stress distribution
even with a greater initial global error in raw stress distribution. Figure 8 also shows the exact stress
distribution σvm for the problem.

Regarding the conditioning of SGFEM and SGFEMFT, the Table 3 presents the SCN of matrices K
and Ã for both methods.
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Figure 8. (a) σ̂vm and (b) σ∗vm distribution for SGFEM and (c) σ̂vm and (d) σ∗vm
distribution for SGFEMFT. The exact stress distribution σvm is presented in (e).

In this example, the SGFEMFT demonstrates again a good control of the stiffness matrix K condi-
tioning. For matrix Ã, the conditioning is kept under control even without modifying the adopted set of
enrichment functions and PU.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Numerical assessment of a stress recovery procedure applied to Stable GFEM using Flat-Top Partition of Unity

Table 3. Scaled Condition Number for matrices K and Ã for SGFEM and SGFEMFT

h−1 Ndof R(KSGFEM) R(KSGFEMFT) R(Ã)

8 1080 2.10E+18 3.43E+03 1.49E+05

16 3776 8.32E+18 1.58E+04 1.22E+07

32 14080 2.41E+19 6.99E+04 8.62E+08

64 54336 - 4.16E+05 5.67E+10

Lastly, the Table 4 presents the effectivity index θ for both methods.

Table 4. Effectivity indexes θ for SGFEM and SGFEMFT

h−1 Ndof θSGFEM θSGFEMFT

8 1080 1.08875 0.93546

16 3776 0.91472 0.95522

32 14080 0.90652 0.96982

64 54336 0.90680 0.97469

Again, the effectivity index for SGFEMFT is closer to the unity than in the conventional SGFEM
case. Thus, one can conclude that the results of the stress recovery procedure are more evident when
applied to that method, probably due to its worse raw stress distribution.

5 Conclusions

Briefly, this work aimed to assess the numerical application of a recently developed stress recovery
procedure for the SGFEMFT. The numerical method consists of a GFEM stable version, created to
overcome some difficulties presented by the original method as the ill-conditioning of the stiffness matrix
that appears mainly due to linear dependencies between its shape functions. This ill-conditioning can
lead to numerical solutions polluted by round-off errors, besides compromising the convergence when
iterative solvers are used. On the other hand, the stress recovery procedure assessed was firstly addressed
by Lins et al. [7] for the conventional SGFEM and consists of a modification in the original Zinkiewicz
and Zhu [16] stress recovery procedure, aiming mainly to guarantee a better computational efficiency.
In short, it uses a weighted L2 inner product to generate the system of equations for recovered stresses
nodal degrees of freedom, which is formed by a block-diagonal coefficient matrix.

Two examples were presented to evaluate the efficacy of the mentioned stress recovery procedure for
both smooth and non-smooth enrichment functions. In these two cases, the recovery procedure proved
efficient since the estimated error (computed using the recovered stresses) and the exact error were very
close to each other. In other words, this means that the recovered stress field is very close to the exact
stress field, returning then a stress distribution which is much better than the original SGFEMFT raw
stresses.

Another advantage of the method verified herein is the control over the stiffness matrix conditioning.
In fact, the conventional GFEM may lead to very ill-conditioned stiffness matrices even for smooth
enrichment functions and the SGFEM could not guarantee a conditioning control for any adopted set
of enrichment functions in 2D and 3D analyses. In the examples presented in this paper, instead of
using incomplete polynomials, the second-order complete polynomial functions were used aiming to
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reduce the global error and probably this has severely affected the stiffness matrix conditioning in the
SGFEM context. For the two examples presented, however, the SCN for the stiffness matrix proved to
be controlled when Flat-Top partitions of unity were adopted along with the SGFEM.

Finally, from the examples presented in this paper, it can be seen a good agreement between the
use of SGFEMFT, a specific stable version of GFEM, and the ZZ-BD stress recovery procedure. This
feature evidences the robustness of ZZ-BD recovery technique. Its application to SGFEMFT can deliver
accurate stress distributions with a recovery procedure that spends few computational resources. Further
studies with different set of enrichment functions, non-structured meshes and triangular finite elements
are being developed for the application of ZZ-BD to SGFEM with Flat-Top Partitions of Unity.
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