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Abstract.
The embedded finite element method is one approach to diminish the mesh generation burden in

finite element analysis. It consists of dealing with a description of a boundary that does not necessarily
match the problem’s physical boundary. It can potentially shrink the workflow giving the opportunity
of immediately inputting a CAD geometry or tomographic image into a simulation, without necessarily
using isogeometric elements or performing substantial preprocessing. This work presents an imple-
mentation of the recently proposed embedded formulation for Poisson problems in the general purpose
library libMesh. In the formulation, the boundary condition is shifted and enforced weakly by a Nitsche
approach, and then referred as surrogated boundary. This is accomplished provided the surrogate bound-
ary is close enough to the physical boundary so a Taylor expansion can be used to describe the chopped
off region. This approach provides a significant computational relief compared to the alternative selected
point integration, especially when dealing with complex domains where the total point-locating opera-
tions’ cost can be significantly high. Moreover, computational experiments indicates that second order
convergence can achieved.

Keywords: Shifted boundary, Embedded method, Weak boundary conditions, libMesh, Finite element
method
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1 Introduction

The unfitted methods is a broad term that encompasses a collection of numerical methods’ formula-
tions that are dedicated to solve problems where the mapped geometry of a physical body does not match
the contour of the grid or mesh put in place to represent it. Though having its main application in fluid
mechanics and fluid structure interaction problems, they are also applicable to other physics.

They are suitable to be used in situations where the mesh generation is such a burden that might
even render a problem unsolvable. On the other hand it has been reported [Boggs et al.] that most of
the time spent on simulation is on geometry manipulation or mesh generation. As an attempt to cut the
intermediate steps between a model conception and its simulation, by adopting B-splines, NURBS or
T-splines as base functions, traditionally used as CAD surfaces, the isogeometric formulations is then
proposed[2]. An equivalent result might be achieved by using the same functions merely as geometric
description in a unfitted method. Regardless on the motivation, whenever geometric manipulation or the
mesh generation becomes an issue, either for the manual labor required or the computational cost, the
unfitted methods should be considered.

Although frequently used interchangeably, the terms immersed and embedded can be distinguished,
separating the unfitted methods in two mains categories. This distinction is made by Main and Scovazzi
[3, 4] grouping as immersed the set of formulations that prescribes the discretization of a problem in the
entirety of a mesh, that usually is defined as a regular region of the cartesian space, bounding the domain
under evaluation and its defining boundary. Conversely the embedded formulations are the ones that
removes the elements or cells that are not part of the domain, entirely or, depending on the formulation,
partially.

Among immersed formulation is the pioneer work of Peskin [5] and the level-set methods [6]. On
these formulations the enforcement of the boundary condition is done by applying an equivalent force
field that can be interpreted as a penalty function.

Within the embedded formulations are the methods derived from the XFEM [7] formulation with
boundary condition enforced by Nitsche’s method [8]. On this approach, by enriching the approxima-
tion space by mean of a discontinuous function it is possible to correctly represent the boundary. The
conjunction of the two techniques is examined by Hansbo and Hansbo [9] for a diffusion problem in a
discontinuous domain. One of the challenges imposed by this approach is the complexity of correctly
detecting the boundary interception in a element.

Still on the embedded category, an interesting approach, designated as Finite Cell Method, is devel-
oped for solid mechanics [10] and turbulent flow [11] problems. In this approach the boundary condition
representation is achieved by removing elements that lies outside of the geometry under evaluation and
an adaptive integration scheme is adopted on the elements crossed by the boundary. The downside of
this technique is the point by point location evaluation that can be computationally expensive depending
on the size of the problem, the number of integration points used and the complexity of the geometry. In
its implementation a ray trace algorithm is used, but it is not necessarily the only solution. A review of
this method is done by Schillinger [12].

Finally in the embedded set of formulations, grouped in the approximate domain methods, is the
Shifted Boundary Method. The boundary condition is shifted and enforced weakly by Nitsche approach,
and then referred as surrogated boundary. Its full development and analysis can be found on its original
publication [3], here being reported just its final statement. The Nitsche formulation is also implemented
as a reference solution and is used to evaluate the quality of the shifted boundary formulation. The
surrogate boundary has to be close enough to the true boundary, so that a Taylor expansion can be used
to describe the chopped off region.

The implementation is done in the framework libMesh [14] and takes advantage of the subdomain
functionality, after geometric evaluations, to segregate the elements crossed by the true boundary, its
neighbors inside the domain, composing the surrogate boundary, and the inner and outer elements. The
two geometric shapes used to compose the evaluated geometries are circles and spheres.

The remainder of this paper is organized as follows. The next section presents briefly the shifted
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boundary method. Section 3 shows the obtained results and the observed convergence for two and three-
dimensional problems. The paper ends with a summary of our main findings.

2 The shifted boundary method

The model evaluated is the classical Poisson problem with Dirichlet boundary condition: find the
solution u ∈ C2 (Ω) such that

−4 u = f, on Ω

u = uD, on ΓD = ∂Ω.
(1)

The shifted boundary method starts by defining a surrogate domain Ω̃ bounded by Γ̃, the surrogate
boundary. The relation (Ω̃ ∪ Γ̃) ⊂ Ω holds and d is the distance vector between the surrogate and the
true boundary. Any surrogate boundary related quantity is then annotated with an over tild as ilustraded
in figure 1.

Figure 1. True and surrogate boundary with normal, tangent and distance vector.

The definition of a map function

M :Γ̃→ Γ

x̃→ x
(2)

from the surrogate boundary to the real boundary, is necessary so that any quantity can be shifted from
one to the other. The shifting of an arbitrary function ψ can then be defined as

ψ (x̃) ≡ ψ (M (x̃)) . (3)

For the simple geometries evaluated in this work the closest distance is the natural mapping choice,
and, as a beneficial consequence, the distance vector is aligned with the mapped true normal.

The shifted unitary normal vector is defined as

n (x̃) ≡ n (M (x̃)) . (4)

The derivative of an arbitrary function ψ on the surrogate boundary, projected onto the shifted
normal is stated as:

ψ,n (x̃) = ∇ψ (x̃) · n (x̃) = ∇ψ (x̃) · n (M (x̃)) . (5)
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Building upon the previews definition it is then possible to evaluate the Taylor expansion centered
at the surrogate boundary, i.e. for x̃ ∈ Γ̃ as

0 = u (x̃) +∇u (x̃) · (x− x̃)− uD (x̃) +O
(
||x− x̃||2

)
(6)

Finally as a preliminary definition, the inner product L2 (ω) for ω ⊂ Ω and γ ⊂ Γ is defined as:

(v, w)ω =

∫
ω
vw dω and (v,w)ω =

∫
ω
v ·w dω (7)

for both Ω ⊂ R and Ω ⊂ Rnd respectively, where nd is the space dimension. Also functionals on γ are
defined:

〈v, w〉γ =

∫
γ
vw dγ and 〈v,w〉γ =

∫
γ
v ·w dγ (8)

The Nitsche’s statement equivalent to the problem in equation 2 is: Given the discrete subspace
V h (Ω) ⊂ H1 (Ω), where H1 is the space of piecewise continuous functions, find uh ∈ V h (Ω) , such
that ∀wh ∈ V h (Ω),

ah
(
uh, wh

)
= lh

(
wh
)
, (9)

where

ah
(
uh, wh

)
=
(
∇wh,∇uh

)
Ω

−
〈
wh,∇uh · n

〉
ΓD

−
〈
∇wh · n, uh − uD

〉
ΓD

+
〈
α/h⊥wh, uh − uD

〉
ΓD

,

lh
(
wh
)

=
(
wh, f

)
Ω
,

(10)

α is the penalization parameter, and h⊥ the characteristic length, assumed as the maximum element
height. The penalization parameter adopted for the first order elements used in this work is taken as
α = 10.

The shifted boundary statement is similarly defined. The same space is adopted for the approxima-
tion and weight functions, the same penalization parameter and characteristic length, the difference lying
on the bilinear and linear functionals defined, with the help of the already defined parameters, as:
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ah
(
uh, wh

)
=
(
∇wh,∇uh

)
Ω

−
〈
wh +∇wh · d,∇uh · ñ

〉
Γ̃D

−
〈
∇wh · ñ, uh +∇uh · d

〉
Γ̃D

+
〈
∇wh · d, (n · ñ/||d||)∇uh · d

〉
Γ̃D

+
〈
α/h⊥

(
∇wh +∇wh · d

)
,∇uh +∇uh · d

〉
Γ̃D

lh
(
wh
)

=
(
wh, f

)
Ω

−
〈
∇wh · ñ, uD

〉
Γ̃D

+
〈
∇wh · d, (∇uD · τi) τi · ñ

〉
Γ̃D

+
〈
α/h⊥

(
∇wh +∇wh · d

)
, uD

〉
Γ̃D

.

(11)

The proved analytical convergence rate is of order 1.5, but the original publication also reports
optimal second-order convergence rate, leaving open the speculation that the proved rate might be a
lower boundary and liable to sharper estimations.

All implementation is performed using the c++ finite element framework called libMesh [14]. The
framework aim is to serve as an infrastructure for mesh-based parallel adaptive algorithms. It provides all
the infrastructure to quickly load data, assemble the discretized equation system, solve it by making usage
of some third part supported linear algebra library, and write its output in the common open standard
scientific data file. The framework has a diverse selection of finite element specific classes implemented,
so the user can focus on the formulation or specific feature under scrutiny, making it a useful prototyping
tool.

3 Results

For each of the two implemented formulations, Nitsche’s and the Shifted Boundary, a set of six
meshes is evaluated as the two-dimensional cases, and a set of five as three-dimensional cases, all of
them with the same Dirichlet boundary condition, and both radius, inner and outer, are equals in all of
the cases. This approach is aimed to homogenize the results just for convenience.

The meshes are increasingly denser so that the accuracy of the solution can be compared. The
error evaluation is performed for the two-dimensional cases by projecting the analytical solution in the
evaluated mesh, case by case. By doing this the comparison in performed into the same solution space
available for the partition under evaluation, and have only error component perpendicular to this space.

The three dimensional cases evaluation were exploratory and do not have as an extensive evaluation
as the two-dimensional ones. Nevertheless it is possible to compare the effect that a tighter partition has
on the resulting field.

The parameters that defines both the annulus and spherical shell are:
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f = 0,

re = 1,

ri = 0.5,

ue = 13,

ui = 34,

where re is the external radius, ri the inner radius, ue the prescribed field in the external circle or sphere
and ui the prescribed field in the inner circle or sphere.

3.1 Annulus evaluation

For the conformal mesh the resulting scalar field can be seen in Figure 2. The mesh is not highlighted
because in the denser case it would be impracticable to visualize the results, nevertheless increased
resolution can be noted by the boundary shape. It is possible to notice the quick convergence to the
expected field when in case 3 the element edge can not be visually distinguished.

(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 2. Resulting field for conformal formulation, annular domain.

The relative error evaluation, depicted in figure 3, was performed in the post processing phase, by
applying the analytical solution as a nodal data, effectively representing its projection to the adopted
mesh. As expected the error magnitude quickly diminishes and, as a relevant feature for comparison, one
can note that it is homogeneously distributed through out the entire domain. The color scale is adjusted
to the maximum and minimum value.
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(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 3. Relative error on conformal formulation, annular domain.

The subdomains for the first four meshes are depicted in figure 4. The red color indicates the
elements crossed by the boundary, and so they are not considered, the yellow color indicates the surrogate
boundary elements, and the dark blue color, the inner elements. The resulting domain depicted in the
first mesh holds no resemblance with the intended geometry and is a remembrance that, though flexible,
the embedded formulations still needs judicious examination.

(a) mesh 1 (b) mesh 2 (c) mesh 3 (d) mesh 4

Figure 4. Subdomain evalution.

The resulting field for the surrogate boundary model is shown in figure 5. The jagged boundary
approximates to a circle as the mesh gets denser. The resulting field is analogous to the conformal
formulation and shows the right feature even on mesh 1, where it is possible to note the correct gradient
direction. The asymptotic error lies in the chopped off region and is small as the distance between the
true boundary and its surrogate. For this implementation the upper value for this distance is the maximum
element size crossed by the boundary. The annulus outline is projected as reference.
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(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 5. Surrogate formulation, annular domain.

Similarly to the conformal case, the relative error for the surrogate boundary formulation is evalu-
ated taking as reference the analytical solution projected to the adopted mesh, and is show in figure 3,
for all cases. The magnitude of the error diminishes down to 10−2 indicating its suitability. It is possible
to note the different character of the error distribution, following the same annular shape and reaching
higher values close to the boundaries. This indicates the error introduced by the surrogate boundary is
dominant.

(a) mesh 1 (b) mesh 2 (c) mesh 3

Figure 6. Relative error on surrogate formulation, annular domain (continue).
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(d) mesh 4 (e) mesh 5 (f) mesh 6

Figure 6. Relative error on surrogate formulation, annular domain.

The plots depicted in figure 7 corresponds to field values sampled in the a radial direction for all
the cases. The analytical curve plotted corresponds to its projection into the denser mesh, for each
formulation. The arrows over the domains in figure 5 indicates sample line in the embedded cases. For
the conformal cases it is not possible to distinguish the different curves from mesh 3 onward. The same
feature is not as prominent for the surrogate boundary, and a greater deviation from the analytical solution
occurs closer to the outer boundary.

(a) Conformal (b) Surrogate

Figure 7. Radial sampling of u on annular domain.

3.2 Spherical shell evaluation

For the spherical shell the five cases are also ordered according to the mesh density. Figure 8
displays the resulting field in a cuted section of the domain. It is possible to note the decreasing element
size as the surface gets more spherical. The elements edges are not outlined for practical reasons as well.
The resulting field displays a smooth aspect in all cases, indicating a good approximation.
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(a) mesh 1 (b) mesh 2 (c) mesh 3

(d) mesh 4 (e) mesh 5

Figure 8. Conformal formulation, spherical shell domain.

The resulting field for the surrogate model is show in figure 9. Mesh 1 is also too coarse and holds
no resemblance to the intended geometry but, similarly to the annulus case, it shows the correct gradient
direction. The displayed volumes are a half volume section of the already filtered surrogate and inner
elements. Besides the chopped off region, the field aspect is increasingly alike the expected one.

(a) mesh 1 (b) mesh 2 (c) mesh 3

Figure 9. Surrogate formulation, spherical shell domain (continue).
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(d) mesh 4 (e) mesh 5

Figure 9. Surrogate formulation, spherical shell domain.

The plot depicted in figure 10 corresponds to field values sampled in the radial direction for all
cases. For the conformal mesha quick a convergence to the reference value is also achieved, and it is
not possible to distinguish the curves of mesh 3 and denser. The surrogate model shows a good enough
approximation starting from mesh 3.

(a) conformal (b) surrogate

Figure 10. Radial sampling of u on spherical shell domain.

4 Conclusion

The results indicates that the main source of error in the surrogate model is its boundary condition,
and since its approximation is of first order, the smoothness of the field in the boundary neighborhood
possibly plays a relevant role in the quality of the approximation. This conclusion is supported by the
fact that, for the annulus error evaluation, a greater deviation from the analytical solution appeared closer
to the outer boundary.

The surrogate boundary formulation is not suitable for evaluation of problems where the area of
interest in the domain is close to the boundary, since that it is the probable chopped off region. This
might be critical when evaluating the adoption of its siblings formulation [4] for other class of problems,
like Stokes or Navier-Stokes equations. It might not be suitable for understanding boundary layers
phenomena for instance, but probably relevant in simulations with interface problems.

Also the boundary distance can be arbitrarily small depending on the domain refinement region of
choice. It is possible to purposely use meshes that are thinner close to the boundary, and so to control
the average distance between the surrogate and the real one. On the limit this would bring back the issue
of too much effort in mesh generation, with the additional cost of a lower order convergence. Part of
this issue would be circumvent by adopting some adaptive mesh refinement criterion, but this approach
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could not be tested since in the current implementation libMesh cannot handle solution projections with
subdomain-specific variables where elements are added to subdomains.
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