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Abstract. Currently the Generalized Finite Element Method (GFEM) has been widely applied in the
modeling of localized solids failures. Its main advantage consists of the expansion of the Finite Element
Method (FEM) approach space by inserting functions (known as enrichment functions) that best locally
represent the behavior of the searched solution. Such functions may have specific characteristics or even
be generated numerically. On the one hand, the GFEM provides optimal convergence, however, it is
prone to introduce linear dependencies into its system of equations, making the matrix ill-conditioned or
even singular. The so-called stable version of the Generalized Finite Element Method (SGFEM) explores
a modification in the enrichment functions to improve the conditioning of the stiffness matrix. However,
such a modification leads to loss of precision in problems such as strong discontinuities. In order to rec-
oncile the incompatibility between the solution precision and the system matrix conditioning, this work
addresses a new modification of the space of GFEM shape functions associated with enrichment: flat-top
functions as Partition of Unit (PU) and a new PU based on trigonometric functions, these are used exclu-
sively in the construction of enriched shape functions. This new version of the GFEM presents a system
matrix conditioning almost insensitive to the mesh / discontinuity configuration, even if the crack path
approaches the element nodes. In addition, for flat-top PU with a small stabilization parameter, this ver-
sion is almost of the same precision as the GFEM. Since only the PU is modified, the presented proposal
can be easily implemented in pre-existing GFEM codes. Several representative numerical simulations of
benchmark tests are presented to validate the proposal, considering both the accuracy of the solution and
the conditioning of the system matrix.
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1 Introduction

In the last two decades several researches have demonstrated the effectiveness of the Generalized
Finite Element Method (GFEM) in solving problems with localized features as singularities and discon-
tinuities aa. The main concept of the GFEM is to incorporate the a priori knowledge of the behavior of
the solution in the approximation space, exploring the Partition of Unity (PoU) structure of the Finite
Element Method (FEM). In this way, for example, it is possible to account for a strong discontinuity
within a finite element by including of discontinuous functions in the so called enrichment space of ap-
proach. Such characteristics provide flexibility as well a significant improvement in numerical accuracy
compared to FEM.

However, the unrestricted increasing of the approximation space can introduce ill conditioning in
the GFEM system of equations due to the lack of linear independence of the set of shape functions. As
a consequence, round-off errors can assume strong deleterious effects over the quality and representa-
tiveness of the numerical solution. Babuška and Banerjee [1, 2] mathematically demonstrate, for regular
meshes with h refinement, that the condition number of the stiffness matrix grows at a rate of O(h−4)
even when a non-polynomial function is used as enrichment. Such a result is much worse compared to
the FEM where growth rate is of O(h−2). This GFEM drawback can sometimes represent an impor-
tant constraint, especially in solving nonlinear problems due to the accumulation of rounding errors, and
convergence problems in iterative linear solvers as shown Béchet et al. [3] and Fries and Belytschko
[4]. Several studies propose methodologies for the solution of this adversity, for example, Béchet et al.
[3], Laborde et al. [5] and Menk and Bordas [6], but with limited success.

In addition, when local expansion of the approximation space result from enrichment limited to
a certain portion of the domain it may occur so-called blending elements, that is, elements containing
enriched and unenriched nodes, which do not reproduce completely the enrichment function. The pres-
ence of these elements penalizes the approximate solution convergence rate, as shown by Laborde et al.
[5], Chessa et al. [7], Fries [8], Gracie et al. [9], Tarancón et al. [10] and Shibanuma and Utsunomiya
[11]. Several approaches to solve this problem are found in the literature, for example in Chessa et al.
[7], Fries [8] and Shibanuma and Utsunomiya [11]. However, implementation of these approaches in
pre-existing GFEM codes is not simple and optimal convergence is not always guaranteed, as shown in
Aragón et al. [12].

The drawback cited above was recently addressed by Babuška and Banerjee [1, 2], who proposed a
modification in the enrichment function that minimizes this problem. The version of GFEM incorporat-
ing this modification has been referred to as the Stable Generalized Finite Element Method (SGFEM).
Such modification aims to create an enriched shape function space that is almost orthogonal to the FEM
approximation space while preserving GFEM flexibility and convergence features. Babuška and Baner-
jee [1, 2] mathematically demonstrate that the stiffness matrix conditioning of the SGFEM grows at a
rate of O(h−2), that is, about the same order as the FEM.

However, Gupta et al. [13] and Gupta et al. [14] observed that the direct extension of the idea
presented by Babuška and Banerjee [1, 2] does not guarantee optimal convergence for two-dimensional
and three-dimensional crack problems. The optimal convergence order is retrieved in Gupta et al. [13]
and Gupta et al. [14] employing additional regularizations to the discontinuity functions. Later on, Zhang
et al. [15] and Zhang et al. [16] point out that the strategy employed by Gupta et al. [13] and Gupta et al.
[14] still does not guarantee robust conditioning in relation to the relative position of the crack line to the
mesh.

Investigating the properties of the so-called higher order SGFEM, Zhang et al. [17] demonstrate
that for enrichments with higher degree polynomial functions (>2), the firstly suggested modification
imposed on the enrichment functions is not a sufficient condition to guarantee a good conditioning of
the solving system. Thus, a further modification to be applied to the enrichment space is proposed, and
is equivalent to the replacement of the conventional FEM PoU functions (hat-functions) by the flat-top
PoU. From one-dimensional numerical analysis, Zhang et al. [17]demonstrate that the new modification
ensures local linear independence between the FEM approach space and the enrichment space. These
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authors refer to this new version of GFEM as High Order SGFEM due to higher convergence rates
obtained (>2).

Recently, Sato [18] and Sato et al. [19], based on the suggestion given Zhang et al. [17], extended
the flat-top PoU formulation to two-dimensional analyses and, through quadrilateral finite element dis-
cretization obtained results that showed good conditioning as a consequence of the linear independence
between the FEM approximation space and the enrichment function space. Similarly, Ramos and Proença
[20] and Ramos [21] extend the flat-top PoU formulation to triangular finite elements then obtaining sta-
ble results with optimum rates of convergence. However, despite analyzing crack domain problems, these
authors did not address the robustness of the condition number with respect to the crack position relative
to the mesh geometry.

This paper adresses that issue as well in the context of two-dimensional analysis from the per-
spective of quadrilateral finite element discretization. Therefore, constituting original contributions, we
formulate a new PoU based on trigonometric functions for quadrilateral finite elements. Moreover, it
is demonstrated that the exclusive use of flat-top PoU only does not satisfy the robustness condition in
relation to the relative position of the crack line. In this context, we present a new methodology based
on the previous selection of which enrichment each PoU will be applied to. Thus, a broader version of
GFEM is obtained, which considers any enrichment functions as well as different PoUs.

2 Model Problem

In this study, it is considered a domain Ω̄ = Ω ∪ ∂Ω ∈ R2 of elastic and cracked linear behavior. In
the absence of volume forces, the equilibrium equation and the constitutive relations for the problem are
defined as:

∇ · σ := 0 σ := C : ε in Ω, (1)

where σ is denoted Cauchy tension tensor, C is Hooke’s constitutive tensor and ε it is the tensor of small
deformations. Then Neumann boundary conditions are defined over ∂Ω such that,

t̄ := σ · n (2)

where n is the external normal unit vector of ∂Ω, t̄ are prescribed external distributed loading. It is
assumed that the crack surface is free of loads. In our simulations Dirichlet boundary conditions are
pointwise imposed in order to eliminate rigid body displacements. Through the Equations (1) and (2) the
strong form is defined.

Weak formulation reduces strong continuity requirements over test functions, thus enabling to look
for approximate solutions in an enlarged space, Proença [22]. In this context, the weak form is defined
through the Principle of Virtual Work, that states: Find u ∈ H1(Ω) such that ∀v ∈ H1(Ω)

B(u, v) := F (v) (3)

where,

B(u, v) :=

∫
Ω
σ(u) : ε(v) dΩ,

F (v) :=

∫
∂Ω
t̄ · v d(∂Ω),

(4)
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where, u and v are test functions belonging to the Hilbert space H1(Ω). Thus, for the problem under
analysis, using the Galerkin method can be applied to find an approximation uh of the exact solution u
defined in Equation (3) and belonging to a finite dimensional space. Therefore, the discretized problem
consists on: Find uh ∈ S(Ω) such that ∀vh ∈ S(Ω)

∫
Ω
σ(uh) : ε(vh) dΩ =

∫
∂Ω
t̄ · vh d(∂Ω) (5)

Formally, by using the Galerkin method, a subspace S(Ω) ofH1(Ω) is adopted that contain approx-
imation functions (test) of the exact solution. Therefore, S(Ω) ⊂ H1(Ω), and depends on the numerical
method used to construct the approximation. In the following sections we demonstrate the construction
of numerical approximations through the approximation spaces provided by GFEM and SGFEM.

3 On the GFEM and SGFEM

The GFEM is a Galerkin method whose approximation space is obtained by expanding the FEM
approximation space with special functions that well approximate locally the solution of the problem
under analysis. Such expansion is built by exploiting the PoU properties of the shape functions of the
FEM. In short, the shape functions of GFEM are constructed by the product between PoU ϕi provided
by the FEM elements and the enrichment functions, i.e.,

ϕi ×Li (6)

Let, Ih = {0, . . . , N} the set of indexes of discretization nodes adopted on finite elements of dimension
h and N the number of nodes, i ∈ Ieh ⊂ Ih such that Ieh is the set with the node indexes of the elements
e belonging to cloud/patch ωi and Li is the ni + 1 dimension vector which contain enrichment functions
ψ

(i)
j linked to the ωi cloud, that is,

Li = {ψ(i)
j : 0 ≤ j ≤ ni, ψ(i)

j ∈ H
1, ψ

(i)
0 = 1}, (7)

where ni is a nonnegative integer tied to the amount of cloud-bound ωi enrichment functions.
In GFEM, ϕi, i ∈ Ih, are linear and bilinear lagrangian functions with defined cloud support ωi,

i.e., the patch defined by the elements sharing the same node i, Oden and Duarte [23]. According to
Melenk [24], such functions constitute a PoU, because they agree with the unit sum property, that is,∑

i∈Ih ϕi(x) = 1, ∀x ∈ Ω̄, and ensure conformity to the global approximation obtained.
Therefore, in terms of a general representation, the GFEM test function space is defined by the

Equation (6) that,

S =
∑
i∈Ih

ϕiLibi = {ϕiψ
(i)
j b

(i)
j : 0 ≤ j ≤ ni, i ∈ Ih} := S1 + S2, (8)

where,

S1 = {ζ : ζ =
∑
i∈Ih

ϕiψ
(i)
0 b

(i)
0 }, S2 = {ζ : ζ =

∑
i∈Ih

ni∑
j=1

ϕiψ
(i)
j b

(i)
j }. (9)

b
(i)
0 , b

(i)
j ∈ R and represent the degrees of freedom tied to the nodes of the discretization mesh. S1 refers

to the approach space of the FEM and S2 to the space of enriched shape functions. Note that for patches
ωi where ni = 0 the local approach space S it’s the same as FEM.
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Proposed by Babuška and Banerjee [1, 2], in the hereby denoted Classical SGFEM , GFEM enrich-
ment functions are locally modified to make them null on patch nodes ωi. This can be done through the
following transformation:

ψ
(i)
j := ψ

(i)
j − Iωi

(
ψ

(i)
j

)
, (10)

where, for two dimensional problems,

Iωi

(
ψ

(i)
j

)
:=
∑
k∈Ieh

ϕkψ
(i)
j (xk, yk)

∣∣
ωi
. (11)

ψ
(i)
j is the modified enrichment function, Iωi

(
ψ

(i)
j

)
is an interpolation of the nodal values of ψ(i)

j over
the patch ωi and (xk, yk) are the coordinates of node k.

With the modification obtained, the same procedure presented in Equation (8) is used to construct
SGFEM approximation spaces, resulting in,

S =
∑
i∈Ih

ϕiLibi = S1 + S̄2, S̄2 = {ζ : ζ =
∑
i∈Ih

ni∑
j=1

ϕiψ
(i)
j b

(i)
j }. (12)

As mentioned earlier, although the expectation of optimal convergence is an excellent feature of
GFEM, to obtain it is important that the resulting system of equations can be accurately and efficiently
solved, in other words, the system of equations must be well conditioned. The scaled condition number
K(K) as an indicator of matrix conditioning, defined from the condition number κ2(·) of the scaled matrix
K̂, as shown below:

K(K) := κ2(K̂) = κ2(DKD) = ‖K̂‖2‖K̂
−1‖2, (13)

where, D is a diagonal matrix with Dii = K−1/2
ii and ‖·‖2 is the Euclidean norm.

Babuška and Banerjee [1, 2] demonstrate mathematically for one-dimensional problems enriched
with polynomial functions that K(KGFEM ) = O(h−4) and K(KSGFEM ) = O(h−2), that is, the condi-
tioning of the SGFEM, in contrast to that of the GFEM, is of the same order of magnitude as the FEM.
However, Zhang et al. [17] state that the modification imposed by the SGFEM on enrichment functions
is not a sufficient condition to guarantee that there will be no linear dependencies. Therefore, these au-
thors suggest a second modification on S̄2 in order to ensure local linear independence of space S1. This
change ultimately translates into the use of distinct PoUs for the construction of spaces S1 and S̄2. Thus,
similar to that construction presented in Equation (8), SGFEM approximation space is now defined as,

S := S1 + S̄mod
2 , (14)

where,

S1 = {ζ : ζ =
∑
i∈Ih

ϕiψ
(i)
0 b

(i)
0 }, S̄

mod
2 = {ζ : ζ =

∑
i∈Ih

ni∑
j=1

ϕ∗iψ
(i)
j b

(i)
j }. (15)

ϕ∗i is a special PoU applied only to construct the enrichment space. In subsection 3.1 two types of PoU
ϕ∗i are suggested that will be the object of study of this paper. Such partitions are denoted: flat-top PoU
and trigonometric PoU.
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Throughout the remainder of this work, SGFEM versions will be referred to in accordance with
the PoU adopted to build the S̄mod

2 . Thus, SGFEMFT refers to the version that uses flat-top PoU and
SGFEMTRIG when employed trigonometric PoU.

3.1 Special Partitions of Unity

The flat-top PoU was initially studied by Griebel and Schweitzer [25], Schweitzer [26, p. 97] and
Griebel and Schweitzer [27] aiming to reduce the linear dependence problem between enriched shape
functions constructed through hat-functions in the Particle-Partition of Unity Method. Besides these, with
the same objective Babuška et al. [28] employed flat-top PoU to study GFEM superconvergence points.

Zhang et al. [17] propose the following relations to construct a regularized k-degree flat-top PoU in
the one-dimensional finite element ej := [xj , xj+1],

ϕ
ej
1 (x) =


1 for x ∈ [xj , xj + σh](

1−
(
x− xj − σh
(1− 2σ)h

)k
)k

for x ∈ [xj + σh, xj + (1− σ)h]

0 for x ∈ [xj + (1− σ)h, xj+1]

ϕ
ej
2 (x) =


1 for x ∈ [xj , xj + σh]

1−

(
1−

(
x− xj − σh
(1− 2σ)h

)k
)k

for x ∈ [xj + σh, xj + (1− σ)h]

0 for x ∈ [xj + (1− σ)h, xj+1]

(16)

where, ϕej
1 and ϕej

2 are associated with the left and right nodes, respectively, of the element ej . The
σ parameter defining the flat region size is contained in the range 0 ≤ σ < 0.5 and the parameter
k ∈ N∗ controls the smoothness of the curve that connects the flat regions. Zhang et al. [17] also perform
numerical analysis on one-dimensional problems and prove that flat-top PoU guarantees stability due to
good matrix conditioning.

Sato [18] and Sato et al. [19] through tensorial product of the 1-D relations extend the flat-top PoU
formulation to quadrilateral finite elements, and present results that indicate its effectiveness for well
controlling matrix conditioning. The Figure 1 illustrates the flat-top PoU defined for quadrilateral finite
elements presented by Sato [18] and Sato et al. [19].

Figure 1. Two-dimensional flat-top PoU representation in quadrilateral finite elements, for σ =
0.25, k = 1 and h = 2.
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However, Ramos [21] demonstrates that the use of flat-top PoU, despite generating an almost or-
thogonal enrichment space in relation to the FEM approximation space, demands a complex integration
procedure and higher computational cost. Moreover, aiming to provide higher order of continuity, con-
sidering the one-dimensional master finite element ê := [−1, 1], the following PoU is proposed:

ϕ1(ξ) = cos2

(
(1 + ξ)π

4

)
, ϕ2(ξ) = sin2

(
(1 + ξ)π

4

)
, (17)

where, ξ ∈ [−1, 1] and ϕ1, ϕ2 refer to the left and right nodes of the master finite element, respectively.
The functions presented in Equation (17) are PoU, once for ϕ1(ξ) + ϕ2(ξ) = 1.

The trigonometric PoU described in Equation (17) can be understood as a regularization of the flat-
top PoU of Equation (16) when σ → 0 and keeping its derivative null at the patch boundaries. It is
emphasized that both trigonometric and flat-top PoU respect this property.

The extension of trigonometric PoU to quadrilateral domain finite element [−1, 1] × [−1, 1] (see
Figure 2) follows from the tensorial product ϕi(ξ)× ϕj(η),

ϕ1(ξ, η) = cos2

(
(1 + ξ)π

4

)
cos2

(
(1 + η)π

4

)
,

ϕ2(ξ, η) = sin2

(
(1 + ξ)π

4

)
cos2

(
(1 + η)π

4

)
,

ϕ3(ξ, η) = sin2

(
(1 + ξ)π

4

)
sin2

(
(1 + η)π

4

)
,

ϕ4(ξ, η) = cos2

(
(1 + ξ)π

4

)
sin2

(
(1 + ξ)π

4

)
.

(18)

Figure 2. Trigonometric PoU representation for quadrilateral finite element.
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4 Numerical examples and discussion

Let be considered a cracked Ω̄ = [−a, a]2 two dimensional domain with unit thickness and dimen-
sion a = 0.5. The crack tip ΓC = {x : −0, 5 ≤ x ≤ 0, 0, y = 0, 0} is located at the point C = (0, 0)
(see Figure 3). A state of plane strain is considered, as well an elastic linear behavior material with
longitudinal modulus of elasticity E = 1, 0 and Poisson’s ratio ν = 0.3.

The loading refers to the first term of asymptotic expansion which represents Mode I of the exact
solution of the crack problem in infinite domain, for more details check Szabó and Babuška [29]. It is also
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noted that the loading is self-balancing, and its choice of loading allows the representation of the exact
solution of the problem. Pointwise restrictions were imposed to eliminate rigid body displacements.

Figure 3. Panel representation with edge crack.

x

y

a a 

a 

a 

ΓC

C

r

θ

To represent the displacement discontinuity across the crack line, two strategies were employed.
Firstly double nodes were used. Therefore the meshes are such that the element borders match the crack
line. Secondly, the Heaviside function was adopted to account for the crack opening. In this case the
mesh is such that the crack line crosses the elements.

In the discretization six uniform quadrilateral finite element meshes are considered. The geome-
try of finite element meshes depends on the strategy used to describe the displacement discontinuity
present in ΓC . Thus, in the first group of numerical experiments double knot strategy is employed and
singular enrichment is adopted to account for displacement discontinuity. The elements have dimension
h = a/2i, i = 1, 2, . . . , 6, leading to mesh grid with 2(i+1) × 2(i+1) cells. In the second group of
experiments, which combine the Heaviside function and singular functions to represent the displacement
discontinuity, the elements have a dimension h = 1/

(
2(i+1) + 1

)
, j = 1, 2, . . . , 6, generating mesh

grid of
(
2(i+1) + 1

)
×
(
2(i+1) + 1

)
cells. For convenience, the first group of meshes will be referred to

as even and the second as odd. As an example, in Figure 4 illustrates the geometry of the quadrilateral
finite element mesh of dimension h = 1/8 and h = 1/9.

Figure 4. Finite element discretization of dimension h = 1/8 and h = 1/9, respectively . (a) Even mesh.
(b) Odd mesh.

(a) (b)
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It is also emphasized that the evaluated problems have analytical solution for the displacements
(u) and for tensions (σ), Therefore, the approximate solution convergence assessment is based on the
measurement of the relative error in the energy norm εh, being described as

εh =
‖eh‖Ω
‖u‖Ω

=
‖u− uh‖Ω
‖u‖Ω

=

√∫
Ω

(σ − σh)TC−1(σ − σh)dΩ√∫
Ω
σTC−1σdΩ

, (19)

where, Ω refers to the problem domain, uh and σh are, respectively, the approximate solution obtained
for displacements and stresses, ‖u‖Ω is the displacement measure in energy norm, and ‖eh‖Ω indicates
the error measure in energy norm.

As already mentioned, the system of equations of GFEM, and its other versions, can be linearly
dependent. Thus, to find a solution in the analyzes described throughout this chapter in situations where
the stiffness matrix presented a bad condition, the matrix preconditioner proposed by Strouboulis et al.
[30]. This strategy consists of applying a small perturbation to the scaled stiffness matrix and iteratively
correcting the approximate solution obtained from the succesive system of equations.

It is also noteworthy that in the numerical simulations using the flat-top PoU defined by Sato [18]
and Sato et al. [19], the value 0.1 for the parameter σ was adopted, as recommended by those authors.

4.1 Enrichment strategy I

In order to obtain an optimal convergence rate for the cracked domain problem, that is, O(h), In
this section we evaluate the solutions provided by the GFEM versions when only singular enrichment
functions aiming to represent the exact solution near the crack tip. So, be ΓC a crack with the tip located
at C, Oden and Duarte [23] and Duarte et al. [31] suggest the use of such a set of functions as enrichment
for the displacement field capable of representing the singular behavior of the stresses near the C. Such
functions are defined as,

LS,x̄ =

{√
r

[(
κ− 1

2

)
cos

θ

2
− 1

2
cos

3θ

2

]
,
√
r

[(
κ+

1

2

)
sin

θ

2
− 1

2
sin

3θ

2

]}
LS,ȳ =

{√
r

[(
κ+

3

2

)
sin

θ

2
+

1

2
sin

3θ

2

]
,
√
r

[(
κ− 3

2

)
cos

θ

2
+

1

2
cos

3θ

2

]} (20)

where, (r, θ) is the polar coordinate system defined according to local cartesian coordinates (x̄, ȳ)
located at the crack tip ΓC (see Figure 3), κ = (3−4ν) (for a state of Plane Strain) and ν is the Poisson’s
ratio. Still from Equation (20), LS,x̄ and LS,ȳ are used to enrich the approximation according to local
directions x̄ and ȳ, respectively. In short, the singular enrichment vector is defined by:

LS =

{
LS,x̄ in direction x̄,

LS,ȳ in direction ȳ.
(21)

Thus, the enrichment vector LS is used, described in Equation (21), locally in the vicinity of the
crack tip. The enrichment zone is limited by a circular region B(C, R), where C is the position of the
crack tip and the radius R = 0, 25 is constant and independent of h (see Figure 5). The set with the
indexes of the nodes enriched by the vector LSi is then defined as follows,
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ISh = {i ∈ Ih : xi ∈ B(C, R)}. (22)

where x = (x, y). This enrichment strategy, known as geometric enrichment is used, for example, in
Fries and Belytschko [4], Gupta et al. [13] and Gupta et al. [14]. In fact, Gupta et al. [13] and Gupta et al.
[14] demonstrate that, for GFEM, this strategy provides optimal convergence rates, however the stiffness
matrix condition number still presents increasing rate of O(h−4).

Figure 5. Scheme of the enrichment zone. “�” represents nodes enriched by the set of singular functions.

B(C, R)

CΓC

Figure 6 shows that the GFEM presents optimal convergence rate O(h) while SGFEM, SGFEMFT

and SGFEMTRIG reveals convergence rates remaining aroundO(
√
h). On the other hand, it is observed

that the condition number of GFEM grows with order of O(h−4) whereas for the other versions the
results indicate increasing rate order of O(h−2). In fact, Classical SGFEM does not provide optimal
convergence rate if the same enrichments adopted in GFEM are used. According to Ndeffo et al. [32] and
Sanchez-Rivadeneira and Duarte [33], this is because the approximation spaces of GFEM and SGFEM
are different, even when adopting both enrichments. Moreover, although SGFEM presents optimal con-
vergence order in the experiment performed, Zhang et al. [15] demonstrates mathematically that this
condition cannot be guaranteed in any situation. Still according to these authors, the use of LS on nodes
belonging to ISh is sufficient to approximate the singular behavior of the solution, however, it is not
efficient to approximate displacement discontinuity in ΓC .

Figure 6. Enrichment with LS . (a) Relative error in energy norm. (b) Scaled condition number.
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In order to obtain optimal convergence order, additional enrichments were employed in the SGFEM,
SGFEMFT and SGFEMTRIG. So, be

IΓC
h = {i ∈ Ih : xi ∈ es and es ∩ ΓC 6= ∅}, (23)

the set with the node indexes of the elements es intercepted by the crack ΓC . The strategy used is to add
the following terms to the approximation space of such versions of SGFEM,

LSLi =

{
LS
(
x− xi
h

)
, LS

(
y − yi
h

)}
, (24)

where i ∈ ISh ∩ I
ΓC
h (see Figure 7). This set of functions will be referred to throughout the paper

by function Singular Linear. In fact, Sanchez-Rivadeneira and Duarte [33] demonstrate that the use of
this set of functions retrieves the optimal convergence rate of the SGFEM cracked domain problem in
triangular finite element discretization, however, demonstrate that this strategy can generate dependences
between LS and LSL. In fact, the conditioning problem indicated by these authors was observed after
direct application of LSL, as depicted in Figure 8. It can be observed that the use of these additional
enrichments provided an optimal convergence order O(h) in all versions of SGFEM, however, led to
loss of stability in relation to matrix conditioning. In particular, it is noted that such strategy generated
a growth rate of the scaled condition number of the order of O(h−8), that is, much higher than that
obtained even in the GFEM, which is of the order of O(h−4).

Figure 7. Scheme of enrichment zones for SGFEM and other versions. “�” represents the nodes belong-
ing to J1

h and “•” the enriched nodes belonging to J2
h .

B(C, R)

ΓC

Through the Figure 6b it is noticed that the modification imposed in Classical SGFEM did not
guarantee stability of the stiffness matrix conditioning and, once adding LSL there is a worsening of
this scenario. Thus, in search of a strategy that avoids the presence of linear dependencies between the
enrichment functions themselves, a new modification on the space of the SGFEMFT and SGFEMTRIG

is hereby proposed. Essentially, a mixed use of the flat-top or trigonometric PoU will be explored. So, be

J1
h = ISh \ I

ΓC
h e J2

h = ISh ∩ I
ΓC
h , (25)

the SGFEMFT
MD and SGFEMTRIG

MD approach spaces are defined as,
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S =
∑
i∈Ih

ϕib
[i]
0 +

∑
i∈J1

h

ϕi

(
LSi − Iωi(L

S
i )
)
bSi +

∑
i∈J2

h

ϕ∗i
(
LSi − Iωi(L

S
i )
)
b∗i +

∑
i∈J2

h

ϕi

(
LSLi − Iωi(L

SL
i )
)
bSLi

(26)

where ϕ∗i represents, depending on the methodology employed, the flat-top or trigonometric PoU and
b∗i are the degrees of freedom related to this PoU. bSi and bSLi refer to the degrees of freedom linked to
singular enrichment and Singular Linear, respectively.

Briefly, the idea is to apply the flat-top and trigonometric PoU on LS only in J2
h , that is, in the

region where the linear parcels of the singular functions are added (see Figure 7).
Therefore, the results illustrated in Figure 8 demonstrate that both the SGFEMFT

MD and SGFEMTRIG
MD

preserve the optimal convergence order O(h) and, on top of this, provide a scaled condition number of
the order O(h−2), that is, the same order as that obtained from the FEM. Regarding the measurement of
the relative error in energy norm, it is observed that the versions of SGFEMFT and SGFEMTRIG present
very close results to SGFEM.

Figure 8. Enrichment with LS and LSL. (a) Relative error in energy norm. (b) Scaled condition number.
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4.2 Enrichment strategy II

This section is to present the behavior of GFEM versions when representing strong discontinuities
crossing finite elements. Thus, the Heaviside function is used, which is commonly represented in the
literature as follows:

H(x, y) =

{
1, Z(x, y) ≥ 0

−1, Z(x, y) < 0,
(27)

where Z(x, y) = 0 is verified by the crack line. It is mainly intended to evaluate the aspects related to
robustness in the considered simulations.
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Remark 1. According to Babuška et al. [34], the version of GFEM that meets the following properties
will be denoted Robust SGFEM.

1. Optimal order of convergence;
2. Conditioning of stiffness matrix close to that of FEM;
3. Robutness of the stiffness matrix conditioning in relation to the relative position of the crack to the

mesh.

Zhang et al. [15] were the first to point out that the satisfaction of conditions 1 and 2 does not imply the
satisfaction of condition 3. In addition, they demonstrate that the modification imposed on the GFEM,
defined using Equations (10)–(12), does not generate a Robust SGFEM.

Again, we use the vectors of enrichment functions LSi , i ∈ J1
h , and Singular Linear LSLi , i ∈ J2

h .
However, the Heaviside function is added on nodes belonging to J3

h , where J3
h = IΓC

h \ ISh . Nevertheless,
as shown in Gupta et al. [13] and Gupta et al. [14], the modification of the Heaviside function according to
the suggestion given by Babuška and Banerjee [1, 2] provides O(

√
h) convergence rates, so not optimal

(O(h)). To restore the convergence rate, Gupta et al. [13] suggest using the function set called Heaviside
Linear, defined as:

LHL(x, y) =

{
H(x, y)

(x− xi)
hi

, H(x, y)
(y − yi)
hi

}
. (28)

therefore, these parcels were also added to the enrichment in J3
h to GFEM, SGFEMFT and SGFEMTRIG.

Regarding the enrichment zones, it is observed that J1
h ∩ J3

h = ∅, i.e., the nodes belonging B(C, R) are
not enriched by the heaviside function and its linear parcels. The definition of these enrichment zones is
in agreement with several works presented in the literature, such as Gupta et al. [13], Gupta et al. [14]
and Zhang et al. [15]. For more details, the Figure 9 illustrates the scheme of enrichment regions.

Figure 9. Scheme of enrichment zones for SGFEM, SGFEMFT and SGFEMTRIG. “�” represents the
nodes belonging to J1

h , “•” represents the nodes belonging to J2
h and “×” represents the nodes belonging

to J3
h .

B(C, R)

C

ΓC

In subsection 4.1 the issue of linear dependence between LS and LSL in SGFEM was discussed.
Therefore, in order to avoid ill conditioning, the analyzes described below the approximation spaces
defined in Equation (26) were expanded by including the Heaviside function and its linear parcels. In
addition, it is emphasized that the space of the GFEM enrichment functions is defined by the use of LSi ,
i ∈ J1

h , and the Heaviside function on nodes belonging to J3
h .

The results obtained are depicted in the Figure 10 and it is observed that all versions of GFEM pre-
sented optimal order of convergence, i.e, O(h). On the other hand, for GFEM and SGFEM, from mesh
refinement h = 1/9 on, the scaled condition number strats growing by approximately O(h−4). Mean-
while, the conditioning of the stiffness matrix attached to the SGFEMFT and SGFEMTRIG has stable
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behavior of O(h−2) throughout the analysis. It is also noted that the SGFEMTRIG presented results
closer to those obtained in SGFEM, thus evidencing a better accuracy in relation to SGFEMFT . These
results demonstrate that, for the analysis performed, SGFEMFT and SGFEMTRIG can be considered a
Robust SGFEM as they meet all the conditions described in Remark 1.

Figure 10. Enrichment withH, LHL, LS e LSL. (a) Relative error in energy norm. (b) Scaled condition
number.
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5 Conclusion

In this work, new versions of GFEM have been numerically tested by combining singular enrich-
ment functions and purely discontinuous functions. In particular, the main line of investigation was to
evaluate the effect of the modifications employed on Classical SGFEM with respect to the matrix con-
ditioning and the order of convergence of the relative error in energy norm. The main contributions are
summarized below.

Based on the results presented, it can be seen that in fact the use of flat-top PoU in the space of
approximation of enrichment functions provided, in most of the evaluated experiments, the control of
matrix conditioning. Similarly, it was observed that trigonometric PoU also played an important role in
controlling the scaled condition number of the stiffness matrix. In particular, it is clear that, at this point,
the results obtained using this PoU were in good accordance with those presented by the SGFEMFT .
This information demonstrates that trigonometric PoU provides good matrix conditioning, in addition
requiring a lower computational cost when compared to flat-top PoU.

Regarding the order of convergence of the error, compared to SGFEM the measurement of the rela-
tive error in energy norm obtained in the SGFEMFT and SGFEMTRIG is higher, as expected. However,
the convergence rate for both methods is of the same order as that obtained in SGFEM.

In addition, the selection strategy presented, in which one chooses which enrichment to combine to
each PoUs, has proved to be an efficient alternative for maintaining of the scaled condition number of the
order ofO(h−2), that is, the same obtained for the FEM. Moreover, as observed, the use of this technique
guaranteed robustness in relation to the relative position of the crack to the mesh in the horizontal crack
fracture domain problem.

Finally, it can be concluded that the use of different PoUs in the GFEM enrichment space is really
an effective alternative to keep under control the stiffness matrix conditioning. The results indicate the
possibility of further improvement of this technique to enable more accurate solutions.
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[32] Ndeffo, M., Massin, P., Moës, N., Martin, A., & Gopalakrishnan, S., 2017. On the construction
of approximation space to model discontinuities and cracks with linear and quadratic extended finite
elements. Advanced Modeling and Simulation in Engineering Sciences, vol. 4, n. 1, pp. 6.

[33] Sanchez-Rivadeneira, A. G. & Duarte, C. A., 2019. A stable generalized/extended FEM with dis-
continuous interpolants for fracture mechanics. Computer Methods in Applied Mechanics and Engi-
neering, vol. 345, pp. 876–918.
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