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Abstract.  Cable structures have high performance when required for traction and therefore provide 

lighter and thinner structures. On the other hand, the shape of the cable may vary according to its 

loading, which makes its analysis difficult. The Finite Element Method (FEM) has good results in the 

analysis of cable structures, but demands a high number of degrees of freedom to achieve a better 

accuracy. In order to evaluate the application of the Generalized Finite Element Method (GFEM) in 

suspended cable structures, a simplified cable model is presented, considering a static and inextensible 

analysis. The formulation considers the weak form of the inextensible cable problem and does the 

enrichment of the shape functions space for the conventional Finite Element Method. The model is 

implemented in Python language and tested with applications in the literature. In this work, second-

degree Lobatto’s polynomials are used and also hyperbolic enriching functions are proposed. The 

efficiency and convergence of the proposed model are verified and the matrix condition number is 

calculated to examine the numerical stability. The application of GFEM for inextensible cable 

problem, as presented here, is an original approach. Models based on parabolic or catenary 

configuration, when compared with others found in literature, have the closest results with the 

analytical solutions.  GFEM proved to be an excellent method for cable problems. In conclusion, it is 

possible to solve several cable problems with a single element, surpassing the results presented by 

FEM.  
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1  Introduction 

Cable structures have numerous applications in Engineering, such as the development of roofing 

suspension structures, suspended or cable-stayed bridges, offshore structures, tower mooring, towing 

systems and power transmission structures, among others. They can reduce the cost of the structure 

due to their high performance when requested tensile and by providing lighter structures [9, 10, 11, 

12]. 

Cables are very light elements and generate slender structures with lower dead load. In contrast, 

due the greater slenderness, they may lead to nonlinear behavior with large displacements. If the 

cables are untied, they experiment large displacements because the geometric nonlinearity. Cable 

elements have low flexural rigidity and in most analyzes it is not considered even neglected [16, 19, 

20].  

In the study of suspended cables, the analytical equation of the inextensible parabolic cable 

configuration can be considered as the simplest of the configurations. Even so, it is not always 

possible to solve it directly, requiring an iterative process [1, 14]. When considering the elastic 

elongation of the material, the problem becomes even more complex, since the cable adjust its 

configuration at each new deformation suffered. Then, it is necessary to solve it iteratively with 

respect to the total cable length. 

The elongation and nonlinear effects of large span structures, such as the Akashi-Kaikyo Bridge 

[7], should certainly be evaluated. Nevertheless, for suspended steel cables with spans of up to 100 

meters, the elongation caused by elasticity is of little importance and even the inextensible cable 

theory can be used [1, 2, 5, 8, 10, 11]. 

In this sense, the inextensible cable approach is suitable for validating the most robust models and 

can also be used as an initial solution for nonlinear model iterations. Therefore, the present paper 

discusses the inextensible cable model with its numerical implementation and shows its results and 

characteristics. 

The initial geometric configuration of the cables is affected by the loading imposed on the 

structure. For example, evenly distributed loads relative to the cable span generate a cable parabolic 

shape. If the loads are distributed over the cable length, they generate a catenary shape. In addition, 

concentrated forces induce a polygonal shape with straight segments.  

The Finite Element Method (FEM) is one of the main numerical methods for structural analysis. 

With the FEM, it is possible to obtain approximate solutions of differential equations of the studied 

problem [4, 9, 23]. The method uses the weak form of a boundary value problem that, from the 

discretization of the continuous medium and interpolating polynomial functions, seeks an approximate 

solution to the initial equation. 

Despite the good performance of the FEM in most problems, it is still possible to improve the 

results by refining the mesh (h-refinement) as well as increasing the order of the interpolator 

polynomial (p-refinement). Due to certain particularities of the problem to be analyzed, the FEM 

needs a great refinement which can spend much time and grows up the analysis costs. For these 

situations, due for example to singularities or discontinuities, it is advantageous to use enriched 

methods that perform the addition of functions related to the nature of the problem solution [3, 4, 6, 

24].  

The Generalized Finite Element Method (GFEM) is an extension of FEM in the context of the 

Partition of Unit Method (PUM) [3, 4, 6, 24, 26]. Enrichment functions are added to the FEM shape 

functions space, widening the solution space, and incorporating information regarding the nature of 

the problem analyzed. 

In this sense, for cable models, which have a priori information of the analytical solution, it is 

understood that the GFEM becomes an advantageous tool for the analysis of these models. 

The authors did not find any research in the literature using GFEM in cable analysis, but for the 

FEM it is possible to cite several works, such as Antunes and Sampaio [2], Barbato [5], Costa [8], 

Desai and Punde [9], Lourenço [13], Morini [14], Negrão et al [15], Papini [17], Pauletti and Pimenta 
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[18], Pereira Jr. [19], Rente [20], Souza Jr. [21], Thai and Kim [22] and Wei, Bingnan and Jinchun 

[23] which makes this work an unprecedented contribution to the subject.  

The general objective of this work is the application of the Generalized Finite Element Method in 

static analysis of inextensible suspended cable structures, trying to find their equilibrium 

configuration, the tension intensity and the maximum deflection. The GFEM was developed in a 

Python language program for solving the inextensible static cable configuration, which permits to 

compare solutions with different types of enrichment or different levels of enrichment. It is possible to 

compare the results between FEM and GFEM, and verify the numerical stability by the condition 

number of the stiffness matrix. In this work, the influence of the cable configuration type (parabolic or 

catenary) on the structure responses is also investigated as enrichment functions. 

2  Cable Theories and Numerical Models 

Consider the Figure 1 that illustrates an infinitesimal cable subjected to a uniformly distributed 

transversal load q(x) with respect to the X axis. The deformed configuration has slope θ, and μ is the 

weight per unit length of cable (s). 

 

Figure 1 – Free body diagram of infinitesimal cable 

 

Cables subjected predominantly to their own weight or evenly distributed loads in relation to their 

length are in the form of a catenary. The differential equation that governs the vertical displacement y 

of the cable is [10,11]: 

 

 
𝑑2𝑦

𝑑𝑥2
=

𝑞

𝑇𝑥
+

𝜇

𝑇𝑥
. √1 + (

𝑑𝑦

𝑑𝑥
)

2

 (1) 

 

The Figure 2 illustrates a generic cable suspended on two points A and B, with gap L; the 

difference between the cable attachment points h; the abscissa  xv for the maximum deflection point; θA 

the slope of the cable at point A (negative); μ is a load evenly distributed over the cable length; f  

(negative) is the maximum deflection that occurs in xv. The particular solution of Equation (1) is 

presented in Equation (2), whose constants C1 and C2 depend on the boundary conditions and the type 

of loading. 

 

 𝑦(𝑥) =
𝜇

𝑇𝑥
cosh (

𝜇. 𝑥

𝑇𝑥
+ 𝐶1) + 𝐶2 (2) 

 

The non-linear condition of the cable problem can be seen in the solution of Equation (2) where 

the vertical displacement y(x) depends on the constant value Tx and vice-versa. One can also observe 

that the analytical solution uses a hyperbolic function. This is important for GFEM, since the method 
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can incorporate particular characteristics of the problem for enriching the solution space. 

 
Figure 2 - Catenary suspension cable 

2.1 The simplest cable finite element 

It is common in FEM and GFEM to use a standard auxiliary element called a master element, to 

which all mesh elements are mapped. This device facilitates the integration process and later the 

enrichment itself in the GFEM. For the present work, a size 2 master element is adopted as shown in 

Figure 3. 

 

 
 

Figure 3 – Master element for FEM and GFEM 

2.2 The weak form for inextensible cable problem 

The weak form of inextensible cable problem can be developed starting Equation (1).  As already 

mentioned before, there is a nonlinearity in the problem that can be taken into account by solving the 

power function of the cable. However, it is understood that this approach escapes the main scope of 

the present work and therefore, to circumvent the problem a simplification is adopted considering the 

first derivative of 𝑦 for catenary suspension cable with level span [𝐶1 =  −𝜇. 𝐿/(2. 𝑇𝑥)], expressed by: 

 

 
𝑑𝑦

𝑑𝑥
= senh (

𝜇. 𝑥

𝑇𝑥
−

𝜇. 𝐿

2. 𝑇𝑥
) (3) 

 

        Considering the hyperbolic identity cosh2(x) - senh2 (x) = 1 and with the help of Equation (3) it is 

possible to write: 
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𝑑2𝑦

𝑑𝑥2
=

𝑞

𝑇𝑥
+

𝜇

𝑇𝑥
. cosh2 (

𝜇. 𝑥

𝑇𝑥
−

𝜇. 𝐿

2. 𝑇𝑥
) (5) 

 

From the Galerkin Method and rewriting Equation (1) one has: 

 

𝑇𝑥 ∫ 𝑁𝑗
 .

𝑑2𝑁𝑖
 

𝑑𝑥2
𝑑Ω . 𝑦𝑖

𝑒 − ∫ [𝑞 + 𝑔(𝑥)]. 𝑁𝑗𝑑Ω = 0    𝑖, 𝑗 = 1,2.
ΩΩ

 (6) 

 

 

𝑔(𝑥) = 𝜇 . cosh2 (
𝜇. 𝑥

𝑇𝑥
−

𝜇. 𝐿

2. 𝑇𝑥
) 

(7) 

 

Since Nj and Ni are functions of ξ, we use the Jacobian J and replace x by x(ξ) to per orm a matching o  

variables. Thus, the derivative of N with respect to x can be obtained by the Chain Rule using: 

 
𝑑𝑁 

𝑑𝑥
=  

𝑑𝑁 

𝑑ξ
 .

𝑑ξ

𝑑𝑥
=  

𝑑𝑁 

𝑑ξ
 .

2

𝐿𝑒
 (8) 

 

Replacing Equation (8) into (6), and integrating by parts the first term of Equation (6), one 

obtains:  
 

 

𝑇𝑥 ∫
𝑑𝑁𝑗

𝑑ξ
.
𝑑𝑁𝑖

𝑑ξ
.

2

𝐿𝑒
𝑑ξ . yi

1

−1

= − ∫ [𝑞 + 𝑔(𝑥(𝜉))]. 𝑁𝑗 .
𝐿𝑒

2
. 𝑑ξ + CC    𝑖, 𝑗 = 1,2.

1

−1

   (9) 

 

From Equation (9) it is possible to recognize that: 

 

𝑲𝒆 = 𝑇𝑥 ∫ 𝑩 
𝑻. 𝑩 .

2

𝐿𝑒
. 𝑑ξ 

1

−1

 (10) 

and 

𝒇𝒆 = − ∫ [𝑞 + 𝑔(𝑥(𝜉))]. 𝑵 
𝑻.

𝐿𝑒

2
. 𝑑ξ 

1

−1

  (11) 

 

 
 

where, Ke is the element stiffness matrix and fe is the element load vector; N is the vector with the 

shape functions and B is the vector with the derivatives of shape functions. 

 

When the “q” parameter is null, the e pression is equi alent to the catenary suspension cable; 

otherwise, when “g” is null, the e pression is equivalent to parabolic cable [10, 11, 12]. 

 

Moreover, 𝑇𝑥 force is obtained through iterations by the secant method, in which 𝑇𝑥  
1 = − 𝑞. 𝐿2/8. 𝑓 

and 𝑇𝑥  
0 = 1,01. 𝑇𝑥  

1 , with satisfatory results. 

 

Once the local matrices are built, it is possible to assemble the global stiffness matrix of the structure. 

Then, the global system of equations is getting up and, after introducing of boundary conditions, the 

system can be solved. 

2.3. The Generalized Finite Element Method   

     The usual and widespread known Finite Element Method is based mainly in Lagrangean 

polynomials, due to easy computational implementation of shape functions and their derivatives. But, 

in general, they are not hierarchical and for each time that a refinement is necessary, the whole system 

needs to be rebuilt. Hierarchical methods became more attractive since the refinement can be done 

without rebuilding the matrices. Among the hierarchical methods, those based in the Partition of Unit 
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Method (PUM) are recommended and the Generalized Finite Element Method (GFEM) is the widely 

used [3, 4, 6, 23, 26].  

     For hierarchical methods, Lobatto’s functions are used largely and, for cable elements, it was 

chosen the function: 

 𝑙2(𝜉) =
1

2
 √

3

2
 (𝜉2 − 1 ) (12) 

 

Also, for the finite element drawn in Figure 3, two sets of enrichment functions are adopted here: 

 𝑯𝒀𝟏𝑻 = [
𝐻𝑌11

𝐻𝑌12
]  = [

−cosh(𝜉 + 1) − 𝜉

−cosh(𝜉 − 1) + 𝜉
] (13) 

   
 

 𝑯𝒀𝟐𝑻 = [
𝐻𝑌11

𝐻𝑌12
]  = [

−cosh(𝜉. 𝑘 + 𝑘) + 𝜉2

−cosh(𝜉. 𝑘 − 𝑘) + 𝜉2] (14) 

 

 

where 𝑘 = 𝜇/𝑇𝑥 is constant. Figure 4 shows the enrichment functions 𝑙2, 𝐻𝑌1 and 𝐻𝑌2. 

 

 
 

 
Figure 4 – Enrichment functions 𝑙2, 𝐻𝑌1 and 𝐻𝑌2, where 𝑘 = 0,8 

 

 

The interpolations of GFEM can be divided in two parts, the conventional functions of FEM plus the 

enrichment functions, as indicated in Equation (15):  
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 𝑦 
𝑒(𝜉) = 𝑦𝐹𝐸𝑀

𝑒 + 𝑦𝐸𝑁𝑅𝐼𝐶𝐻
𝑒  (15) 

 

 
𝑦𝐹𝐸𝑀

𝑒 (𝜉) = ∑ 𝑁𝑖(𝜉) × 𝑦𝑖

𝑛

𝑖=1

 
(16) 

 

 

𝑦𝐸𝑁𝑅𝐼𝐶𝐻
𝑒 (𝜉) = ∑ 𝑁𝑖(𝜉) × [∑ 𝛾𝑗(𝜉) × 𝑎𝑖𝑗

𝑛𝑙

𝑗=1

]

2

𝑖=1

 

(17) 

 

 
𝑵 = [𝑁1 𝑁2] = [

1 − 𝜉

2

1 + 𝜉

2
] 

(18) 

where ni is the number of enrichment levels, 𝑁𝑖(𝜉) are partition of unit linear functions, given by 

Equation (18) and aij are the field degrees of freedom related to the enrichment functions 𝛾𝑗, which 

have no physical meaning but are necessary to interpolation process. Functions determined by 

Equation (17) are shown in Figure 5 for 𝑙2𝑒𝑛𝑟, 𝐻𝑌1𝑒𝑛𝑟 and 𝐻𝑌2𝑒𝑛𝑟 functions. 

 

 

 
Figure 5 – Enriched functions 𝑙2𝑒𝑛𝑟, 𝐻𝑌1𝑒𝑛𝑟 and 𝐻𝑌2𝑒𝑛𝑟, where 𝑘 = 0,8 

 

The cable GFEM element can be built by the following vectors: 

 

 𝚽 = [𝑁1 𝑁2 𝑅1 𝑅2] (19) 

 

 𝚽′ = [𝑁′1 𝑁′2 𝑅′
1 𝑅′

2] (20) 

 

where R1 and R2 are the enriched functions 𝑙21
𝑒𝑛𝑟 and  𝑙22

𝑒𝑛𝑟 or  𝐻𝑌11
𝑒𝑛𝑟 and  𝐻𝑌12

𝑒𝑛𝑟 or 𝐻𝑌21
𝑒𝑛𝑟 and 

𝐻𝑌22
𝑒𝑛𝑟. So, the stiffness matrix and the load vector can be easily built by: 
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𝑲𝒆 = 𝑇𝑥 ∫ 𝚽′𝑇
 . 𝚽′

 .
2

𝐿𝑒
. 𝑑ξ 

1

−1

  (21) 

 

𝒇𝒆 = − ∫ [𝑞 + 𝑔(𝑥(𝜉))]. 𝚽 
𝑇 .

𝐿𝑒

2
. 𝑑ξ 

1

−1

 (22) 

 
2.4. The Condition Number 

 

       The numerical stability of GFEM is strongly affected by the level of enrichment adopted. Many 

works show that the condition number of the stiffness matrix for the enrichment system of GFEM 

grows up indicating an ill conditioning of the system equation [2, 23]. So, for each new enrichment 

level, the stiffness matrix numerically approaches more and more of a singular matrix, making 

difficult the numerical solution or even forbidden it. The condition number can be obtained as: 

 

 

cond(𝑀) =
max(λ)

min(λ)
 

(23) 

 

  

where  is the eigenvalue of the stiffness matrix. 

 

2.5 Convergence criterium 

 

Due the nonlinearity of the cable problem as can be seen in Equation (1), two different criterions for 

verification of convergence are adopted. The first one is given by 

 

 
√∑ ( 𝚿 

𝑘
𝑖)𝟐𝑛

𝑖=1

√∑ ( Img(𝑦) 
𝑘

𝑖)𝟐𝑛
𝑖=1

× 100 ≤  𝑡𝑜𝑙 (24) 

 

where n is the total number of values in the image of function Img(𝑦) 
𝑘  and 𝑘 is the iteration step. The 

vector 𝚿 
𝑘  is a residue vector obtained as: 

 𝚿 
𝑘 (𝒚) = || Img(𝑦) 

𝑘 −  Img(𝑦) 
𝑘−1 || ≠ 0 (25) 

 The other criterium convergence is: 

 |𝑦∗( 𝑇𝑥 
𝑘 )| − (ℎ + 𝑓) ≤  𝑡𝑜𝑙𝑦 (26) 

 

where 𝑦∗( 𝑇𝑥 
𝑘 ) is the smallest value of the function image in iteration step k given by: 

 

 𝑦∗( 𝑇𝑥 
𝑘 ) = min(Img(𝑦))         𝑘 = 0, 1, 2 … , 𝑛 (27) 

 

and the h and f values are initial input data in the program illustrated in the Figure 2. 

4. Examples 

     Two examples are presented here. The first one is a suspended cable subjected to its own weight. 

The second one is a suspended cable subjected to concentrated forces. Both examples are solved by 
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FEM, GFEM with many different enrichment levels that are presented in Table 1, and the results are 

compared with the analytical solution and some solutions found in the literature. 

 

Table 1 – Enrichments used in the present paper 

 

Results Enrichment Functions Used 

GFEM 01 𝑙2 (1st level) 

GFEM 02 𝐻𝑌1 (1st level) 

GFEM 03 𝐻𝑌2 (1st level) 

GFEM 04 𝑙2  (1st level); 𝐻𝑌1 (2nd level) 

GFEM 05 𝑙2  (1st level); 𝐻𝑌2 (2nd level) 

GFEM 06 𝐻𝑌1 (1st level); 𝐻𝑌2 (2nd level) 

 

4.1 Example 01: Suspended cable subjected to its own weight.  

 

      For this example, the cable transversal area is 𝐴 = 0,5 𝑐𝑚² and its elasticity modulus is 𝐸 =
165000 𝑀𝑃𝑎. The geometric characteristics of the problem are illustrated in Figure 6. The results are 

presented in Table 2, where is shown the numerical solutions presented by Pereira Jr [19], and Costa 

[8]. Both references used conventional finite elements with different refinements. The analytical 

solution is presented by Hibbeler [25]. The GFEM solutions were obtained using just one element with 

the enrichment levels shown in Table 1. A solution with 10 elements and one enrichment level is also 

presented. The results presented in Table 2 show that the GFEM analysis can reach the analytical 

solution with just one finite element with two levels of enrichments. The approximation is as good as 

the solutions of Pereira Jr [19] and Costa [8] with 500 elements. It is important to note that the number 

of interactions is grater for GFEM and the condition number really grows up when the enrichment 

level is incremented. However, this fact did not impact the final results for this case, since the biggest 

value of the condition number was 6,1E+11 for the five levels case. 

 

 

     
Figure 6 – Suspended cable subjected to its own weight (Source: Pereira Júnior, 2002) 

 

 

Table 21 – Results for suspended cable subjected to own weight 

 

Results 
So Tmax Tx  max Ite. cond(𝑲𝒓𝒆𝒔) 

(cm) (N) (N) (°) - - 

Pereira J. (2002) - 10 elements 2415,47 70,05 46,05 48,89 2 - 

Pereira J. (2002) - 500 elements 2418,82 75,81 45,94 52,70 1 - 

Costa (2014) - 10 elements 2415,49 70,05 46,05 48,90 3 - 

Costa (2014) - 500 elements 2418,84 75,81 45,94 52,70 3 - 
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Results 
So Tmax Tx  max Ite. cond(𝑲𝒓𝒆𝒔) 

(cm) (N) (N) (°) - - 

GFEM 01(1 element) 2408,69 76,11 46,65 52,20 4 1,7E+00 

GFEM 02 (1 element) 2418,57 75,95 45,96 52,76 4 9,6E+00 

GFEM 03 (1 element) 2408,69 76,11 46,65 52,20 4 1,7E+00 

GFEM 04 (1 element) 2418,76 75,95 45,95 52,77 4 1,7E+04 

GFEM 05 (1 element) 2418,94 75,94 45,94 52,78 4 6,1E+11 

GFEM 06 (1 element) 2418,76 75,95 45,95 52,77 4 1,4E+04 

GFEM 02 (10 elements) 2418,80 75,95 45,95 52,77 4 1,3E+02 

Hibbeler (2011) - Analytical 2418,82 75,94 45,94 52,77 - - 

*Results GFEM 02, GFEM 05 and GFEM 06 were obtained by 𝐻𝑌2 with 𝑘 = 41,67. 

 

4.2. Example 02: Suspended cable subjected to concentrated loads.  

 

        The second example intends to examine the influence of concentrated loads over the cable, since 

they try to polygonise the cable configuration. The problem was also analyzed by Pereira Jr [19] and 

Costa [8], that used a conventional finite element method approach. The geometrical and load 

characteristics of the cable can be seen in Figure 7. The own weighted of the cable is 𝜇 = 25 𝑁/𝑚, the 

cross transversal area is 𝐴 = 2,5 𝑐𝑚² and the Young Modulus is 𝐸 = 165000 𝑀𝑃𝑎. The reference 

solution is presented in Hibbeler [25] and it was obtained by single static equilibrium, without 

consider the elastic strains of the cable and without the self-weight of the cable. So, some little 

difference is expected between the numerical solutions and the analytical one.  

 

 

 
 

Figure 7 – Example 02 – Suspended cable subjected to concentrated loads  

(Source: Pereira Júnior, 2002) 

 

The GFEM solution was obtained with 18 finite elements and the enrichment function was the HY1, 

Equation (13). As can be seen in Table 3, the GFEM solution is closer to the analytic one. The 

numerical solution was obtained after 15 iterative steps. The difference observed between GFEM and 

the others computational solutions is due the nonlinear formulation, that is not implemented yet.  
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Table 3 – Solutions for the suspended cable subjected to concentrated loads 

 

Variáveis 
Hibbeler [25] Pereira Junior [19] Costa [8] Present  

 Cables - NLFG ASTRAS GFEM 

So (cm) 3015,00 3024,07 3024,13 3014,84 

fmax (cm) 1200,00 1199,95 1199,99 1200,00 

 AB (graus) 62,20 63,33 63,33 62,31 

 BC (graus) 51,60 53,52 53,52 51,79 

 CD (graus) 47,90 45,04 45,04 47,39 

 DE (graus) 57,70 55,94 55,95 57,76 

Tx (kN) 6,33 6,54 6,54 6,42 

TAB (kN) 13,60 14,56 14,56 13,81 

TBC (kN) 10,20 10,99 10,99 10,37 

TCD (kN) 9,44 9,25 9,25 9,48 

TDE (kN) 11,80 11,67 11,67 12,03 

VA (kN) 12,00 13,05 13,05 12,23 

VB (kN) 10,00 9,71 9,71 10,23 

5. Conclusions 

      This work shows a first application of GFEM for cable structures. Due the characteristics of the 

cable, whose deformed configuration tends to be approximated by a catenary or a hyperbolic function, 

the use of convenient enrichment functions can lead the solutions for a best approximation. The 

consequence is that meshes with just one element and lower number of enrichment levels are 

sufficient to reach good results, comparable with the conventional FEM with a large number of 

elements. The examples show that the condition number increase as the enrichment level number is 

greater, but for the six results presented, its magnitude was not significant for the static analysis. The 

results here obtained are specific for linear static analysis of a suspended cable. The next steps are to 

introduce the geometrical nonlinear formulation for incorporate large displacements and, afterword, 

investigate the dynamic behavior of cable models, mainly their frequencies and vibration modes.  
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