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Abstract. The Generalized Finite Element Method (GFEM) has presented excellent results in the 
dynamic analysis, especially in the obtaining of higher frequencies, one advantage compared to the 
standard Finite Element Method (FEM). An important feature of GFEM is the possibility of expanding 
the approximation space through the inclusion of non-polynomial enrichment functions, which usually 
contain a-priori knowledge about the solution of the problem. However, this enrichment process may 
lead a problem considerably ill-conditioned, limiting its applicability. This paper proposes the use of 
flat-top functions as a Partition of Unit (PU) for the construction of approximation spaces enriched 
with non-polynomial functions, aiming to improve the conditioning of the problem by reducing the 
condition number of stiffness and mass matrices. Results are presented for one-dimensional and two-
dimensional problems, such as bars and membranes modal analysis, respectively. The condition 
number of stiffness and mass matrices are evaluated and compared with results obtained by GFEM 
with approximation spaces constructed with PU linear. Results obtained with the PU flat-top shown 
improvement in the conditioning of the problems, with the reduction of the condition number of 
stiffness and mass matrices, however with influences in the accuracy of responses. 

Keywords: Generalized finite element method, Dynamic analysis, Flat-top partition of unit, Non-
polynomial enrichment. 
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1  Introduction 

The generalized finite element method (GFEM) can be viewed as an extension of the standard 
finite element method (FEM), also known as the extended finite element method (XFEM), that is a 
Galerkin method based on the partition of unit method (PUM) (Babuška and Melenk [1, 2]). The main 
proposal of GFEM is to augment the standard FEM approximation space (trial space) incorporating 
enrichment functions, that may better represent the problem response, through a partition of unit (PU) 
(Babuška et al. [3], Melenk [4], Duarte and Oden [5,6], Babuška and Melenk [1, 2], Babuška et al. [7], 
Belytschko and Black [8], Möes et al. [9]). 

GFEM has applications in several areas, such as fracture mechanics, flow of biphasic fluids, 
electromagnetism, problems with high gradients, and in the context of this paper, dynamic analysis of 
structures (Arndt [10], Torii [11], Torii and Machado [12], Shang [13], Torii et al. [14], Hsu [15], 
Weinhardt et al. [16], Piedade Neto and Proença [17]). Despite the excellent results presented in 
solving these problems, the numerical instability associated with the enrichment process is still a 
limiting factor regarding its applicability and its efficiency. Several studies in recent years have been 
addressed to the treatment of this problem, mainly in the context of fracture mechanics. 

In order to improve the conditioning of the method, Babuška and Banerjee [18, 19] presented a 
new approach for the construction of enrichment functions, aiming to create a quasi-orthogonal 
enrichment function space in relation of the standard FEM approximation space. This modification 
was so-called the stable generalized finite element method (SGFEM). However, Zhang, Babuška and 
Banerjee [20] showed that for high order polynomial enrichment ( 1p  ) the modification proposed by 
the SGFEM is not a sufficient condition to ensure proper conditioning of the problem. 

Extending the development of SGFEM, Zhang, Babuška and Banerjee [20] presented a new 
proposal for the construction of the enrichment function space, replacing the standard PU Lagrangean 
linear (piecewise linear hat-functions) by the PU flat-top. This modification was called by the authors 
as high order SGFEM. However, Zhang, Babuška and Banerjee [20] only addressed the analysis for 
high order polynomial enrichments, not approaching the case of non-polynomial enrichments. In the 
context of this paper, problems with dynamic nature are commonly represented by non-polynomial 
functions, e.g. trigonometric functions, exponential functions. 

Therefore, this paper proposes to investigate the GFEM with PU flat-top, for the construction of 
approximation spaces enriched with non-polynomial functions, applied in problems in the context of 
dynamic analysis. Numerical experiments are performed to verify the influences on the conditioning 
and accuracy of the frequency spectrum, the results obtained with PU flat-top and PU piecewise linear 
are compared. 

2  Modal Analysis 

Two problems in the context of the dynamic analysis of structures are addressed in this paper: bar 
uniaxial free vibration (one-dimensional model) and membrane transverse free vibration (two-
dimensional model). These problems were solved through modal dynamic analysis in absence of 
damping to determine natural frequencies and vibration modes. 

The application of the standard FEM procedures (Bathe [21], Hughes [22], Zienkiewicz and 
Taylor [23]) on the dynamic equilibrium equation of the problem, results in the following system of 
differential equations: 

  Mu Ku F  (1) 
where K  is the stiffness matrix, u  is the displacements vector, M  is the mass matrix and F  is the 
applied forces vector. The natural frequencies and vibration modes can be obtained solving the 
generalized eigenproblem defined by (Bathe [21], Hughes [22], Zienkiewicz and Taylor [23]): 
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2  K M  (2) 

where   are the natural frequencies and  are the vibration modes of the problem. 

The matrices K  and M  can be obtained from discretization and approximation by the standard 
FEM procedures of the boundary value problem (BVP) related to the dynamic equilibrium of the 
system. Thus, the matrices K  and M  are constructed, respectively, from the contribution of the 
elementary matrices ek  and em , given by: 

 [ ]
e

e e
ij i jk E d


    k  (3) 

 [ ]
e

e e
ij i jm d


    m  (4) 

where Φ  is the shape functions vector (basis of approximation space), E  is the modulus of 
elasticity,   is the specific mass and e  is the master element domain. 

Equations (3) and (4) are applied to solving both two problems considered in this paper, through 
proper construction of shape functions. The problems considered in this paper have analytical solution 
as presented as follow. 

2.1 Clamped bar 

Consider a straight bar of length L  and constant cross-sectional area A , clamped at both ends as 
shown in Fig. 1. 

 

Figure 1. Clamped bar 

The analytical solution for natural frequencies can be determined by separating variables 
(Kreyszig [24]) and is given by: 

 1,2,3...n

n
n

L E

    . (5) 

Considering that the normalized frequency spectrum is independent of the constants, we assumed 
unit value for all constants: cross-sectional area A , length L , specific mass   and modulus of 
elasticity E . Therefore, the analytical solution can be rewritten as: 

 1,2,3...n n n   . (6) 

2.2 Clamped square membrane 

Consider a square membrane of sides lengths x yL L , clamped at all sides as shown in Fig. 2. 

The analytical solution for natural frequencies can be determined by separating variables as 
presented by Kreyszig [24] and is given by: 

 
2 2

2 2
, 1,2,3...mn

x y

m n
c m n

L L
    . (7) 

We consider a square membrane unit-side. Considering that the normalized frequency spectrum is 
independent of constants, again we assumed unit value for all constants: side lengths xL  and yL , wave 
propagation velocity /c E  . Therefore, the analytical solution can be rewritten as: 

 2 2 , 1,2,3...mn m n m n    . (8) 
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Figure 2. Clamped square membrane 

3  Generalized Finite Element Method 

GFEM is a Galerkin method based on the partition of unit method (PUM) (Babuška and Melenk 
[1, 2]), where the standard FEM approximation space is augmented, incorporating new functions, 
through the product of a PU with enrichment functions (polynomial or non-polynomial), which usually 
contain a-priori knowledge about the solution of the problem. 

The approximate solution e
hu  proposed by GFEM in the master element domain can be written as 

the sum of two components: 

 e e e
h FEM ENRu u u   (9) 

where e
FEMu  is the standard FEM component based on the nodal degrees of freedom and e

ENRu  is 
the enrichment component, obtained by multiplying of the PU and the enrichment functions based on 
the field degrees of freedom. In this sense, the approximate solution on a master element domain is: 

 
1 1 1

n n ln n n
e
h i i i ij ij ij ij

i i j

u N u a b  
  

 
   

 
    (10) 

where, 
 iN : partition of unit of standard FEM (piecewise linear, hat-functions) 

 i : partition of unit of enrichment functions 

 ij , ij : enrichment functions 

 iu : nodal degrees of freedom 

 ija , ijb : field degrees of freedom, related to enrichment functions 

 ln : number of enrichment levels 

 nn : number of nodes of the finite element 

The PU used for enrichment functions is usually the same PU used for the standard FEM 
component, i.e. i iN  . However, the proposal in this paper is to use distinct PUs ( i iN  ), 
considering the PU flat-top, as proposed by Zhang, Babuška and Banerjee [20]. 

The analyzes presented in this paper are performed with two types of partition of unit: PU 
piecewise linear and PU flat-top. 

3.1 Partition of unit piecewise linear (hat-functions) 

The PU piecewise linear, also known as hat-functions, is used in the standard FEM component in 
Eq. (10), and is defined for master element  1, 1     by: 
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1

2
N


  (11) 

 2

1

2
N


 . (12) 

In the rest of the paper, we will refer PU piecewise linear as PU linear. 

3.2 Partition of unit flat-top 

The PU flat-top used in the enrichment component in Eq. (10) is based on Zhang, Babuška and 
Banerjee [20], and was rewritten here for a master element  1, 1    : 
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where  0,1   is the flat-top construction parameter and l  is the construction parameter that 

controls the smoothing of the curves between the flat regions. Figures 3 (a) and (b) show, respectively, 
for the domain  1, 1    , the PU flat-top with 0.5   for the cases 1l   and 2l  . 

 

(a) (b) 

Figure 3. (a). PU flat-top,  1, 1    , 0.5   and 1l  . (b). PU flat-top,  1, 1    , 0.5   and 

2l   

The PU linear can be obtained with 1   and 1l   in Eq. (13) and (14). Practically, the PU linear 
may be considered as a particular case of PU flat-top 1   and 1l  , but not true when 1l  . 

3.3 Trigonometric Enrichment 

Enrichment functions may be appropriately selected from a-priori knowledge about the solution 
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of the problem, from analytical solutions or from an estimative about the solution. In the context of 
dynamic problems, the analytical solutions are commonly represented by harmonic functions. In this 
sense, trigonometric enrichment has been addressed in several works such as: Arndt [10], Torii [11], 
Torii and Machado [12], Shang [13,25], Torii et al. [14], Hsu [15], Weinhardt [26] and Weinhardt et 
al. [16, 27]. 

The enrichment functions used in this paper are based on the developments of Arndt [10] and 
Torii [11], and rewritten by Weinhardt [26] for a master element  1, 1    : 

 1

1
sin

2j j

     
 

  (15) 

 2

1
sin

2j j

     
 

 (16) 

 1

1
cos 1

2j j

     
 

 (17) 

 2

1
cos 1

2j j

     
 

 (18) 

where j  is an hierarchical enrichment parameter, originally adopted by Arndt [10] and Torii 
[11] as: 

 1,2,3...j lj j n   . (19) 

In this paper, the hierarchical enrichment parameter defined by Eq. (19) is referenced as standard 

j . 

3.4 Heuristic Modification Stabilization 

Weinhardt [26] and Weinhardt et al. [27] presented a modification for the construction rule of the 
hierarchical enrichment parameter defined by Eq. (19), as a preconditioning strategy for the 
enrichment functions, which has shown improvement in numerical stability and conditioning. The new 
stabilized hierarchical enrichment parameter j  is defined for a master element  1, 1    : 

 14( 1) 1,2,3...j lj j n
 


      
. (20) 

In this paper, the hierarchical enrichment parameter defined by Eq. (20) is referenced as stabilized 

j . 

3.5 One-dimensional element shape functions 

The shape functions for the one-dimensional element, with two nodes, are obtained by Eq. (11) 
and (12), complemented by the multiplication between PU flat-top functions, Eq. (13) and (14), with 
enrichment functions Eq. (15) to (18), properly ordered in accordance with Eq. (10). Figure 4 (a) and 
(b) show, respectively, for the domain  1, 1    , the enriched shape functions with PU linear and 
PU flat-top. 
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(a) (b) 

Figure 4. Trigonometric enriched shape functions. (a). PU linear,  1, 1     and 1 3 / 2  . (b). PU 
flat-top,  1, 1    , 1 3 / 2  , 0.5   and 1l   

3.6 Quadrilateral element shape functions 

The quadrilateral finite elements, with four nodes, are used for the two-dimensional problem. The 
shape functions for this element can be obtained by multiplying the shape functions defined for the 
one-dimensional case. This procedure is described in detail by Solín et al. [28]. The resulting shape 
functions for the quadrilateral finite element are given by: 

  , ( ) ( )k i j        (21) 

where  1, 1     and  1, 1    define the domain of the quadrilateral master element. 

4  Numerical Results 

In this section, it is presented the numerical results obtained by GFEM with PU flat-top for the 
problems defined in the section 2.1 and 2.2. The results of PU flat-top are verified, with respect to 
conditioning and accuracy of frequency spectrum, considering the variation of the construction 
parameters   and l . It is also verified the results of PU flat-top applied with hierarchical 
trigonometric enrichment, according to the hierarchical enrichment parameters standard j  and 
stabilized j , defined respectively in Eq. (19) and (20). For the first enrichment parameter, the value 

1 3 / 2   is adopted due to the good results presented in other works, e.g. Torii [11] and Weinhardt 
[25], this value is considered for all results presented in this paper. 

The Gauss-Legendre quadrature is applied to numerically integrate the stiffness and mass 
elementary matrices, defined respectively in Eq. (3) and (4). The integration domain is splitted in 
subdomains according the construction intervals of flat-top functions, defined in Eq. (13) and (14). 
Thus, three subdomains for the unidimensional case and nine subdomains for the bidimensional case. 
The optimized number of integration points is determined in execution time, according to the 
complexity of the shape functions employed. 

The condition numbers of the stiffness matrix ( ) K  and mass matrix ( ) M  are adopted as a 
measure of the conditioning assessment, knowing that a smaller condition number represents better 
conditioning (Petroli et al. [29]). The condition number   for a square matrix is given by (Anderson 
et al. [30]): 

 1( )p p p
 K K K  (22) 

 1( )p p p
 M M M  (23) 
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where p  defines the matrix norm 
p

 . In this paper the condition numbers are determined by 
one-norm ( 1p  ), that are equivalent to the determined by infinity-norm ( p   ) due stiffness and 
mass matrices are both symmetric by construction, Hermitian and positive definite matrices (Petroli et 
al. [29], Weinhardt [26]). Numerically, the condition numbers were determined from the reciprocal of 
the condition number using the routine DPOCON in LAPACK (Anderson et al. [30]), that apply the 
Hager’s algorithm to estimative the one-norm of the inverse matrix, as proposed by Higham [31]. 

The approximated natural frequencies are determined from the generalized eigenproblem defined 
in Eq. (2), that is solved by the divide-and-conquer algorithm through the routine DSYGVD in 
LAPACK (Anderson et al. [30]). 

Results for condition numbers are presented in log graphs. The frequency spectra shown 
approximated frequencies normalized by analytical solution ( /h  ) and the degrees of freedom 
normalized by the total number of degrees of freedom ( /n N ). All results shown in the graphs are 
dimensionless. 

4.1 Clamped bar (one-dimensional case) 

The clamped bar problem defined in section 2.1 is discretized by a uniform mesh with 100 finite 
elements with length 1/100h  . The straight bar is clamped at both ends, with length 1L  , constant 
cross-sectional area 1A , specific mass 1   and modulus of elasticity 1E  . The analytical solution 
according these considerations is presented by Eq. (6). The problem is solved through modal analysis, 
with the application of GFEM with PU flat-top and PU linear, considering the trigonometric 
enrichment, the results are presented as follow. 

Influence of   parameter. Figures 5 and 6 show results with respect to the influence of the   
parameter defined in section 3.2 (PU flat-top) on conditioning and frequency spectrum. In this 
example, only one trigonometric enrichment level ( 1ln  ) is considered. 

 

Figure 5. Condition number of the stiffness and mass matrices, 1ln  , 
 0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1   and 1,2,3l  . 
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Figure 5 shows that PU flat-top improves in the condition number of the mass matrix, except for 
1l   when 0.7 1  , however, there is an increase of the condition number of the stiffness matrices. 

Figure 6 (b) shows that PU flat-top causes accuracy loss compared to the reference solution shown in 
Fig. 6 (d), from 5(10 )O   to 3(10 )O  , the same conclusion is obtained for PU flat-top smoothed with 

2l  , as shown in Fig 6 (c). At the end of the spectrum shown in Fig. 6 (a), the results obtained with 
0.1 0.4  are slightly better than the results obtained with PU linear. 

 

(a) (b) 

 

(c) (d) 

Figure 6. (a). Frequency spectrum, 1ln  ,  0.01,0.1,0.2,...,0.9,1   and 1l   (b). Partial spectrum 
(1/3) of (a). (c). Frequency spectrum (partial 1/3), 1ln  ,  0.01,0.1,0.2,...,0.9,1   and 2l  . (d) 

Frequency spectrum, GFEM PU linear and 1ln   

Influence of l  parameter (smoothing of flat-top curve). Figure 7 shows the influence of the 
parameter that controls the smoothing of the curves between the flat regions. 

Figures 7 (a) and (b) show that results obtained with flat-top functions with 2l   present better 
accuracy than the results with 1l  . In addition, flat-top functions with 2l   has smaller condition 
number for mass matrix as shown in Fig. 5. Note that in Zhang, Babuška and Banerjee [20] it was 
considered only 1l   for the numerical experiments. The results presented here indicate that it is 
possible to obtain better conditioning and accuracy for other l  values, suggesting further investigation 
about this parameter. 
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(a) (b) 

Figure 7. (a). Frequency spectrum, 1ln  , 0.5  , 1,...,5l  . (b). Partial spectrum (1/3) of (a). 

Influence on hierarchical trigonometric enrichment. Figures 8, 9 and 10 show the results 
obtained with hierarchical enrichment parameters standard j  and stabilized j . 

 

(a) (b) 

Figure 8. (a). Condition number of the mass and stiffness matrices, standard j , 5ln  , 

 0.01,0.1,0.2,...,0.9   and 1,2l  . (b) Partial frequency spectrum (1/3), standard j , 2ln  , 

0.5   and 1,2l  . 

In the case of hierarchical trigonometric enrichment with standard j , PU flat-top reduces the 
condition number in both mass and stiffness matrices, as shown in Figs. 8 (a), 9 (a) and (b), with 
smaller condition numbers obtained with   values close to 0.5 . However, there is also accuracy loss 
in the approximated frequencies, as shown in Fig. 8 (b), from 8(10 )O  , as presented by Weinhardt 
[26], to 4(10 )O  . 

In the case with stabilized j , Figs. 10 (a) and (c) show that there is a reduction in the condition 
number of the mass matrix, however with accuracy loss as shown in Fig. 10 (b). For the stiffness 
matrix, there is no significant change in the condition number, as shown in Figs. 10 (a) and (d). 
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(a) (b) 

Figure 9. (a). Condition number of the mass matrix, standard j , 1l  , 1,...,10ln   and 
 0.01,0.3,0.5,0.9,1  . (b). Condition number of the stiffness matrix, standard j , 1l  , 

1,...,10ln   and  0.01,0.3,0.5,0.9,1   

 
(a) (b) 

 
(c) (d) 

Figure 10. (a). Condition number of the mass and stiffness matrices, stabilized j , 5ln  , 

 0.01,0.1,0.2,...,0.9,1   and 1,2l  . (b) Partial frequency spectrum (1/2), stabilized j , 5ln  , 
0.5   and 1,2l  . (c). Condition number of the mass matrix, stabilized j , 1l  , 1,...,10ln   and 

 0.01,0.3,0.5,0.9,1  . (d). Condition number of the stiffness matrix, stabilized j , 1l  , 
1,...,10ln   and  0.01,0.3,0.5,0.9,1   



Flat-Top Partition of Unit in the Generalized Finite Element Method Applied to Dynamic Analysis 

CILAMCE 2019 
Proceedings of the XL Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC, 
Natal/RN, Brazil, November 11-14, 2019 

4.2 Clamped square membrane (two-dimensional case) 

The clamped square membrane problem defined in section 2.1 is discretized by a uniform mesh 
with 4 quadrilateral finite elements with sides length 1/ 2h  . The square membrane is clamped at all 
sides, with side lengths 1L   and wave propagation velocity 1c  . The analytical solution according 
these considerations is presented by Eq. (8). The problem is solved through modal analysis, with the 
application of GFEM with PU flat-top and PU linear, considering the trigonometric enrichment. The 
results are presented as follow. 

Influence of   parameter. Figures 11 and 12 show results with respect to the influence of the 
parameter on conditioning and frequency spectrum. In this example only one trigonometric 
enrichment level ( 1ln  ) is considered. 

 

Figure 11. Condition number of the mass and stiffness matrices, 1ln  , 
 0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1   and 1,2,3l   

In the two-dimensional case with only one enrichment level, PU flat-top improves the condition 
number of the mass matrix, except for 1l   when 0.7 1  , as shown in Fig. 11, similarly to the 
results for the one-dimensional case. Also, PU flat-top causes accuracy loss when 1l  , compared to 
the reference solution shown in Fig. 12 (d). However, for the case with 2l  and 0.9 1   there is 
accuracy improvement in practically all spectrum, as shown in Figs. 13 (a) and (b), except for the first 
frequencies. 
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(a) (b) 

 

(c) (d) 

Figure 12. (a). Frequency spectrum, 1ln  ,  0.01,0.3,0.5,0.9,1   and 1l   (b). Partial spectrum 

(1/3) of (a). (c). Frequency spectrum (partial 1/3), 1ln  ,  0.01,0.3,0.5,0.9,1   and 2l  . (d) 

Partial spectrum (1/3), GFEM PU linear and 1ln   

 

(a) (b) 
Figure 13. (a). Frequency spectrum, 1ln  ,  0.9,1   and 2l   (b). Partial spectrum (1/4) of (a). 
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Influence of l  parameter (smoothing of flat-top curve). Figure 14 shows the influence of the 
parameter that controls the smoothing of the curves between the flat regions. 

 

(a) (b) 

Figure 14. (a). Frequency spectrum, 1ln  , 0.5  , 1,...,5l   (b). Partial spectrum (1/3) of (a). 

As well as in the one-dimensional case, the results obtained by flat-top functions with 2l   
presented better accuracy than the results with 1l   specially for higher frequencies, as shown in Figs. 
14 (a) and (b), also presented smaller condition number for mass and stiffness matrices, as shown in 
Fig. 11. 

Influence on hierarchical trigonometric enrichment. Figures 15 and 16 show the results 
obtained with hierarchical enrichment parameters standard j . Figures 17 and 18 show the respective 
results for stabilized j . 

 

(a) (b) 

Figure 15. (a). Condition number of the mass and stiffness matrices, standard j , 3ln  , 

 0.01,0.1,0.2,...,0.8   and 1,2l  . (b) Partial spectrum (1/3), standard j , 2ln  , 0.5   and 

1,2l  . 

In the case with standard j , PU flat-top reduces the condition number in both mass and 
stiffness matrices, as shown in Figs. 15 (a), 16 (a) and (b), with smaller condition numbers obtained 
with 0.4 0.5  . However, there is also accuracy loss in the approximated frequencies, as shown in 
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Fig. 15 (b). The conclusions about the results obtained for the two-dimensional case are similar to the 
conclusions for the one-dimensional case. 

 

(a) (b) 

Figure 16. (a). Condition number of the mass matrix, standard j , 1l  , 1,...,5ln   and 

 0.01,0.3,0.5,0.9,1  . (b). Condition number of the stiffness matrix, standard j , 1l  , 1,...,5ln   

and  0.01,0.3,0.5,0.9,1   

 

(a) (b) 

Figure 17. (a). Condition number of the mass and stiffness matrices, stabilized j , 3ln  , 

 0.01,0.1,0.2,...,0.9,1   and 1,2l  . (b) Partial spectrum (1/3), stabilized j , 2ln  , 0.5   and 

1,2l  . 

In the case with stabilized j , Figs. 17 (a), 18 (a) and (b) show that there is a reduction in the 
condition number of the both mass and stiffness matrices, when in the one-dimensional case there was 
not significant improvement of condition number of stiffness matrices. Also, there is accuracy loss as 
shown in Fig. 17 (b), from 3(10 )O   to 2(10 )O  . 
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(a) (b) 

Figure 18 (a). Condition number of the mass matrix, stabilized j , 1l  , 1,...,5ln   and 
 0.01,0.3,0.5,0.9,1  . (b). Condition number of the stiffness matrix, stabilized j , 1l  , 

1,...,5ln   and  0.01,0.3,0.5,0.9,1   

5  Conclusions 

In this paper, we have addressed the GFEM with PU flat-top applied to the dynamic analysis, 
with non-polynomial enrichments, in order to verify the method conditioning and influences in the 
accuracy of the responses. The PU flat-top was applied to construct approximation spaces 
hierarchically enriched with trigonometric functions, based on the proposals of Arndt [10], Torii [11] 
and Weinhardt [26]. GFEM was applied to solve two classical dynamics problems by modal analysis: 
one-dimensional bar and two-dimensional membrane. 

In most cases, the results presented show that PU flat-top improved the problem conditioning, 
with the reduction of the condition number of stiffness and mass matrices, especially for cases with 
hierarchical enrichment, in both application of enrichment parameters: standard j and  stabilized j . 
In cases with the hierarchical stabilized enrichment, the stabilization observed by Weinhardt [26] was 
maintained and improved with the reduction of magnitude order of the condition number. However, 
the results with PU flat-top were less accurate than the results from PU linear, especially at lower 
frequencies. Results of conditioning and accuracy were significantly altered by the construction 
parameters of the flat-top functions ( and l ), for some cases there was improvement in conditioning 
and also in accuracy (e.g. 2l  and 0.9 1  ). 
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