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Abstract. This work aimed to implement polynomial enrichment functions, according to the strategy of 

the Stabilized Generalized Finite Element Method (S/GFEM), for application in simulations of failure 

problems in structures using a bilinear damage model for quasi-brittle materials. The results were 

verified by comparison with experimental curves drawn from the three-point bending test in central 

notched beam. The efficiency and accuracy of the polynomial S/GFEM were then tested to improve the 

prediction of the rupture behavior over a conventional Finite Element analysis. This has become more 

evident in simulations with coarse meshes, presenting results with precision equivalent to others found 

in the literature, but with a much smaller number of elements. 
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1  Introduction 

The conventional Finite Element Method (FEM) cannot satisfactorily describe some boundary 

value problems (BVPs) such as problems dealing with crack propagation, whose description is naturally 

more complex because it involves the singularity phenomenon in the stress field, high deformations and 

discontinuity in the unknown fields. More complicated cases require high mesh refinement making 

analysis prohibitive due to the computational cost involved (Babuška et al. [1]). 

In this context, the methods without mesh started to gain space. These are numerical methods used 

in the BVP solution in order to reduce or even eliminate the dependence between the equations that 

govern the problem and their discretization. And while not a meshless method per se, the Generalized 

Finite Element Method (GFEM) follows the same principle of seeking to minimize the importance of 

mesh to the quality of the result (Babuška et al. [1]; Belytschko et al. [2]; Duarte [3]; Duarte et al. [4], 

Paiva et al. [5]). 

Recently, Babuška and Banerjee [6] and Babuška and Banerjee [7] have presented a new approach 

to one-dimensional domains, the so-called Stabilized Generalized Finite Element Method (S/GFEM), 

which aims to improve the conditioning of the GFEM stiffness matrix. 

This work implemented S/GFEM formulations applied in the analysis of structures in the process 

of damage. Polynomial enrichment functions, according to the method strategy, were used to simulate 

structural failure problems using a bilinear damage model. The enrichment was employed in order to 

optimize the results obtained in simulations using coarse meshes. 

2  Generalized Finite Element Method 

The GFEM is based on the conventional FEM. It was initially proposed by Babuška et al. [1] under 

the designation of the Special Finite Element Method. The strategy of the GFEM consists of the 

combination of the functions derived from the Partition of Unit (PU) – FEM standard shape function - 

and linearly independent functions, defined in ℐj ≝ {𝐿𝑗1(𝑥), 𝐿𝑗2(𝑥), … , 𝐿𝑗𝑞(𝑥)} with {𝐿𝑗1(𝑥) = 1} where 

𝐿𝑗𝑖(𝑥) are the enrichment functions defined at each node 𝑥𝑗  of the domain, and q the total number of 

enrichment functions relative to node 𝑥𝑗 .  

These functions can be polynomial or obtained from a priori knowledge of the behavior of the BVP 

solution to be analyzed. The product between the form functions derived from the PU by the enrichment 

functions results in the product function or form function 𝜙𝑗𝑖 of GFEM (Eq. (1)). 

{𝜙𝑗𝑖(𝑥)}
𝑖=1

𝑞
=  𝒩𝑗(𝑥) {𝐿𝑗𝑖(𝑥)}

𝑖=1

𝑞
 (1) 

As a result of this process, the GFEM form functions 𝜙𝑗𝑖(x) are tied to node 𝑥𝑗 . This is because 

they inherit from the PU the property. Maintaining such characteristics is vital to ensure continuity 

between the initial mesh elements (Strouboulis et al. [8]). The approximation of the GFEM is thus 

obtained from the following linear combination presented in Eq. (2) where 𝒩𝑗(𝑥) refers to the FEM, 

and the product 𝒩𝑗(𝑥)𝐿𝑗𝑖(𝑥), refers to GFEM. 

ũ(𝑥) =  ∑ 𝒩𝑗(𝑥)

𝑛

𝑗=1

. {𝑢𝑗 +  ∑ 𝐿𝑗𝑖(𝑥). 𝑏𝑗𝑖

𝑞

𝑖=2

} (2) 

Mathematically 𝑢𝑗 and 𝑏𝑗𝑖 represent, respectively, the degrees of freedom of the structure tied to 

the node 𝑥𝑗  of the cloud 𝑤𝑗; wherein the latter represents the additional degrees of freedom 

corresponding to each component i of the enriched form functions.  The monomials used to enrich the 

domain nodal points can be constructed hierarchically with the Pascal Triangle generally assuming the 

following format: 

𝐿(𝑝, 𝑞) =
(𝑋 − 𝑋𝑗)𝑝 (𝑌 − 𝑌𝑗)𝑞

ℎ𝑝+𝑞  (3) 
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where X and Y are the coordinates of the Gauss points in each element; Xj and Yj, are the coordinates of 

the nodal points to enrich; p and q are the powers that determine the degree of enrichment. The term h 

acts as a standardization so that information associated with elements is not introduced into enrichment 

(Duarte et al. [9]). In this work the enrichment function sets were constructed using the extreme terms 

of the Pascal Triangle. Then, for example, 𝐿𝑃=2 = {
𝑥−𝑥𝛼

ℎ𝛼
,

𝑦−𝑦𝛼

ℎ𝛼
,

(𝑥−𝑥𝛼)2

ℎ𝛼
2 ,

(𝑦−𝑦𝛼)2

ℎ𝛼
2 }. 

2.1 Stabilized GFEM (S/GFEM) 

It is recognized that both GFEM and XFEM have excellent convergence properties, but the 

stiffness matrix associated with these methods can be (and often is) poorly conditioned. First approached 

in Babuška and Banerjee [6], the S/GFEM arose from the proposition of a simple modification to the 

existing GFEM structure that ensures the elimination of the problem of poor conditioning.  

Babuška and Banerjee [6] showed that the S/GFEM have a good level of convergence. Another 

advantage is that S/GFEM does not need the so-called ramp functions on transition elements in regions 

where different types of enrichment functions are applied, as proposed by Fries [10]. In S/GFEM a 

simple local modification of the enrichments used in GFEM is used to construct the approach spaces 

𝒳𝛼 , where 𝛼 ∈ 𝐼ℎ
𝑒, as the Eq. (4). 

�̃�𝛼𝑖(𝒙) = 𝐿𝛼𝑖(𝒙) − 𝐼𝜔𝛼(𝐿𝛼𝑖)(𝒙);            �̃�𝛼 = 𝑠𝑝𝑎𝑛{�̃�𝛼𝑖}𝑖=1
𝑚𝛼  

(4) 

where: 𝐼𝜔𝛼(𝐿𝛼𝑖) is the linear or bilinear interpolation portion of the enrichment function 𝐿𝛼𝑖 applied to 

the node 𝜔𝛼; �̃�𝛼𝑖 is the modified enrichment function of S/GFEM. In this case, the term 𝐿𝑗1(𝑥) of ℐj is 

deleted because it results in a null value. 

3  Damage model 

The damage model used in this work was proposed by Moreira and Evangelista Jr. [11] and is 

applied to quasi-brittle materials under loading conditions that produce crack propagation mode I or 

mixed mode. The capacity and limitations of this model are defined by the following hypotheses: the 

material is considered an elastic medium when evolving damage process and, therefore, are not 

considered plastic deformations; material damage is the result of extensions along the main stress 

directions, i.e. local ruptures begin and develop in mode I; finally, the damage is represented by a scalar 

variable D (0≤D≤1), which means assuming an isotropic damage condition for the material (Moreira 

[12]; Moreira and Evangelista Jr. [11]; Paiva [13]; Paiva et al. [5]). In order for the damage model to be 

thermodynamically compatible, a control variable, a damage initiation surface, and a damage evolution 

law must be described (Lemaitre and Chaboche [14]). 

The control variable adopted was the equivalent strain (𝜀𝑒𝑞
𝑀𝐴) pesented by Mazars [15] since it is 

suggested by the literature as a simple and efficient measure (Mazars [15]; Mazars and Pijaudier-Cabot 

[16]; Schlangen [17]; Geers [18]; Simone [19]; Proença and Torres [20]; Hofstetter and Meschke [21]). 

The Eq. (5) presents the relationship between the control variable and the strain tensor. 

𝜀𝑒𝑞
𝑀𝐴 = √∑(⟨𝜀𝑖⟩+)

2
3

𝑖=1

 (5) 

where ⟨𝜀𝑖⟩
+ = (𝜀𝑖 + |𝜀𝑖|)/2 and 𝜀𝑖 the main deformation in the direction 𝑖. 

The Fig. 1 shows the idealization model of the fracture process, where the softening law is inserted 

as the material reaches its mechanical tensile strength (Camacho and Ortiz [22]; Ortiz and Pandolfi [23]). 

The fracture process zone is described by a stress-strain relationship (σ - ε). The micro cracks grow and 

coalesce after the concrete tensile strength (ft) is reached. However, the paste-aggregate interaction 

remains imposing some resistance to crack opening. This step is responsible for dissipating the initial 

fracture energy (𝐺𝑓), which defines the first slope of the model curve, whose coordinates are defined by 

the deformation 𝜀𝑘 and by the kink point 𝜓.  
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The total fracture energy (𝐺𝐹) and the ft, together define the maximum load of the structure. When 

the crack opening displacement reaches a certain magnitude (εf) a force-free surface arises that 

corresponds to a macro crack (Planas and Elices [24]; Bazant [25]; Elices et al. [26]). 

 

Figure 1. Softening behavior – Constitutive relation force-displacement and equivalence of strains as a 

function of the characteristic length 𝒍𝒄 (adapted from Evangelista Jr et al. [27]). 

The criterion of onset and evolution of damage is directly related to equivalent deformation. 

Damage onset occurs when the equivalent strain reaches a critical strain (εd0) corresponding to the 

maximum stress of a uniaxial tensile specimen. The law of damage evolution is related to the fracture 

energy 𝐺𝐹 across a characteristic length 𝑙𝑐 (Oliver [28]). 

3.1 Damage and S/GFEM 

Certain phenomena, such as crack propagation, can only be satisfactorily described by continually 

modifying and updating the mesh. Special methods of analysis, such as S/GFEM, were developed to 

overcome this and other problems. As in Moteiro et al. [29], where the polynomial GFEM was employed 

for nonlinear analyzes using a constitutive model of elastoplastic damage.  

Continuous Damage Mechanics (CDM) is efficient for describing material behavior when 

analyzing nonlinear physical behavior structures. It is possible to combine this feature of CDM with 

another great quality of S/GFEM, the flexibility of application, so that it is possible to refine the response 

only in regions where there is a real need. Polynomial shape functions are able to reproduce with good 

quality the displacement field for various damage levels (Barros et al. [30]). 

4  Numerical simulations 

The Three Point Bending (TPB) was analyzed. The numerical simulations results for conventional 

cementitious materials were compared with experimental results from Roesler et al. [31] and Gaedicke 

and Roesler [32]. The Fig. 2 illustrates the geometry used for this test.  

 

Figure 2. Model geometry, loading, and boundary conditions. 
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The geometric data of the tested beam are: H=150mm, S=600mm, L=700mm, a0=50mm, e=80mm. 

The table 1 shows the fracture and material parameters, respectively. Mazars equivalent strain (𝜀𝑒𝑞
𝑀𝐴 ). 

The notch has a width of 2.0 mm. The simulations were performed using controlled displacement. 

Table 1. Fracture and material parameters of the TPB test 

Fracture parameters Material parameters 

𝐺𝐹(N/m) 𝐺𝑓(N/m) 𝜓 E (MPa) 𝑓𝑐 (Mpa) 𝑓𝑡  (Mpa) 𝜐 

164,0 56,7 0,25 32000 58,3 4,15 0,20 

 
Three finite element meshes (all with linear triangular elements of three nodes), two with 2mm 

rectangular notch (Fig. 3 (a) and 3 (b)) and one with “V” notch (Fig. 3(c)), both with mouth opening of 

two millimeters. For comparative purposes, we sought to maintain the correspondence regarding the 

quantity of elements (total quantity and especially in the ligament region - region between the notch tip 

and the displacement application point) between the last two. 

Nodes Pn indicate where the degree of polynomial enrichment has varied, with the remaining nodes 

constantly being enriched with P1 (where P1 designates first degree polynomial enrichment and so on) 

and P0 indicates that the node has not undergone any kind of enrichment, therefore corresponding to the 

conventional FEM. 

 

  
(a) (b) 

 

 
(c) 

Figure 3. Finite element meshes for TPB: (a) 25 elementes; (b) 101 elementes; (c) 106 elements. 

In the meshes of Fig. 3(a) and Fig. 3(b) there is an almost acicular element whose base edge 

measuring 2 mm describes the end of the notch. This does not occur in the mesh of Fig. 3(c) due to the 

notch geometry difference. Figure 4 presents the experimental and numerical results of the force (P) 

curves as a function of Crack Mouth Opening Displacement (CMOD). 

It is noticed that there is no quality in the results without enrichment (P0). By contrast, it is apparent 

that enrichment contributes to improving the quality of results. This potential of the polynomial S/GFEM 

stands out in the simulations with the coarser meshes, given the good estimate of the maximum resisted 

load (Pmax) per beam even using very few finite elements in the test.  

 It is observed that both the Pmax and the softening region of the P - CMOD curve are better 

represented as the polynomial degree of applied enrichment increases in the same mesh. Naturally, the 

more refined the model, the smaller the degree of polynomial required. For mesh with 25 elements, for 

example, the degree of enrichment P3 was required, and for mesh with 106 elements only P1 was 

sufficient to obtain results close to the experimental one.  
When using “V” notch, the maximum loads tend to be higher than those presented by the respective 

simulations with rectangular notch. Due to the symmetry of the problem, the node ahead of the probable 

"damage path" suffers momentary uncertainty as to which side it will move. This contributes to the fact 

that Pmax values, in this case, are relatively higher since the damage model depends on the equivalent 

deformation of the element. Note also that there is mesh objectivity in all cases, i.e., both Pmax and the 

softening region achieve convergence (do not remain decreasing indefinitely). 
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(a)                                   (b) 

 

(c) 

Figure 4. Experimental and numerical P - CMOD curves: (a) mesh with 25 elements; (b) mesh with 

101 elements; (c) mesh with 106 elements – “V” notch. 

By analyzing the distribution of the damage in the fracture zone at the end of the simulation (Fig. 

5), it was noted that the damage presented an expected behavior as a function of the experimental result 

presented by Roesler et al. [31]. It is also observed that a better description occurs in the simulations 

with higher enrichment for the same mesh (damage tends to concentrate in the fracture line). As in the 

P – CMOD curves, the S/GFEM was able to represent well the problem of damage distribution due to 

the better representation of stress and strain fields as a function of the applied enrichment. 

 

 

P0 

   
 25 Ele 101 Ele 106 Ele 

 (a) 

P5 

   
 25 Ele 101 Ele 106 Ele 

 (b) 

Figure 5. Damage distribution at end of simulations as function of polynomial enrichment degrees. 



G. Paiva, F. Evangelista Jr. 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

The Fig. 6 illustrates the convergence study for the mesh with 25 elements, comparing the P3 

simulations using the GFEM and P3 with S/GFEM strategy. It is noticed that the simulation with 

S/GFEM with polynomial enrichment presents a larger amount of iterations until reaching convergence 

in each displacement step, presenting lower computational performance than GFEM. 

 

Figure 6. Convergence assessment for the 25 element mesh – comparison between P3 - GFEM and P3 

– S/GFEM simulations. 

5  Conclusions 

This work implemented S/GFEM formulations applied to the analysis of damaged structures. 

Polynomial enrichment functions were employed, according to the S/GFEM strategy, to simulate 

structural failure problems using a bilinear damage model. Results were verified by comparing with 

experimental results taken from the three point bending test on central notched beams. Enrichment was 

employed to enable simulations using coarse meshes. 

The obtained results proved the efficiency and accuracy of the polynomial S/GFEM to improve 

the prediction of the rupture behavior even when performing simulations with coarse meshes. In the 

numerical simulations performed, it was observed good reproduction capacity of the maximum load 

(Pmax) as well as the softening behavior observed in the experimental tests, even using a very small 

number of elements in the mesh. 

The S/GFEM presented a larger total amount of iterations than the GFEM. An alternative to 

improve the computational efficiency of S/GFEM facing the problem analyzed may be the use of the 

flat-top functions. It is also noteworthy that in the enrichment simulations there was a better distribution 

of damage in the ligament region, mainly due to the better representation of the stress and strain fields, 

as well as the stress concentration at the notch tip. 
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