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Abstract. Highly turbulent flows are present in several industrial applications and natural phenomena, 

such as flows around aircraft airfoils and turbine blades, fluid-structure interaction problems in offshore 

platforms and formation of turbidity currents. In this work, a general family of eddy viscosity models 

(EVM) for the large-eddy simulation (LES) of turbulence is implemented in an edge-based stabilized 

finite element incompressible Navier-Stokes solver within the framework of the residual-based 

variational multiscale method (RB-VMS). We evaluate and compare the different fine-scale eddy 

viscosity models proposed by Oberai and Hughes. These models are incorporated into EdgeCFD, a 

highly optimized fully implicit parallel edge-based code, with inexact Newton solver and adaptive time 

step. The performance and accuracy of the proposed models are tested with validation problems for high 

Reynolds numbers. Results are then compared to those of highly resolved numerical simulations and 

experimental data and discussed. 
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1  Introduction 

Fluid flows, in nature and engineering applications, are often turbulent [1,2,3]. Therefore, 

numerical simulation of turbulent flows is highly important for both scientific and economic reasons 

[1]. As examples of turbulent flows, we can mention smoke, water flowing in rivers, flows around 

vehicles, as well as those flows in many industrial applications like pipelines, pumps, compressors, 

turbines and reactors [3]. We can also mention the flows around risers, platforms, and vessels and many 

other fluid structure interaction problems important for the offshore industry. Despite its importance, 

numerical simulation of turbulent flows is still a challenge, especially for high Reynolds numbers [2].  

Differently from other multiscale problems, dynamics of incompressible Newtonian flows can be 

described by one single set of equations for all spatial and time scales: the Navier-Stokes equations. 

Solving these equations numerically is a strategy called Direct Numerical Simulation (DNS). This 

strategy is expensive and, for many applications of interest, the computational cost remains impeditive. 

Studies have shown that the number of numeric operations seems to scale with the cube of Reynolds 

number, that means O(Re3)[1].  

Large-Eddy simulation (LES), on the other hand, is based on the concept of separating scales. The 

large scales of turbulence are solved while the effect of the small scales on the large scales is modeled. 

This approach offers reduced computational cost when compared to DNS, while still describing the 

intermittency of phenomena for the scales of interest. In that way, LES is the usual choice when DNS is 

unfeasible and when statistical based descriptions are not enough to represent the physical problem 

[1][2].   

The Variational Multiscale method [4] is a general theoretical framework for computational 

mechanics also based on scale separation. The field to be solved is split into different scales by a direct 

decomposition. Inspired by LES, VMS was later applied to turbulence [5]. The variable of interest is 

split into resolved scales and one unresolved subscale. The subscale can be determinate, among other 

strategies, by methods based on projection (OSS - Orthogonal subgrid scale) and on the residual of the 

resolved scales (RB-VMS) [6]. Like OSS, the Residual-Based Variational Multiscale Method (RB-

VMS) presents the advantage of being consistent. Since the effect of the unresolved scales is modeled 

based on the residual of the large scales, once the resolved scales are able to fully represent the field, the 

contribution of the subscale vanishes. Another advantage of this method is its analogies with standard 

stabilized methods for advection-dominated flows, like Streamline-Upwind Petrov–Galerkin/Pressure 

stabilizing Petrov–Galerkin/Least-Squares Incompressibility Constraint (SUPG/PSPG/LSIC). This 

analogy allows straightforward extensions of existing computer codes [2][6].  

A mathematical closure problem arises from every method relying on scale separation e.g. LES, 

VMS and RANS (Reynolds-Averaged Numerical Simulation) [1]. One usual way to solve this closure 

problem, especially for methods based on one resolved scale and one unresolved scale, is defining a 

subgrid scale viscosity. These viscosity models, also called, eddy viscosity models (SGS) are widely 

used, the most popular being the Smagorinsky model. The eddy viscosity model proposed by 

Smagorinsky is proportional to the magnitude of the strain tensor local rate calculated with the resolved 

scales. That means that, adding this viscosity to the equations of the resolved scales, adds inconsistencies 

to the method.   

It was observed [8][9] that RB-VMS formulation under predicts the contribution of the subgrid 

scale on the resolved scale. To address this issue, Oberai and Liu [8][9] proposed adding eddy-viscosity 

model to the RB-VMS formulation. This strategy was tested for compressible and incompressible flows 

using a spectral framework and applying an eddy viscosity model calculated with the subgrid velocity. 

The fact that the viscosity model depends on the subgrid velocity has the advantage of keeping 

consistency and being inherently dynamic. The results obtained with this viscosity and RB-VMS are 

better results than RB-VMS by itself. 

Hughes and Oberai [10] present a family of eddy viscosity models for VMS intended to be applied 

only in the fine resolved scales, when splitting the field in more than one resolved scale. Requiring 

Galilean invariance and dimensional consistency, they came up with a general expression for eddy 

viscosities inspired by the Smagorinsky model. 
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In this study we propose using RB-VMS framework with two scales: one large resolved scale and 

one fine unresolved subgrid scale. In addition to that we apply some of the eddy viscosity models 

proposed by Hughes and Oberai [10], considering as the fine scale our unresolved scale. Different eddy 

viscosity models are tested and the results are compared with those obtained with SUPG/PSPG/LISC 

with Smagorinsky eddy viscosity and those obtained with RB-VMS with no eddy viscosity. The paper 

is organized as follows:  the applied methods are presented in Section 2, some comments about the 

implementation are made in the Section 3, the results are presented in Section 4 and, finally, conclusions 

and discussions are presented in Section 5.  

2  Methods 

2.1 Governing equations 

Considering a spatial domain Ω ⊂ ℝ3 with a piecewise regular boundary 𝛤 and a time interval 

[0, 𝑡𝑓], the Navier-Stokes equations governing the flow of incompressible viscous fluids are given by: 

 

 𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖) − 𝒇 − 𝛻 ∙ 𝝈 = 𝟎               𝑜𝑛 Ω × [0, 𝑡𝑓], (1) 

 

 𝛻 ∙ 𝒖 = 𝟎                                                           𝑜𝑛 Ω × [0, 𝑡𝑓],  (2) 

 

where 𝒖 is the velocity field, 𝜌 is the fluid density, 𝝈 is the stress tensor and 𝒇 is the external forces 

vector. 

 Equation (1) can be rewritten as: 

 

    𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖) − 𝒇 + 𝛻𝑝 − 𝜌𝜈𝛻2𝒖 = 𝟎      𝑜𝑛 Ω × [0, 𝑡𝑓]. (3) 

 

The stress tensor is defined as: 

 

 𝝈(𝑝, 𝒖) = −𝑝𝑰 + 𝑻,          (4) 

 

where 𝑰 is the identity tensor and 𝑻 is the deviatoric stress tensor, stated as: 

 

 𝐓 = 2𝜇𝜺(𝒖) = 2𝜌𝜈𝜺(𝒖). (5) 

 

In this equation, 𝜇 is the dynamic viscosity, 𝜈 is the kinematic viscosity and 𝜺(𝒖) is the strain rate tensor 

defined as follows: 

 

 𝜺(𝒖) =
1

2
(𝛻𝒖 + (𝛻𝒖)𝑇). (6) 

 

In our case the kinematic viscosity 𝜈 is composed of two parts:  

 

 𝜈 = 𝜈𝑝ℎ𝑦𝑠 + 𝜈𝑇 , (7) 

 

where 𝜈𝑝ℎ𝑦𝑠 represents the physical kinematic viscosity, physical property of the fluid, and 𝜈𝑇 is the added 

eddy viscosity calculated using the models described in the following sections.  
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The Dirichlet (essential) and Neumann (natural) boundary conditions associated with the problem are 

applied on the complementary subsets 𝛤𝑔 and 𝛤ℎ of the boundary 𝛤 = 𝛤𝑔 ∪ 𝛤ℎ,   

𝛤𝑔 ∩ 𝛤ℎ = ∅ and are given by: 

 

 𝒖 = 𝒈              𝑜𝑛 𝛤𝑔, (8) 

 

 𝒏 ∙ 𝝈 = 𝒉          𝑜𝑛 𝛤ℎ , (9) 

 

 

where 𝒈 and 𝒉 are given functions and 𝒏 is the unit outward normal vector of the boundary 𝛤. 

 

The initial condition is defined as: 

 

 𝒖(𝒙, 0) = 𝒖𝟎        𝒙 ∈ Ω0. (10) 

2.2 Variational multiscale method 

In a two-scale variational multiscale method (VMS) for large eddy simulation (LES) the flow fields 

are decomposed into coarse (resolved) and fine (unresolved) scales: 

 

 𝒖 = 𝒖ℎ + 𝒖′, (11) 

 

 𝑝 = 𝑝ℎ + 𝑝′, (12) 

 

where (𝒖𝒉, 𝑝ℎ) and (𝒖′, 𝑝′) stand for the coarse and fine scale components of the solution, respectively. 

 

This can be seen as a direct sum decomposition of infinite-dimension spaces:  

 

 𝑈∗ = 𝑈ℎ ⊕ 𝑈′, (13) 

 

 

 𝑃∗ = 𝑃ℎ ⊕ 𝑃′, (14) 

 

 

 𝑉∗ =  𝑈∗ × 𝑃∗ =  𝑉ℎ ⊕ 𝑉′, (15) 

 

where 

 

 (𝒖, 𝑝) ∈ 𝑉∗ = 𝑈∗ × 𝑃∗. (16) 

 

The coarse scale, in this work, is directly associated with the finite element approximation obtained by 

the discretization of the spatial domain. 

 

In the case of RB-VMS, the fine scales are given by: 

 

 𝒖′ = −𝜏𝑀𝒓𝑴,                                                                    (17) 

 

 𝑝′ = −𝜏𝐶𝑟𝐶 , (18) 

 

where 𝒓𝑴 is the residual of the Navier-Stokes momentum equation and 𝒓𝑪is the residual of the Navier-

Stokes continuity equation. 𝜏𝑀 and 𝜏𝐶 are algebraic parameters to be set. These parameters can be related 

to the ones in stabilized finite element formulations. In this work we define:  
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 𝜏𝑀 = (
4

∆𝑡2
+ (

‖𝒖ℎ‖

ℎ
)

2

+ 9 (
𝜈

ℎ2
)

2

)

−1/2

, (19) 

 

 𝜏𝐶 =
ℎ

3
‖𝒖ℎ‖. (20) 

 

Here ℎ is a length scale related to the element size. In this work, we consider: 

 

 ℎ = (𝑉𝑜𝑙𝑒𝑙)1/3, (21) 

 

where 𝑉𝑜𝑙𝑒𝑙  is the volume of a finite element. 

 

The residual 𝒓𝑴 and 𝒓𝑪 are obtained from Eq. (3) and Eq. (2) and can be stated as:  

 

 𝒓𝑴 = 𝜌 (
𝜕𝒖𝒉

𝜕𝑡
+ 𝒖ℎ ∙ 𝛻𝒖ℎ) − 𝒇 + 𝛻𝑝 − 𝜌𝜈𝜵𝟐𝒖ℎ , (22) 

 

   𝑟𝐶 =  𝜵 ∙ 𝒖𝒉. (23) 

 

2.3 Finite element formulation 

The weak form of the Navier-Stokes equations can be stated as: 

 

Find (𝒖, 𝑝) ∈ 𝑉∗ = 𝑈∗ × 𝑃∗, ∀(𝒘, 𝑞) ∈ 𝑍∗ = 𝑊∗ × 𝑄∗ such that we have: 
 

 

 

∫ 𝒘 ∙ [𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖) − 𝒇]

 

Ω

𝑑Ω + ∫ 𝜺(𝒘)

 

Ω

: 𝝈(𝑝, 𝒖)𝑑Ω 

+ ∫ 𝑞 𝜵 ∙ 𝒖

 

Ω

𝑑Ω − ∫ 𝒘 ∙ 𝒉 𝑑𝛤

 

𝛤ℎ

= 0, 

(24) 

 

where: 

 

 
𝑈∗ = {𝒖(𝒙, 𝑡)|𝒖(𝒙, 𝑡) ∈ 𝐻1(Ω)3; 𝒖 = 𝒈 𝑜𝑛 𝛤𝑔}, 

 
(25) 

 

 
𝑃∗ = {𝑝(𝒙, 𝑡)|𝑝(𝒙, 𝑡) ∈ 𝐿2(Ω); ∫ 𝑝 𝑑Ω

 

Ω

= 0 𝑖𝑓 𝛤 = 𝛤𝑔}, 

 

(26) 

 

 
𝑊∗ =  𝑊ℎ ⊕ 𝑊′ = {𝒘(𝒙, 𝑡)|𝒘(𝒙, 𝑡) ∈ 𝐻1(Ω)3; 𝒘 = 𝟎 𝑜𝑛 𝛤𝑔} , 

 
(27) 

 

 
𝑄∗ =  𝑄ℎ ⊕ 𝑄′ = 𝑃∗. 

 
(28) 
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𝑈ℎ ⊂ 𝑈∗, 𝑃ℎ ⊂ 𝑃∗, 𝑊ℎ ⊂ 𝑊∗ and 𝑄ℎ ⊂ 𝑄∗ are finite dimension spaces associated with the finite 

element approximation of the problem. 

 

Replacing 𝒖 and 𝑝 by their VMS decomposition defined by Eq. (11) and Eq. (12) and 𝒘 by 𝒘 = 𝒘ℎ +
𝒘′, we obtain:  

 

 

∫ 𝒘ℎ  ∙ [𝜌 (
𝜕(𝒖ℎ + 𝒖′)

𝜕𝑡
+ (𝒖ℎ + 𝒖′) ∙ 𝛻(𝒖ℎ + 𝒖′)) − 𝒇]

 

Ω

𝑑Ω

+ ∫ 𝜺(𝒘ℎ)

 

Ω

: 𝝈(𝑝 + 𝑝′, 𝒖ℎ + 𝒖′)𝑑Ω

+ ∫ 𝑞ℎ 𝜵 ∙ (𝒖ℎ + 𝒖′)

 

Ω

𝑑Ω − ∫ 𝒘ℎ ∙ 𝒉 𝑑𝛤

 

𝛤ℎ

= 0. 

(29) 

 

Considering that linear finite elements are used to represent the large scales and that the functions 

representing the fine scales vanish on element boundaries, after some manipulation, we obtain: 

 

 

 

∫ 𝒘ℎ  ∙ 𝜌
𝜕𝒖ℎ

𝜕𝑡
 𝑑Ω

 

Ω

+ ∫ 𝒘ℎ  ∙ [𝜌(𝒖ℎ − 𝜏𝑀𝒓𝑴) ∙ 𝜵𝒖ℎ] 𝑑Ω

 

Ω

+ ∫ 𝜺(𝒘ℎ)

 

Ω

: 𝝈(𝑝ℎ , 𝒖ℎ)𝑑Ω + ∫ 𝑞ℎ 𝜵 ∙ 𝒖ℎ

 

Ω

𝑑Ω

+ ∫
1

𝜌
𝜏𝑀𝒓𝑴  ∙ [𝜌(𝒖ℎ − 𝜏𝑀𝒓𝑴) ∙ 𝜵𝒖ℎ +  𝛻𝑞ℎ] 𝑑Ω 

 

Ω

+ ∫ 𝜏𝐶

 

Ω

(𝜵 ∙ 𝒖𝒉)𝜌(𝜵 ∙ 𝒘𝒉) − ∫ 𝒘ℎ ∙ 𝒉 𝑑𝛤

 

𝛤ℎ

− ∫ 𝒇𝑑Ω

 

Ω

= 0. 

(30) 

 

We can define: 

 

 𝒖∗ = 𝒖ℎ + 𝒖′ = 𝒖ℎ − 𝜏𝑀𝒓𝑴.                                                                    (31) 

 

Replacing (31) in (30), 

 

 

∫ 𝒘ℎ  ∙ 𝜌
𝜕𝒖ℎ

𝜕𝑡
 𝑑Ω

 

Ω

+ ∫ 𝒘ℎ  ∙ (𝜌𝒖∗ ∙ 𝜵𝒖ℎ) 𝑑Ω

 

Ω

+ ∫ 𝜺(𝒘ℎ)

 

Ω

: 𝝈(𝑝ℎ , 𝒖ℎ)𝑑Ω

+ ∫ 𝑞ℎ 𝜵 ∙ 𝒖ℎ

 

Ω

𝑑Ω 

+ ∫
1

𝜌
𝜏𝑀𝒓𝑴  ∙ (𝜌𝒖∗ ∙ 𝜵𝒖ℎ +  𝛻𝑞ℎ) 𝑑Ω 

 

Ω

+ ∫ 𝜏𝐶

 

Ω

(𝜵 ∙ 𝒖𝒉)𝜌(𝜵 ∙ 𝒘𝒉) − ∫ 𝒘ℎ ∙ 𝒉 𝑑𝛤

 

𝛤ℎ

            

− ∫ 𝒇𝑑Ω

 

Ω

= 0. 

(32) 
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2.4 SUPG/PSPG/LSIC 

The SUPG/PSPG/LSIC formulation for the Navier-Stokes equations, considering linear elements 

and 𝜏𝑆𝑈𝑃𝐺 = 𝜏𝑃𝑆𝑃𝐺 = 𝜏𝑆𝑈𝑃𝐺/𝑃𝑆𝑃𝐺  is given by: 

 

 

∫ 𝒘ℎ  ∙ 𝜌
𝜕𝒖ℎ

𝜕𝑡
 𝑑Ω

 

Ω

+ ∫ 𝒘ℎ  ∙ (𝜌𝒖ℎ ∙ 𝜵𝒖ℎ) 𝑑Ω

 

Ω

+ ∫ 𝜺(𝒘ℎ)

 

Ω

: 𝝈(𝑝ℎ , 𝒖ℎ)𝑑Ω

+ ∫ 𝑞ℎ 𝜵 ∙ 𝒖ℎ

 

Ω

𝑑Ω

+ ∫
1

𝜌
𝜏𝑆𝑈𝑃𝐺/𝑃𝑆𝑃𝐺𝒓𝑴  ∙ (𝜌𝒖ℎ ∙ 𝜵𝒖ℎ +  𝛻𝑞ℎ) 𝑑Ω 

 

Ω

+ ∫ 𝜏𝐿𝑆𝐼𝐶

 

Ω

(𝜵 ∙ 𝒖𝒉)𝜌(𝜵 ∙ 𝒘𝒉)𝑑Ω − ∫ 𝒘ℎ ∙ 𝒉 𝑑𝛤

 

𝛤ℎ

 

− ∫ 𝒇𝑑Ω

 

Ω

= 0. 

(33) 

 

Equation (32) is quite similar to Eq. (31), except for the modified advection velocity 𝒖∗ and the 

stabilization parameters. As discussed in details in [2], this analogy allows RB-VMS to be implemented 

straightforward from SUPG/PSPG/LSIC implementations for linear elements. 

2.5 Eddy viscosity models 

A family of eddy viscosity models for VMS was proposed by Oberai and Hughes [10]. This family 

was initially intended to be applied only in the fine resolved scales, when the solution fields are split in 

multiple scales.  

The multilevel approach, consisting of splitting the resolved scales in large resolved scales and fine 

resolved scales is especially suited for spectral methods. For other discrete approximation, e.g. finite 

element method, a fine-scale projection operator needs to be implemented. This requires complex 

algorithms to be implemented, like geometric and algebraic multigrid solvers [10].  

In this work, we apply a two-scale RB-VMS framework: one resolved scale and one unresolved 

scale. When using the proposed eddy viscosity models, we consider our unresolved scale as the fine 

scale. The main idea is to test Smagorinsky-like eddy viscosity models based on both the resolved and 

the unresolved scales. Since in the RB-VMS framework the unresolved scales are modeled by the 

residual of the resolved scales, the viscosities models based on the unresolved scales vanish when the 

resolved scales are accurate enough. This preserves the method’s consistency. The viscosity is applied 

in all the resolved scales. 

In the most general case, eddy viscosities can be written as: 

 

 𝜈𝑇 = 𝐶2ℎ𝑛|𝛻𝑆𝒖ℎ|
𝑝

|𝛻𝑆𝒖′|𝑞|𝒖′|𝑟 |𝒖ℎ|
𝑚

, (34) 

 

where 𝐶 is a non-dimensional parameter, ℎ is a length scale, 𝛻𝑆 is the symmetric gradient operator and 

𝑚, 𝑛, 𝑝, 𝑞 and 𝑟 are exponents to defined.  

 

Requiring Galilean invariance, we obtain:  

 

 𝜈𝑇 = 𝐶2ℎ𝑛|𝛻𝑆𝒖ℎ|
𝑝

|𝛻𝑆𝒖′|𝑞|𝒖′|𝑟 . (35) 
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Requiring dimensional consistency, we obtain: 

 

 𝜈𝑇 = 𝐶2ℎ2−𝑟|𝛻𝑆𝒖ℎ|
𝑝

|𝛻𝑆𝒖′|1−𝑝−𝑟|𝒖′|𝑟 . (36) 

 

From Eq. (34), we can state that the turbulent viscosity is defined by a two-parameter (𝑝, 𝑟) family of 

functions. A schematic representation of the two-parameter space of models is presented in Fig. 1. The 

triangle with vertices (0, 0), (1, 0), and (1, 1) contain the models we are most interested in testing. 

 

 
Figure 1- two-parameter space of models [10] 

The value of 𝐶 is not arbitrary and can be calculated by computing the model dissipation. For the 

Smagorinsky, this value was calculated by Lilly [14] and lies in the ranges 0.1 – 0.2 [11].  In [7] 𝐶 equals 

0.15 is used for an eddy viscosity based on the norm of the small scale. The same is done in [8]. Briefly, 

values between 0.1 and 0.2 can be considered to be a reasonable choice for this parameter. In this paper, 

we use 𝐶 equals 0.1 for all tested models. ℎ is a length scale related to the element size. In this work, we 

consider it as the cubic root of a finite element volume, as stated in Eq. (19). 

 

Is it worth mentioning that, since 𝐶 is considered to be a positive number, these models only take into 

account energy transferred from the resolved scales to the unresolved scales. Although this is true in 

many cases, the transfer of energy in the opposite way exists (backscattering) and can be important for 

specific problems.   

2.6 Specific eddy viscosity models 

EVM-RB-VMS-1 Turbulent energy-like model 

Choosing 𝑟 = 1 and 𝑝 = 0 yields the following model: 

 

 𝜈𝑇 = 𝐶2ℎ|𝒖′|, (37) 

 

where 𝒖′, defined by Eq. (17), depends on the residual of the resolved scales.  

 

As previously mentioned, the fact that the model depends on the magnitude of the unresolved scale 

assure consistency to the resulting RB-VMS formulation with eddy viscosity (EVM-RB-VMS). This 

model was tested in [7] and in [8], where it was called residual-based eddy viscosity RB-EVM. Due to 

its relation to turbulent energy, we decide to call it “turbulent energy”-like model. 

 

EVM-RB-VMS-2  Small-large 

 

Choosing 𝑟 = 0 and 𝑝 = 0 yields the following model: 

 

 𝜈𝑇 = 𝐶2ℎ2|𝛻𝑆𝒖′|. (38) 

 

EVM-RB-VMS-3  Large-large 

 

Choosing 𝑟 = 0 and 𝑝 = 1 yields the following model: 
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 𝜈𝑇 = 𝐶2ℎ2|𝛻𝑆𝒖ℎ|, (39) 

 

that is the Smagorinsky eddy viscosity model. It is worth mentioning that this model introduces 

inconsistencies to the resulting EVM-RB-VMS formulation. 

 

EVM-RB-VMS-4  Plateau 

 

Choosing 𝑟 = 1/2 and 𝑝 = 1/2 yields the following model: 

 

 𝜈𝑇 = 𝐶2ℎ3/2|𝛻𝑆𝒖ℎ|
1/2

|𝒖′|1/2. (40) 

 

Due to its dependence on |𝒖′|1/2, this model can be seen as a Smagorinsky-like model that modulates 

the decay rate of the eddy viscosity (a plateau in the wavenumber space) [10]. 

 

EVM-RB-VMS-5  DCDD-like 

 

Choosing 𝑟 = 2 and 𝑝 = 1  yields the following model: 

 

 𝜈𝑇 = 𝐶2|𝛻𝑆𝒖ℎ||𝛻𝑆𝒖′|−2|𝒖′|2. (41) 

 

This model resembles the discontinuity-capturing directional dissipation (DCDD) viscosity described 

in [18]. This model presents potential instability because |𝛻𝑆𝒖′| appears in the denominator. 

Regularization by adding a small positive constant to the denominator was applied to avoid this problem. 

 

EVM-RB-VMS-6 One-one 

 

Choosing 𝑟 = 1 and 𝑝 = 1   yields the following model: 

 

 𝜈𝑇 = 𝐶2ℎ|𝛻𝑆𝒖ℎ||𝛻𝑆𝒖′|−1|𝒖′|. (42) 

 

This model presents potential instability and regularization is also applied. 

3  Implementation 

The formulation presented in this work was implemented in EdgeCFD, an in-house software 

developed at the High-Performance Computer Center (NACAD) at COPPE/UFRJ. EdgeCFD is a 

parallel optimized code written in Fortran90, consisting of edge-based implementation of stabilized 

finite element method and RB-VMS for incompressible and compressible flows and transport equation. 

The stabilized finite element formulation applied is SUPG/PSPG/LSIC, which is also adapted to RB-

VMS [2]. When SUPG/PSPG/LSIC is used, turbulence is modeled by classic Smagorinsky (LES). 

Inexact-Newton Krylov Method is used for the non-linear solver and generalized minimal residual 

method (GMRES) is used for the linear solver. Time step adaptivity is implemented using a PID 

controller. Nodal-block diagonal preconditioner is employed for the flow equations. When transport 

equations are solved, diagonal preconditioner is employed for the transport equations. Integrals are 

computed using closed form relations derived in volume coordinates or using a one-point integration 

rule. That means all coefficients in the element matrices and residuals are explicitly coded. Distributed 

and shared parallelism paradigms (MPI and OpenMP) are considered throughout the whole code.  

EdgeCFD and its extensions also allow simulation of free surface flows using Volume-of-Fluid 

(VOF) or level sets, Non-Newtonian flows using Power Law, Bingham and Hershel-Buckley and Fluid-

Structure Interaction and Multiphase flows. More recently, mesh refinement through mesh 

multiplication was incorporated [15][16].  
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4  Results 

4.1 Flow around a circular cylinder 

The previously presented formulations are applied to the solution of the turbulent flow around a 

circular cylinder with Reynolds number (Re) equals to 1000. In this classical problem, the flow past a 

circular cylinder causes vortex shedding. 

For this problem, the Reynolds number can be defined as: 

 

 𝑅𝑒 = 𝜌𝑈𝐷/𝜇 = 𝑈𝐷/𝜈.   (43) 

 

Here 𝜌 is the fluid density, 𝑈 is magnitude of the inflow velocity, 𝐷 is the cylinder diameter, 𝜇 is the 

fluid dynamic viscosity and 𝜈 is the fluid kinematic viscosity. 

The Reynolds number can be seen as a ratio of inertial and viscous effects. The greater the 

Reynolds number is, more turbulent is the flow.  
Another dimensionless number important to describe the flow around a cylinder with vortex 

shedding is the Strouhal number, defined as: 

 

 𝑆𝑡 = 𝑓𝑠𝐷/𝑈, (44) 

 

where 𝑓𝑠 is the frequency of vortex shedding, 𝐷 is the cylinder diameter and 𝑈 is the inflow velocity. 

The relationship between Reynolds number and Strouhal number is known from experiments for 

circular cylinders in two-dimensions flow conditions, as shown in Fig. 2. We can note that Strouhal is 

close to 0.2 for a large range of Reynolds number, including the one we are testing here. It is also known 

that Strouhal number depends also on other aspects like the cylinder rugosity and cylinder aspect ratio, 

which is the ratio between cylinder diameter and length. 

 

 

 
Figure 2 - relationship between Reynolds and Strouhal [19] 

 

Vortex shedding is also closely related to lift and drag forces on the cylinder, defined as: 

 

 𝒕 = ∫ 𝒏 ∙ 𝝈

 

𝛤𝑐𝑦𝑙

𝑑𝛤, (45) 

 

 𝐹𝐿 = 𝒕 − 𝒕 ∙ (
𝑼

𝑈
), (46) 

 

 𝐹𝐷 = 𝒕 ∙ (
𝑼

𝑈
), (47) 
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where 𝒕 is the tension vector acting on the cylinder lateral surface, 𝛤𝑐𝑦𝑙 is the cylinder surface, 𝒏 is the 

unit outward normal, 𝑼 is the inflow velocity vector and 𝑈 is its magnitude. Also 𝝈 is the stress tensor 

and is defined in Eq. (4). 

 

Lift and drag coefficients are dimensionless numbers, given by: 

 

 𝐶𝐿 =
2𝐹𝐿

𝜌𝐿𝐷𝑈2
, (48) 

 

 𝐶𝐷 =
2𝐹𝐷

𝜌𝐿𝐷𝑈2
, (49) 

 

where 𝜌 is the fluid density, L is the cylinder length, 𝐷 is the cylinder diameter, 𝐹𝐿 is the lift force and 

𝐹𝐷 is the drag force. 

In the case of the flow around a circular cylinder, even though there is periodic shedding from 

alternating sides of the body, due to symmetry, the time-averaged lift coefficient is zero. Because of 

that, usually, we are interested in fluctuating lift coefficient [24], defined as: 

 

 𝐶𝐿
′

𝑟𝑚𝑠
=

2𝐹𝐿
′

𝜌𝐿𝐷𝑈2
, (50) 

 

where 𝐹𝐿
′ is the root-mean-square lift force fluctuations.  

The time-averaged drag coefficient, on the other hand, is not zero. Because of that, usually, we 

are interested in the mean drag coefficient, defined as: 

 

 𝐶𝐷
̅̅̅̅ =

2𝐹𝐷
̅̅ ̅

𝜌𝐿𝐷𝑈2
, (51) 

 

where 𝐹𝐷
̅̅ ̅ is time-averaged drag force. 

Relationships between Reynolds number and fluctuating lift coefficient for a smooth cylinder, 

obtained experimentally and numerically, are shown in Fig. 3. From experiments, fluctuating lift 

coefficient would be approximately 0.05 for Reynolds number equals 1000. Nevertheless, results 

obtained numerically doesn’t seem to match that, lying in a wide range of values between 0.1 and 0.7. 

 

 
Figure 3 - relationship between Reynolds and root-mean-square fluctuating lift coefficient [24][25] 

 

The relationship between Reynolds number and drag coefficient is known for smooth circular 

cylinders in two-dimensions flow conditions, as shown in Fig. 4. We can note that for Reynolds number 

equals 1000, drag coefficient is close to 1.0.  Like the Strouhal number, the drag coefficient also depends 

on other aspects like the cylinder rugosity. 
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Figure 4 – relationship between Reynolds and drag coefficient [19][23] 

 

In this work 𝑅𝑒, 𝑆𝑡, 𝐶𝐷
̅̅̅̅  and 𝐶𝐿

′
𝑟𝑚𝑠

 are used to evaluate the results obtained when employing the 

different formulations presented. 

4.2 Test case  

As presented in the previous section, the physical problem we use as test case consists of the well-

known incompressible flow around a smooth circular cylinder, in our case, with Reynolds number equals 

to 1000. According to the physics of the problem, the domain would be infinity in both 𝑥 and 𝑦 

directions. Considering that the domain is also infinity in the 𝑧 direction implies that the velocity should 

be invariant in this direction, what would allow using bidimensional domains to represent the geometry 

of the problem. Although, when dealing with turbulence, it is more usual to use tridimensional domains.  

In this paper we choose to represent the geometry as a tridimensional domain. To reduce 

computational time, the domain has to be truncated. The dimensions of the geometry used for the 

numerical model is presented in Fig. 5. The length is 28 times the cylinder diameter (28𝐷), the width is 

16 times the cylinder diameter (16𝐷) and the height, which is equal to the cylinder length, is 8 times the 

cylinder diameter (8𝐷). The distance between the cylinder centerline and the inflow boundary is 8 times 

the diameter (8𝐷). A fluid with density 𝜌 and dynamic viscosity 𝜈 flows past a circular cylinder with 

diameter D and length 𝐿 = 8𝐷 with inflow velocity with magnitude 𝑈. The boundary conditions are: 

prescribed velocity in the inflow boundary, null pressure is prescribed in the outflow boundary (null 

tension condition), no slip conditions in the walls of the cylinder and no penetrability condition in the 

parallel lateral boundaries of the domain, as shown in Fig. 6. As initial condition, we consider null 

velocity for the whole domain. In our case, we also consider: 𝜌 = 1, 𝜈 = 1.0 × 10−3, 𝜇 = 1.0 × 10−3, 

𝐷 = 1, 𝐿 = 8 and 𝑈 = 1, resulting in 𝑅𝑒 = 𝜌𝑈𝐷/𝜇 = 𝑈𝐷/𝜈 = 1000. 

 

 

 
 

 
 

 

 
Figure 5 – tridimensional domain Figure 6 – applied boundary conditions 
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The used mesh consists of 1,862,078 elements and 320,562 nodes and is presented in Fig. 6. and 

Fig. 7. The simulations were run in Lobo Carneiro super computer using 12 processors. The resulting 

mesh partitions for one simulation is presented in Fig. 8. 

 

 

 

 

Figure 6 – full mesh Figure 7 –  mesh around the cylinder Figure 8-mesh partitions 

 

As numerical solution parameters we use: constant time step of 0.025 with a total number of steps equal 

to 80,000; the nonlinear loops are stopped after a decrease of four orders of magnitude of the relative 

and absolute residua. The number of Krylov vectors for the nodal block-diagonal preconditioned 

GMRES solver is 35. It is worth mentioning that the 0.025 fixed time-step was estimated after an initial 

Reynolds ramping step run with PID adaptative time step. During this step, the inflow velocity is slowly 

increased until the final Reynolds number is achieved.   

4.3 Results 

Results and computational times are presented in Table 1. For each formulation, time-averaged 

drag coefficient, time-averaged lift coefficient, root-mean-square lift force fluctuations and Strouhal 

number are presented, as well as the total wall time of both the Reynolds ramp step and the 80.000 

iterations with fixed time increment. In Fig.9 and Fig.10, lift and drag coefficients are plotted over time 

for each of the formulations.  

Table 1. Results and computational times 

Formulation 𝐶𝐷
̅̅̅̅  𝐶𝐿

̅̅ ̅ 𝐶𝐿
′

𝑟𝑚𝑠
 𝑆𝑡 wall time 

(DD:HH:MM:SS) 

SUPG/PSPG/LSIC 

+Smagorinsky 

1.2291 0.0094894 0.37641 0.19997 00:16:091:09 

RB-VMS 1.2278 0.0001406 0.38323 0.19997 00:18:53:17 

EVM-RB-VMS-1 

Turbulent energy-like 

1.2149 0.0077212 0.34385 0.19485 00:10:22:32 

EVM-RB-VMS-2 

Small-large 

1.2328 0.0039698 0.37372 0.19997 00:23:25:33 

EVM-RB-VMS-3 

Large-large 

1,2295 0.0089938 0.34532 0.19485 01:06:44:47 

EVM-RB-VMS-4 

Plateau 

1.1886 0.0113560 0.28525 0.19485 01:08:37:59 

EVM-RB-VMS-5 

DCDD-like 

1.2105 0.0066287 0.31335 0.19485 00:18:26:11 

EVM-RB-VMS-6 

One-one 

- - - - - 

Numerical Reference [21] 1.41 - - 0.23 - 

Numerical Reference [25] - - 0.1 - 0.7 - - 

Experimental [20] 1.48 - - 0.25 - 

Experimental [19][25] 

(Fig. 2, Fig. 3 and Fig. 4) 

1.0 - 0.05 0.2 - 
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Lift Drag 

EVM-RB-VMS-1 Turbulent energy-like 

  
EVM-RB-VMS-2 Small-large 

  
EVM-RB-VMS-3 Large-large 

  
EVM-RB-VMS-5 DCDD-like 

  
Figure 9-Lift and Drag coefficients 
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Lift Drag 

  

  
Figure 10-Lift and Drag coefficients 

 

From Table 1, Fig. 9 and Fig. 10, we can see that the presented formulations (EVM-RB-VMS) 

were able to represent the flow around the cylinder at least as well as the already implemented 

SUPG/PSPG/LSIC with Smagorinsky and RB-VMS formulations. From Fig. 2, we can see that for 

Reynolds 1000, from experiments, 𝑆𝑡~0.2. From Fig. 3, we can see that 𝐶𝐷
̅̅̅̅ ~1 and from Fig. 4, we can 

see that 𝐶𝐿𝑟𝑚𝑠

′  results obtained numerically are not reliable but lie in the range between 0.1 and 0.7. 

Results obtained numerically can be considered reasonable, since we have 𝑆𝑡~0.19, that 𝐶𝐷
̅̅̅̅ ~1.2 and 

0.3 < 𝐶𝐿𝑟𝑚𝑠

′ <0.4. 

Regarding the computational cost and feasibility EVM-RB-VMS-2 (Small-large) and EVM-

RB-VMS-5 (DCDD-like) computational times are comparable to those of SUPG/PSPG/LSIC and RB-

VMS and EVM-RB-VMS-3 (Large-large) computational time is considerably larger than those. EVM-

RB-VMS-4 (Plateau) mean results are reasonable, but since convergence criteria were not achieved 

during the run, the resulting lift and drag curves are not presented. For EVM-RB-VMS-6 (One-one) we 

were not able to achieve convergence when using the same time step. 
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5  Conclusion and Future works 

In this study we have presented a family of eddy viscosity models to be applied in a RB-VMS 

framework with two scales. Six different models were presented and tested. The classical example of 

the flow around a circular cylinder (with Reynolds number equals 1000) was used as test case. Time-

averaged drag coefficient, time-averaged lift coefficient, root-mean-square lift force fluctuations and 

Strouhal number were presented for each of the resulting formulations as well as curves for lift and drag 

coefficients over time. The results were compared with those obtained with SUPG/PSPG/LISC with 

Smagorinsky eddy viscosity and those obtained with RB-VMS with no eddy viscosity. The presented 

formulations were implemented in EdgeCFD, an existing highly optimized code. We noted that four of 

the six implementations were able to represent turbulent flows with reasonable accuracy when compared 

with highly resolved numerical simulations and experimental data. We have also shown that these EVM-

RB-VMS implementations have a computational performance comparable with the SUPG/PSPG/LSIC 

formulation with a classical Smagorinsky model and with the RB-VMS. 

Further studies should consider mesh refinement tests, time step tests, other test cases, 

comparison for higher Reynolds numbers and analysis in the frequency domain in order to better 

evaluate the performance and accuracy of the presented formulations.  
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