
A CUDA ACCELERATED NUMERICAL INTEGRATION OF ELASTOPLASTIC FI-
NITE ELEMENTS RESIDUALS

Natália R. Vilas Boas
Philippe R. B. Devloo
Omar Durán
nataliarvboas@gmail.com
phil@fec.unicamp.com
omar.duran@cepetro.unicamp.br
Laboratory of Computational Mechanics, University of Campinas (LabMeC/UNICAMP)
Rua Josiah Willard Gibbs, 85, 13083-839, Campinas/São Paulo, Brazil

Abstract. Finite Element Method (FEM) is a numerical technique to approximate partial differential
equations. It has been widely used to approximate solutions of physical problems in different fields
of research. The numerical simulation challenging engineering problems with small error require fine
meshes and leads to high computational cost. To overcome this difficulty parallel computing is becoming
a mainstream tool. Among the techniques available to improve the performance of this type of computa-
tional application is the execution of the algorithm using Graphics Processing Unit (GPU) programming.
Although GPU was originally developed for graphics processing, it has been used in the last years as a
general purpose machine with high parallelism power through the availability of libraries such as CUDA
or OpenGL. The purpose of this research is to develop an efficient algorithm for the evaluation of the
finite element residual and Jacobian matrix. We target the particular variational formulation of an elasto-
plastic problem with associative plasticity but will try to show that the approach can be extended to other
fields and problems. The presented strategy for the calculation of the residual and tangent matrix rely
on several computational ingredients such as gathering and scattering operations, sparse matrix mul-
tiplications, and a parallel coloring procedure for assembly process. The verification of the nonlinear
approximated solution includes comparison with regular CPU implementation in terms of numerical re-
sults and execution efficiency. For residual computations of elasto-plasticity, the GPU outperforms the
CPU by a factor of up to 10 (details of the architecture are given in the paper).

Keywords: Finite Element Assembly, Residual Numerical Integration, Elastoplasticity, CUDA

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

1 Introduction

The Finite Element Method (FEM) is one of the most important numerical techniques to find ap-
proximate solutions of partial differential equations (PDEs). According to Becker [1], this method allows
the construction of base functions to approximate the solution of PDEs with a systematic approach. The
main idea is that these functions can be defined piecewise over subregions of the domain called finite
elements and can be chosen to be simple functions such as low-degree polynomials. Bhavikatti [2]
states that although FEM has been previously used in mechanical structures, it is now widely used as
a technique for solving complex problems in different fields of engineering: civil, mechanical, nuclear,
biomedical, geomechanics, and others. Problems in these fields lead to high computational demand and
cost a lot of CPU time and other computer resources.

Most computer codes are written to be executed sequentially: a problem is split into instructions and
these instructions are executed one after the other. In these cases, the performance improvement depends
on the advance in CPU efficiency: the software can achieve a significant speedup as each new generation
of processors is introduced. However, Kirk and Wen-Mei [3] highlight that since 2003 a stagnation
of performance improvement of general applications has been noticed due to high energy consumption
and heat dissipation that limits the increase of the clock frequency. Therefor the industry offers a new
approach: to increase the number of cores inside each processor.

According to Kirk and Wen-Mei [3], this new approach has a huge impact on the software devel-
oper community. Zhang and Shen [4] state that parallel computing in high-performance computers has
gradually become a mainstream tool for dealing with large and detailed numerical problems in FEM anal-
ysis. Many parallel algorithm to finds approximation using FEM were developed in parallel computers.
However, they may require a large number of CPUs to achieve high speed.

Graphics Processing Units (GPUs) were originally developed for images and video processing.
Due to the market demand for high-quality real-time graphics in computer applications, these processors
have undergone a high technological advancement. For example, Kirk and Wen-Mei [3] state that in
an electronic gaming application one needs to render scenes at a resolution of 60 frames per second.
According to Micikevicius [5], a GPU consists of a set of multiprocessors and each multiprocessor has
its own stream processors and shared memory. All multiprocessors of a GPU have access to global
device memory and memory latency is hidden if thousands of threads are executed concurrently. The
main difference between GPU and CPU is that CPUs may be efficient with a small number of threads
per core while GPUs achieve high performance when thousands of threads are executed concurrently.

Because of the technological advancement of GPUs, researchers who wanted to improve the perfor-
mance of their applications started to explore its use for non-graphical applications. This trend became
known as General-Purpose computing on the GPU (GPGPU). Since then, GPU has been used for nu-
meric simulation of problems in fields of science and engineering. Zhang and Shen [4] say that methods
that use GPU’s powerful computing resource to accelerate finite element analysis have naturally emerged
in the last few years. Among the steps of the finite element calculation for the approximation of solu-
tions of boundary value problems, the evaluation of the elementary stiffness matrix and residual vector,
as well as the assembly process of the linear system are the most time-consuming processes in terms of
both memory and runtime.

Previous studies on implementing finite element computations for elasticity problems obtained the
following results. Zhang and Shen [4] implemented a code to approximate elasticity problems in two and
three dimensions using FEM with GPU. The authors used a coloring method to perform the assembly of
the global operators. The tests were conducted on a platform composed of an Intel Core2 Duo E7400
processor and an NVIDIA Geforce GT 430. A speedup of 7x is achieved for approximation with two-
dimensional elements and 10x for tree-dimensional elements. The linear system solution received a
speedup of 3.5x and 6x for two and three-dimensional elements, respectively. Mafi [6] used a GPU-
based parallel computing approach to perform real-time analysis of soft objects deformation through
a non-linear approximation using FEM. The author used a coalesced data structure to compute FEM
matrices in GPU. The computation time of the matrices evaluation achieved a speedup of 28x in an

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

NVIDIA Geforce GTX 470 when compared to a sequential CPU implementation with an Intel Core
i7-3770 processor.

In this work a strategy is proposed to compute the global finite element residual and Jacobian ma-
trix of a non-linear elasticity problem. The strategy is applied to approximate an elastoplastic problem
through a FEM simulation of a wellbore under internal and external stresses, as well as to compute an
initial stress represented by a hydrostatic pre-stress. The proposed scheme consists in pre-computing
and storing constant data and perform GPU parallelized operations to evaluate the global operators. The
correctness of the nonlinear approximation is verified by comparing the results with an approximation
obtained using a Runge-Kutta approximation on a very fine mesh. The GPU’s performance is compared
with an equivalent CPU code and with a classical assembly through a C++ open-source library for the de-
velopment of finite element simulations. A Modified Initial Stiffness method is implemented to provide
better convergence to the approximation.

The paper is organized as follows. Section 2 presents the problem statement. In section 3 the
classical discretization and notation for FEM are presented. Section 4 shows the adopted structure to
solve the problem. Section 5 presents a CUDA C++ implementation and GPU resources used in this
research. In section 6 the numerical results are described. Finally, in section 7 the conclusions of this
research effort are presented.

2 Statement of the problem

Denoting Ω as the domain for the PDE problem in R2 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN. Where D
and N stand for the boundary with Dirichlet and Neumann data, respectively. The governing equations
for the elastoplastic deformation consist of three parts: a conservation law; a constitutive equation; and
boundary conditions.

div (σ(x)) = 0 x ∈ Ω (1)

u(s) = uD(s) s ∈ ∂ΩD (2)

σ(s) · n = t(s) s ∈ ∂ΩN (3)

where σ [MPa] is the Cauchy stress, u [m] represents the displacement vector, t [MPa] is the normal
traction over ∂ΩN and n is the outward normal.

The stress σ is a function of the elastic part of the deformation tensor.

σ (u) = 2µεe + λ tr(εe)I in Ω. (4)

where λ [MPa] and µ [MPa] are the first and second Lamé constants.
Under the assumption of small deformation, the total strain tensor is expressed as:

ε (u) =
1

2

(
∇u +∇tu

)
(5)

The decomposition of the strain tensor in elastic and plastic deformation will be defined subse-
quently.

Elastoplastic constitutive modeling A body that undergoes elastic deformation is characterized by
the complete recovery of its undeformed configuration upon removal of the applied loads. In this case
the deformation depends only on the load applied to the body. Irreversible deformations occur if a body
is subjected to a loading cycle beyond its elastic limit. In this case the deformation will be formally split
in elastic and plastic deformations. The elastic limit for the stress is also known as the yield stress [7].

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

Figure 1. Stress-strain relationship. Extracted from Mase [7].

In Figure 1 the point P corresponds to the yield stress and divides the stress-strain curve into elastic
and plastic ranges. Once this point is not always well-defined, it is possible to define it as point J
(Johnson’s apparent elastic limit), in which the slope of the curve corresponds to 50% of its initial value.
Incrementally in the plastic range, unloading from point B results in the state point following the line BC
which is parallel to the linear portion of the curve and divides the total deformation rate of the body into
plastic εp and elastic εe.

A large number of engineering materials, such as metals, concrete, rocks, clays, and soils in general,
may be modeled as plastic under a wide range of circumstances of practical interest. The study of these
materials is described by an incremental stress strain relation. The basic items are:
• Strain tensor increment decomposed into elastic and plastic strain increment;
• Elastic constitutive law;
• Yield criterion;
• Plastic flow rule.

δε = δεe + δεp (6)

δεp = δγN(σ,A) (7)

δA = δγH(σ,A) (8)

δσ = 2µδεe + λtr(δεe)I (9)

δγ · δΦ(σ,A) ≡ 0 (10)

where Φ(σ,A) is the yield surface and N(σ,A) = ∂Φ
∂σ defines the direction of plastic deformation and

H(σ,A) defines the evolution of the damage variable A.
It should be noted that either δγ ≡ 0 and Φ(σ,A) < 0 or δγ > 0 and Φ(σ,A) ≡ 0

Mohr-Coulomb plasticity In this research, we use the Mohr-Coulomb criterion as the constitutive
relationship for plasticity. This criterion applies to the modeling of materials such as concrete or soil and
represents that yielding happens when the relation of the shear stress and normal stress exceeds a given
value:

τ = c− σ tanφ (11)

from which c [MPa] is the cohesion and φ [◦] is the frictional angle. The Mohr-Coulomb has the follow-
ing definition in principal stresses space:

Φ(σ,A) = (σmax − σmin) + (σmax + σmin) sinφ− 2c cosφ. (12)

The Mohr Coulomb law is perfectly plastic and does not depend on A. Therefore δA ≡ 0 and
H(σ,A) ≡ 0.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

3 Finite element approximation and notation

Consider a geometrical partition Th = {Ωe} of the region Ω by convex elements Ωe with boundaries
∂Ωe. The index h stands for the maximum diameter of the elements Ωe. The following functional space
is required:

H1 (Ω) =
{
v ∈ L2 (Ω) : ∇v ∈ L2 (Ω)

}
. (13)

The classical one-field weak statement for the mechanical problem is defined in section 2 and for-
mulated as:

Find u ∈ V =
{
v ∈ H1 (Ω) , v|∂ΩD = 0

}
such that:

∑
Ωe∈Th

∫
Ωe

σ (ε (u)) · ε (v) dV =
∑

Ωe∈∂ΩN

∫
∂ΩN

t · vdS ∀ v ∈ V. (14)

The discrete version of the weak statement is obtained by considering finite-dimensional space
Vh ⊂ V with H1-conforming finite elements that requires the continuity of functions over the element
interfaces. Consequently, the discrete version for the classical one-field weak statement is:

Find uh ∈ Vh such that:

∑
Ωe∈Th

∫
Ωe

σh (εh (uh)) · εh (vh) dV =
∑

Ωe∈∂ΩN

∫
∂ΩN

t · vhdS ∀ vh ∈ Vh. (15)

Residual expression The incremental form of the weak statement above leads to the definition of the
following residual expression:

R = Rσ + Rl (16)

where:

Rσ =
∑

Ωe∈Th

∫
Ωe

σh (εh (uh)) · εh (vh) dV ∀ vh ∈ Vh (17)

Rl = −
∑

Ωe∈∂ΩN

∫
∂ΩN

t · vhdS ∀ vh ∈ Vh. (18)

Matrix form of the finite element problem

The discrete problem described in Eq. (15) leads to an algebraic problem:
Find δ~u ∈ RN such that:

Kδ~u = −R, K ∈ RN×N , R ∈ RN . (19)

The variable δ~u represents the finite element increment that will be added to the approximation u̇h.
N stands for the global number of degrees of freedom. The matrix K can be either the global jacobian
matrix or a secant matrix K̃ ≈ K and the vector R represents the global residual, usually numerically
integrated or evaluated during a Newton or Quasi-Newton process.

In FEM terminology, the assembly process represents the construction of K and R as:

K =

Ne∑
e=1

Ke and R =

Ne∑
e=1

Re. (20)

The evaluation of Ke is given by the integral expression:

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

Ke =

∫
Ωe

Bt
eDBe =

npe∑
k=1

ωk|Jk|Bt
e (xk)D (xk)Be (xk) . (21)

The evaluation of Re is given by the integral expression:

Re =

∫
Ωe

Bt
e~σe =

npe∑
k=1

ωk|Jk|Bt
e (xk)~σe (xk) . (22)

The local stress-strain and strain-displacement relationship are:

~σe = D (xk) ~εe (23)

~εe = Be (xk) δ
−→u e. (24)

For the numerical integration the following variables represent:
• D (xk) ∈ Rnσ×nσ : The local constitutive matrix;
• Be (xk) ∈ Rnσ×Ne : The local strain-displacement matrix;
• δ−→u e ∈ RNe : The degrees of freedom of element e;
• Ne: The number of elements;
• nσ: The number of fluxes components;
• np: The number of integration points;
• nc: The number of colors;
• Ne: The number of degrees of freedom of element e;
• npe: The number of integration points of element e;
• ωk: The integration rule weight at integration point k;
• jk: The jacobian of the transformation at integration point k;
• ~σe: The strain vector in Voigt notation at integration point k;
• ~εe: The strain vector in Voigt notation at the integration point k.

Classical Assembly The most simple and low memory cost algorithm is to serially assemble each
element matrix and then sum the contribution of (Ke,Re) to the global matrix using a scatter and add
operation into the global matrix and vector (K,R). Eventually only the load vector Re needs to be
assembled into R. Algorithm 1 illustrates this assembly process.

Algorithm 1 Classical assembly process.
1: K← 0N×N and R← 0N

2: for k ← 1 to Ne do
3: Compute Re =

∫
Ωe

Bt
e~σe

4: Compute Ke =
∫

Ωe
Bt
eDBe

5: for i← 1 to Ne do
6: idest = connectivity(i, k)
7: // Elementary vector gather-scatter
8: R (idest) += Re(i)
9: for j ← 1 to Ne do

10: jdest = connectivity(j, k)
11: // Elementary matrix gather-scatter
12: K (idest, jdest) += Ke(i, j)
13: end for
14: end for
15: end for

This algorithm has the following characteristics:

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

• Initialize the global matrices (K,R) with zero;
• Perform the assembly element by element;
• It is general and apply for all matrix structures;
• It performs repetitive access of the global array entries into the matrix structure, for instance a

sparse structure. It occurs during the elementary operations of gather and scatter;
• It does not take advantage of the constant data present during the evaluation of Eq. (21) and

Eq. (22).
• The algorithm can be executed in parallel by coloring the elements and assemble all the elements

belonging to a single color simultaneously. Each color is processed in sequence. This strategy is
adopted when the CPU and GPU performance are analyzed in the forthcoming sections.

4 Assembly using integration point contributions

Laouafa and Royis [8] refer to the term UDA as an unstructured displacement approach. The basic
idea of UDA is to perform operations integration point by integration point once an integration rule is
defined. For instance, using a Gaussian quadrature method the algebraic problem presented in Eq. (19)
can be rewritten as:

Compute the product of the global matrix with δ~u ∈ RN as:

Kδ~u+ Rl =
(
B̂tŴD̂B̂

)
δ~u = −Rσ + Rl, Rσ ∈ RN , Rl ∈ RN (25)

where B̂ is the global strain-displacement Nσ ×N , it operates over δ~u:

~ε = B̂δ~u, B̂ ∈ RNσ×N , ~ε ∈ RNσ . (26)

The matrix D̂ is the constitutive global operator:

~σ = D̂~ε, D̂ ∈ RNσ×Nσ , ~σ ∈ RNσ (27)

where the term Rσ can be expressed as:

Rσ = B̂tŴ~σ. (28)

The size Nσ corresponds to the sum
∑Ne

e=1 npe nσ where npe is the number of integration points
for each element and nσ is the number of components of the stress tensor in Voigt notation (in two
dimensions is equal 3). Some important observations can be made about the expressions in Eq. (25) and
Eq. (28):
• Once the geometrical partition and the polynomial order are assigned to every element, the global

arrays B̂ and Ŵ are constant during the finite element approximation, i.e. only one computation
can be done to evaluate them;
• The construction of B̂ involves overlapping information corresponding to common degree of free-

dom leading to a careful implementation to reach a parallel construction of it.
• The array D̂ can be updated by as a function of ε if required if performing an iterative method to

solve a nonlinear elasticity problem Eq. (15);
• The array Ŵ contains the weight of the integration point multiplied by the determinant jacobian

matrix at each integration point;
• The construction of the operator B̂tŴD̂B̂ is implemented in two stages: first at element level
Bt
eWeDBe for computing the element residual Re and then assembling the element residuals

The adopted path In this research it was adopted an approach different to Laouafa and Royis [8]. Let
B̄ ∈ RNσ×N̄ be block-diagonal matrix version of B̂. It is stored (

∑Ne
e=1 npe nσ Ne) as a global vector

indexed per element and subindexed per integration point. The size N̄ is the sum
∑Ne

e=1Ne. It contains
the values of the partial derivatives for the displacement interpolation functions. With this modification

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

B̄ can be easily constructed in parallel. Clearly, B̄ is linear with respect to the global δ̄~u ∈ RN̄ scattered
vector version of δ~u. The array Î is a block-diagonal matrix stored (

∑Ne
e=1 npe) as a global vector indexed

per element and subindexed per integration point. The array D̂ is not constructed globally due to reduce
the memory being used during the the assembly of K.

B̄ is the global scattered strain-displacement Nσ × N̄ , it operates over δ̄~u:

~ε = B̄δ̄~u, B̄ ∈ RNσ×N̄ , ~ε ∈ RNσ . (29)

The term R̄σ ∈ RN̄ can be expressed as:

R̄σ = B̄tÎ~σ. (30)

Computational issues for the adopted strategy The strategy adopted here is separated into two main
folds; the residual integration of Rσ; and the assembly of K. A concise explanation of them is provided
below. The key ingredients for the strategy are listed as:

1. Preprocessing of constant data:
(a) Parallel construction for B̄ and Î and their proper indexation for compute the required matrix

operations;
(b) The global connectivity;

2. Due to the associative characteristic for the elastoplastic equations, the matrix assembly is re-
stricted to a symmetric sparse structure in CSR format or in other terms K(Kg, IKg, JKg);

3. A Greedy-like coloring algorithm to obtain a solution for the minimum sum coloring problem. For
an exact solution the reader can be referred to Lecat et al. [9];

4. A set of colors for computing the pairs (Ke,Re) or Re in parallel way;
5. Sparse matrix operations;
6. Vector gather, saxpy, and scatter operations;

Residual integration The constitutive Mohr-Coulomb return mapping algorithm is implemented
following the directives provided by de Souza Neto et al. [10]. The main difference is that the spectral
decomposition is computed by means of an iterative procedure with properly selected initial eigenvalue
guesses (See appendix). The multiplication presented in Eq. (29) is performed. Then, the computation of
Eq. (27) is performed integration point by integration point in parallel. Formerly, the expression Eq. (30)
is performed as global matrix multiplication leading to the residual component R̄σ. Finally, to obtain
Rσ a series of gather, saxpy and scatter operations are perform per colored set to reduce R̄σ into Rσ.
Because its low cost the linear residual Rl is assembled once by means of the algorithm 1. Algorithm 2
shows the main steps performed during the numerical integration of Rσ.

Matrix assembly The constitutive matrix D is evaluated during the parallel execution of a set
of elements belonging to a color or set of colors to perform Ke =

∫
Ωe

Bt
eDBe and store them into a

global vector K̄g ∈ R ¯NNZ with no overlapping entries. Then, using a loop over the colors, the entries
of K̄g associated to the current color are inserted into the global vector Kg ∈ RNNZ by gathering all the
corresponding color entries, apply a vector saxpy over the color entries adding all the contributions to
the color local array and finally apply and vector scatter. NNZ stands for the number of nonzeros entries.
The size ¯NNZ is the sum

∑Ne
e=1N 2

e and it represents the number of non overlapping nonzeros. When the
loop over the colors is complete the global K is assembled.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

Algorithm 2 Residual assembly process.
1: R← 0N

2: Scatter δ̄~u← δ~u
3: Compute ~ε = B̄δ̄~u
4: for k ← 1 to np do // Parallel execution
5: Compute ~σe (xk) = D (xk) ~εe (xk)
6: Concatenate ~σ ← ~σe
7: end for
8: Compute R̄σ = B̄tÎ~σ
9: for c← 1 to nc do // Serial execution

10: Gather Rc ← Color subset R̄σ

11: Add color contribution Rσ+ = Rc

12: end for
13: Compute R = Rσ + Rl

Algorithm 3 Matrix assembly process.

1: Kg ← 0NNZ and K̄g ← 0
¯NNZ

2: l← 0
3: for k ← 1 to Ne do // Parallel execution with no overlapping entries
4: Compute Ke =

∫
Ωe

Bt
eDBe

5: for i← 1 to Ne do
6: for j ← 1 to Ne do
7: // Elementary matrix scatter
8: K̄g (l) + = Ke(i, j)
9: l++;

10: end for
11: end for
12: end for
13: for c← 1 to nc do // Serial execution
14: Gather Kc ← Color subset Kg

15: Add the color contribution Kc+ = Color subset K̄g

16: Scatter Kg ← Kc

17: end for

5 A CUDA C++ implementation

The constant data presented in section 4 was precomputed through NeoPZ environment, which is
a C++ open-source library for the development of finite element simulations. Moreover, the coloring
algorithm was also implemented in C++ language. Algorithms 2 and 3 were implemented in C++ and
CUDA languages to evaluate performance in both CPU and GPU. Since the result code is written in C++
and CUDA languages, an integration between CUDA and C++ had to be implemented. Such integration
was developed as two C++ classes, in which the first is responsible to wrap CUDA API calls to manage
memory transfers from CPU to GPU and vice-versa, and the latter is responsible to encapsulate the
kernels and CUDA libraries functions calls.

The corresponding operations to the algorithms 2 and 3 are scatter, gather and saxpy operations,
sparse matrix-vector multiplication and some kernels implementations. To perform sparse matrix-vector
multiplications, gather and scatter operations in the GPU is used the cuSPARSE library. According to
NVIDIA [11], this library contains a set of basic linear algebra subroutines used for handling sparse ma-
trices. On the other hand, saxpy operations use the cuBLAS library. NVIDIA [12] states this library is an

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

implementation of BLAS (Basic Linear Algebra Subprograms) for NVIDIA GPUs. Both cuSPARSE and
cuBLAS are part of NVIDIA GPU-accelerated libraries. According to NVIDIA, these libraries provide
highly-optimized functions that perform 2x-10x faster than CPU-only alternatives. Every GPU architec-
ture has its own configuration of number thread blocks. This guarantees an optimum performance the
kernels calls through the libraries.

CUDA Kernels The CUDA programming model introduced by NVIDIA supports CPU and GPU ex-
ecution of an application. Kernels are instructions executed in the GPU by a number of threads. Cecka
et al. [13] affirms a warp is a set of 32 threads within a thread block, while a thread block consists of a set
of threads running concurrently that communicate through barrier synchronization and shared memory.
To achieve the maximum performance of a kernel execution in the GPU, it is desired to maximize the
parallel execution, i.e., to maximize the number of active threads in the GPU during the execution of a
kernel. However, Mafi [6] highlights three main factors that may limit better performances: registers,
shared memory in a thread block and number of threads per thread block.

As seen in algorithm 3, the matrix assembly process consists in computing Ke in parallel. Thus,
the kernel responsible to perform these computations assign each elementary matrix computation to one
thread. This kernel is memory-bounded since row and column values of Be have to be loaded repeatedly
from global memory to compute the result entries. Mafi [6] says these transactions may impact the
kernel performance, once the access to global memory is costly. Hence, the use of shared memory leads
to greater performance in GPU. However, there is a relationship between the number of thread blocks
and the amount of shared memory used by a kernel. More shared memory used by a thread block implies
fewer thread blocks available by one kernel calls. For the case of the present kernel, higher polynomial
orders imply fewer thread blocks since the dimension of Be increases demanding more shared memory.

6 Numerical Results

The numerical results are presented in three subsections organized as follow: Two verifications are
presented pointing to check the validity of the spatial approximation properties and elastoplastic process;
A series of executions were performed to evaluate the performance in time for CPU and GPU versions
of the presented algorithms, and also for the in-house residual integration named as neoPZ; A Quasi-
Newton iterative solver of the elastoplastic problem in Eq. (15) is presented and it takes advantage for
the fast numerical integration of the residual expression in Eq. (16) and nonlinear acceleration method
presented in Sloan et al. [14].

6.1 Verifications

To verify the approximation properties of the implementation, it is considered a linear constitu-
tive behavior with the physical conditions presented in Fig. 2. The elastic and elastoplastic problems
associated with a circular domain representing a wellbore region with prescribed Neumann data are ap-
proximated. The internal pressure pint = σn · n is applied in the wellbore walls, while an external
normal stress σ = σn · n is applied over the external boundary. A hydrostatic pre-stress σ0 is the initial
stress.

Figure 2. Wellbore region geometry with physical conditions, coarse mesh partition Th|l=1, and zoom
in internal boundary.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

The set of geometrical partitions Th for different refinement levels are presented in Table 1.

Table 1. Set of geometrical partitions Th for different refinement levels.

N Th|l=1 Th|l=2 Th|l=3 Th|l=4 Th|l=5

p = 1 7936 32256 130048 522240 2093056

p = 2 31248 128016 518160 2084880 N/A

p = 3 69936 287280 1164336 4687920 N/A

Ne 3844 15876 64516 260100 1044484

h 0.00712436 0.00405445 0.00165619 0.00103663 0.000477711

The material properties used for the numerical results are presented in Table 2.

Table 2. Material properties used for numerical simulations.

Parameter Symbol [unit] Value

Internal pressure pint [MPa] -40

External stress σ [MPa] -49.99375

Hydrostatic stress σ0 [MPa] -50

Internal radius rint [m] 0.1

External radius rext [m] 4.0

Young’s modulus E [MPa] 2000.0

Poisson’s ratio ν 0.2

Cohesion c [MPa] 5.0

Friction φ [◦] 20

Linear setting verification The analytical solution is presented in Coussy [15]. The displacement in
Eq. (31), strain in Eq. (32) and stress in Eq. (33) fields are respectively:

u =
(1 + ν) (pint − σ)

E

r2
int

r
er (31)

ε =
(1 + ν) (σ − pint)

E

r2
int

r2
(er ⊗ er − eθ ⊗ eθ) (32)

σ = (σ − pint) (er ⊗ er − eθ ⊗ eθ) (33)

The polynomial order and partition selected were p = {1, 2} and Th|l=1 (see Table 1) with sev-
eral uniform refinements. Ignoring the corresponding elastoplastic data, the parameters being used are
presented in Table 2. It was obtained the expected approximation rate in the sense of energy norm is p.
Figure 3 documents the verification of the optimal approximation properties for selected finite element
discretization.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

Figure 3. Energy error plots for p = {1, 2} with coarse mesh partition Th|l=1.

Nonlinear setting verification To verify the nonlinear approximation a Runge-Kutta solver was imple-
mented. It is required to simplify the elastoplastic equations and recast the problem described in Eq. (14)
as initial value problem:

dy

dx
= f (y) (34)

There are several considerations for this case:
• Describe the equations in terms of the Cylindrical coordinate system and its corresponding mixed

form.
• The approximation is axisymmetric, leading to a displacement field u that depends only of the

radius and just have a radial component, i.e. u = Φ(r) .
• The initial value problem is described in terms of one independent variable r and the ODE data is

prescribed at the external radius rext.
• The number of discrete points is large enough to have a reasonable approximation.

Details about the RK method was left apart from this manuscript. The finite element approximation
was performed using a quadratic approximation with the geometrical partition Th|l=1 and the material
parameters presented in table 2. Figure 4 shows a remarkable match between the approximations. The
number of points for the RK approximation is 2000. The radius where the plasticity ends is approxi-
mately r ≈ 0.15 [m] for both methods. Thus, Fig. 4 documents the verification for the implementation
considering a nonlinear setting.

6.2 Performance analysis

The numerical experiments were conducted in the High-Performance Computing Laboratory and
Immersive and Interactive 3D Environment for Scientific Visualization for Petroleum Production cluster
(Galileu) at University of Campinas (UNICAMP). The cluster provides two processors Intel R© Xeon R©

E5-2630 v3 @ 2.40 GHz, 64 [Gb] memory and 8 cores each processor. The graphic processor is an
NVIDIA Tesla K40m with 12 [Gb] global memory and 2880 CUDA cores. It has 3.5 compute capability,
15 multiprocessors and 48 [Kb] shared memory per thread block.

For each configuration presented in Table 1 were made 5 executions both in CPU and GPU. The
code in CPU is parallelized using the Thread Building Blocks, a widely used C++ template library for
task parallelism. The comparison between GPU and CPU parallel code is essential to verify if a GPU
implementation is necessary. The performance analysis takes into account the execution time of the
algorithms presented. The results presented corresponds to the average of the executions made.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

Figure 4. A Runge-Kutta comparison against a finite element approximation with p = 2 a mesh partition
Th|l=1.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

Figure 5. Residual construction performance for CPU and GPU

Figure 5 shows the execution time of the residual construction for both CPU and GPU for the set of
configuration presented in Table 1. It is observed that GPU’s performance is slightly the same of CPU’s
for partition Th|l=1 with linear polynomial order. A speedup of 1.50x and 3x is noticed for quadratic
and cubic polynomial orders, respectively. The GPU parallelism becomes evident with the refinement
of the mesh. For geometric partition Th|l=5 and linear polynomial order, GPU’s performance reaches a
speedup of 7.14x. For geometric partition Th|l=4 with quadratic and cubic polynomial orders, a speedup
of 7.16x and 9.00x is noticed.

Figure 6. Matrix construction performance for CPU and GPU

Figure 6 shows the execution time of CPU and GPU construction of the matrix for the set of con-
figuration presented in Table 1. It is observed that for linear polynomial order, GPU overcomes CPU by
3.81x for geometric partition Th|l=4. However, for quadratic polynomial order CPU’s and GPU’s perfor-
mances are almost the same. For tests with cubic polynomial order CPU achieved better performance,
with a speedup of 2.86x compared with GPU. This is because the amount of shared memory necessary
to allocate strain-displacement matrix increases with the rise of polynomial order, leading to less active
threads in the calculation of the matrix.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

Figure 7. Residual construction performance for GPU and neoPZ

Figure 7 presents the execution time of the residual construction for GPU and the in-house classical
residual integration neoPZ. The performance of GPU overcomes the in-house residual integration neoPZ
by 26.7x, 15.8x and 15.0x for geometric partition Th|l=1 with linear, quadratic and cubic polynomial
orders, respectively. This speedup increases with the refinement of the finite element mesh, reaching a
speedup of 118.44x for linear polynomial order and geometric partition Th|l=5 and 38.80x and 24.97x
speedup for quadratic and cubic polynomial orders and geometric partition Th|l=4.

6.3 Solving an elastoplastic problem

Seeking for a faster and simple solution of the elastoplastic problem the initial stiffness method
IS is adopted with the nonlinear acceleration presented by Sloan et al. [14]. These two methods are
summarized as follows.

Initial Stiffness (IS) method the main idea for IS or elastic stiffness method is to construct and ap-
proximate the tangent matrix K̃ ≈ K as the elastic stiffness matrix to compute the iterative solution.
The process is performed by a computation of a single K̃ assembly using algorithm 3 and factorized
only once.

The method can be cast into the following steps:
1. Perform a single K̃ assembly;
2. Decompose K̃;
3. Compute Newton correction δ~uk−1 = −K̃−1R

(
~uk−1

)
;

4. Perform a Newton update of ~uk = ~uk−1 + δ~uk−1;
5. Perform 3 to 4, till the residue norm reaches the desired tolerance. i.e.

∥∥R (~uk)∥∥ ≤ ε.
On one hand, the main advantage of this strategy is that a single iteration is fast and stable, it is aligned
with a fast algorithm for numerical integration of the residual in Eq. (16). On the other hand, the rate of
convergence for the algorithm is deficient, especially when the plastic area is considerable extended or
arrow. Thus, to accelerate the convergence it is applied the Modified IS method based on the Thomas
nonlinear acceleration method presented by Thomas [16] and Sloan et al. [14].

Modified IS method This method use two subsequent states or ~uk and yk. Denoting the Newton
update yk:

yk = ~uk−1 + δ~uk−1. (35)

Let be δ~u∗ = −K̃−1R
(
yk
)

and the new update state defined as follows:

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

~uk = yk + ωk−1 δ~u∗ (36)

where the factor ω is the so-called acceleration factor Sloan et al. [14], defined as:

ωk = ωk−1 +
δ~uk−1 · δ~u∗

δ~uk−1 · δ~uk−1
. (37)

This method provides better convergence. It requires a single assembly, and two linear solve and
two function evaluations per update. Because of the fast numerical integration of Eq. (16), the reasonable
augment of the number of residual evaluations does not lead to any large impact on overall computational
times. Figure 8 shows the accelerated effect on the convergence against the conventional IS method for
partition Th|l=3, fewer iterations were required to reach the same stop criterion. No kind of instability was
observed during the iterative solution process. It is important to remark that by increase the polynomial
degree the IS method suffers from a slow of convergence due to the arrow plasticity area around the
wellbore region (blue line).

Figure 8. Convergence history for the vertical wellbore problem with p = {1, 2, 3}.

7 Conclusions

This paper describes an approach for finite element operators assembly in CUDA for elastoplastic
problems. This approach differs from the classical assembly process once constant data is computed
only once and is stored globally. To verify the implementation of the algorithms, a Runge-Kutta solver
was implemented. It was noticed a remarkable match between RK and the FE approximations. The pre-
sented structure allows the use of parallelism since the elementary contributions are independent. After
the elementary contributions of the tangent matrix and residual are computed in parallel under a color-
ing scheme, the assembly of the global operators is made using gather and scatter operations. For this
research, the residual computation reaches a speedup of 24.9x for a cubic polynomial order refined mesh
when compared to the classical assembly approach and 9.00x when compared to an analogous parallel
code executed in the CPU. On the other hand, the global tangent construction has good performance
when compared with GPU for linear polynomial order, reaching a 3.8x speedup. However, the increase
of polynomial order limits the parallelism since more shared memory is necessary to evaluate the ele-
mentary matrix. Because of this, a Modified Initial Stiffness method is applied. This method allows the
construction of the global matrix only once and takes advantage of the inexpensive residual numerical
integration process to achieve the desired convergence in a very efficient manner.

Appendix

Eigenvalues

The first step to evaluate the eigenvalues of the stress tensor in return mapping is the normalization
of stress tensor components. After that, the theorem presented by Gerschgorin [17] is used to calculate

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

the interval where the eigenvalues of the stress tensor are. Gershgorin’s Theorem states that given a
matrix Anxn, all eigenvalues of A lies in the union of the closed interval:aii −∑

j 6=i
|aij | , aii +

∑
j 6=i
|aij |

 , i, j = 1, ..., n. (38)

Thus, it is possible to use Newton’s method to compute the maximum and minimum roots of the
characteristic polynomial of the stress tensor using the interval evaluated by Gershgorin’s theorem as
initial guesses. This computation corresponds to the eigenvalues λ1 and λ3 of the stress tensor. The
intermediate eigenvalue λ2 is evaluated using the following algebraic relationship:

tr(S) = λ1 + λ2 + λ3 (39)

where S is the stress tensor and λi corresponds to its eigenvalues.

Eigenvectors

Given a symmetric matrix with eigenvalues and multiplicity known, the eigenvectors problem is
stated by:

S · ~v = λ~v (40)

A scheme for eigenvectors calculation is defined using the matrix multiplicity.

Multiplicity 1

If the multiplicity is unitary, one can extract from the matrix S− λI a non-singular 2x2 matrix. It is
possible to consider three configurations:

x11 x12 y1

x21 x22 y2

a b c



v1

v2

1

 =


0

0

0



x11 y1 x12

a b c

x21 y2 x22



v1

1

v2

 =


0

0

0




a b c

y1 x11 x12

y2 x21 x22




1

v1

v2

 =


0

0

0


Then it is chosen the configuration for which |detX| is maximum where:

X =

 x11 x12

x21 x22

 (41)

The values v1 and v2 are computed as follows: v1

v2

 = −X−1

 y1

y2

 (42)

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

A CUDA accelerated numerical integration of elastoplastic finite elements residuals

Multiplicity 2

In the case multiplicity is 2 the rank of S − λI is unitary and there must be at least one diagonal
other than zero. It is also possible to consider three configurations:

x11 y2 y2

a b c

d e f



v1

1

0

 =


0

0

0




a b c

y1 x11 y2

d e f




1

v1

0

 =


0

0

0




a b c

d e f

y1 y2 x11




1

0

v1

 =


0

0

0


and equivalently: 

x11 y2 y2

a b c

d e f



v2

0

1

 =


0

0

0




a b c

y1 x11 y2

d e f




0

v2

1

 =


0

0

0




a b c

d e f

y1 y2 x11




0

1

v2

 =


0

0

0


It is chosen the configuration for which |x11| is maximum. Then it is defined, for instance:

~v1 =


v1

1

0

 ~v2 =


v2

0

1

 (43)

Finally, ~v1 and ~v2 are normalized:

ṽ1 =
~v1

||~v1||
ṽ2 =

~v2

||~v2||
(44)

Multiplicity 3

In this case the matrix is diagonal and the eigenvectors are the identity matrix.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019

Natália R. Vilas Boas, Philippe R. B.Devloo, Omar D. Triana

Acknowledgements

The authors thankfully acknowledge financial support from ANP (Brazilian National Agency of
Petroleum, Natural Gas and Biofuels), grant 2014/00090-2.

References

[1] Becker, E., 1981. Finite elements. Prentice-Hall, Englewood Cliffs, N.J.

[2] Bhavikatti, S., 2005. Finite element analysis. New Age International.

[3] Kirk, D. B. & Wen-Mei, W. H., 2012. Programming massively parallel processors: a hands-on
approach. Morgan Kaufmann.

[4] Zhang, J. & Shen, D., 2013. GPU-based implementation of finite element method for elasticity
using CUDA. In High Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing (HPCC EUC), 2013 IEEE 10th International
Conference on, pp. 1003–1008. IEEE.

[5] Micikevicius, P., 2009. 3d finite difference computation on gpus using cuda. In Proceedings of 2nd
workshop on general purpose processing on graphics processing units, pp. 79–84. ACM.

[6] Mafi, R., 2014. GPU-based Parallel Computing for Nonlinear Finite Element Deformation Analysis.
PhD thesis.

[7] Mase, G., 1969. Schaum’s Outline of Continuum Mechanics. McGraw-Hill Education.

[8] Laouafa, F. & Royis, P., 2004. An iterative algorithm for finite element analysis. Journal of Compu-
tational and Applied Mathematics, vol. 164-165, pp. 469 – 491. Proceedings of the 10th International
Congress on Computational and Applied Mathematics.

[9] Lecat, C., Li, C.-M., Lucet, C., & Li, Y., 2015. Exact methods for the minimum sum coloring
problem. Doctoral Programming CP.

[10] de Souza Neto, E. A., Peric, D., & Owen, D. R., 2011. Computational methods for plasticity:
theory and applications. John Wiley & Sons.

[11] NVIDIA, 2018a. cusparse library.

[12] NVIDIA, 2018b. cublas library.

[13] Cecka, C., Lew, A. J., & Darve, E., 2011. Assembly of finite element methods on graphics proces-
sors. International journal for numerical methods in engineering, vol. 85, n. 5, pp. 640–669.

[14] Sloan, S. W., Sheng, D., & Abbo, A. J., 2000. Accelerated initial stiffness schemes for elastoplas-
ticity. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 24, n. 6,
pp. 579–599.

[15] Coussy, O., 2004. Poromechanics. Wiley.

[16] Thomas, J. N., 1984. An improved accelerated initial stress procedure for elasto-plastic finite
element analysis. International Journal for Numerical and Analytical Methods in Geomechanics, vol.
8, n. 4, pp. 359–379.

[17] Gerschgorin, S., 1931. Uber die abgrenzung der eigenwerte einer matrix. Izvestija Akademii Nauk
SSSR, Serija Matematika, vol. 7, n. 3, pp. 749–754.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

	Introduction
	Statement of the problem
	Finite element approximation and notation
	Assembly using integration point contributions
	A CUDA C++ implementation
	Numerical Results
	Verifications
	Performance analysis
	Solving an elastoplastic problem

	Conclusions

