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Abstract. A study is carried out to assess the use of stabilized and flux-corrected transport (FCT) finite
element approaches to solve the shallow water equations. The adopted stabilized formulation employs a
Streamline Upwind Petrov-Galerkin term supplemented by a shock-capturing operator. In the examined
FCT technique, the low-order equation considers an artificial viscosity term based on a Rusanov-like
scalar dissipation. Anti-diffusive fluxes are linearized around the low-order solution and limited with
the Zalesak’s algorithm. Both approaches use semi-discrete finite elements with implicit time integra-
tion over time steps constrained by a CFL condition. Numerical results are presented for standard test
problems available in the literature, and the accuracy and stability of the solutions are discussed.
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1 Introduction

Shallow water models have been substantially studied and applied over the years, having appli-
cations in atmospheric (Giraldo [1]) and oceanographic (Sármány and Hubbard [2]) modelling, gas
flow dynamics (Karel’skii et al. [3]), magnetohydrodynamics (Klimachkov and Petrosyan [4]), flood-
ings (Creed et al. [5]), and turbidity currents (de Luna et al. [6]). All these models assume that the
shallow water hypothesis holds. This approximation presupposes the horizontal extent of the studied
physical phenomenon is significantly higher than its vertical scale. Thus, standard governing equations
can be simplified, producing a so-called depth-averaged or shallow water model. These modifications
are fundamental to reduce computational costs, allowing, for example, the simulation of larger areas. In
contrast, depth-resolving strategies can provide more accurate results, although they require additional
computational effort. Meiburg et al. [7] discuss the strengths and challenges associated with the different
approaches in the context of gravity-driven flow simulations.

To solve the shallow water equations, often finite difference (Groenenberg et al. [8]) and finite
volume (Hou et al. [9]) methods are employed. Also, several discontinuous (Ambati and Bokhove [10])
and continuous (Hervouet [11], Castro et al. [12]) finite element techniques have been applied. Within the
finite element group, stabilized formulations, formed by adding consistent and numerically stabilizing
terms to the Galerkin method, have achieved considerable success (Behzadi [13], Castro [14], Takase
et al. [15]). Usually, they use a Streamline Upwind Petrov-Galerkin (SUPG) (Hughes and Mallet [16])
term combined with a shock-capturing operator, such as the Consistent Approximate Upwind (CAU)
(Galeão and do Carmo [17]) operator. Santos and Coutinho [18] evaluate the use of different SUPG
and shock-capturing techniques to solve the shallow water equations. Similarly, regarding continuous
finite elements, flux-corrected transport (FCT) (Kuzmin et al. [19], Sheu and Fang [20], Ortiz et al. [21])
methods constitute a relevant subgroup. Classical FCT techniques use a diffusive low-order formulation
that is numerically stable and suppresses undershoots and overshoots. Besides, the built-in numerical
diffusion can be defined to enforce the positivity constraint. Then, the obtained solution is corrected by
anti-diffusive fluxes limited to avoid the creation or growth of extrema. Alternatively, it is possible to
blend low- and high-order equations in a high-resolution scheme (Kuzmin [22]).

In this work, we compare a stabilized finite element formulation with a flux-corrected transport
scheme. The examined stabilized approach comes from the work of Santos and Coutinho [18]. From
the operators they tested, we use the SUPG operator proposed by Tezduyar [23], later adapted by Takase
et al. [24] to the shallow water equations. Plus, we employ the Y Zβ (Rispoli et al. [25], Tezduyar and
Senga [26]) and δ91−MOD (Rispoli et al. [25], Rispoli and Saavedra [27]) shock-capturing operators.
For the FCT scheme, we follow the work of Santos et al. [28], in which the low-order formulation is
formed by adding a Rusanov-like scalar dissipation to standard Galerkin equations, and the high-order
system is composed by adding limited anti-diffusive fluxes to the low-order equations. Both approaches
use semi-discrete finite elements with suitable implicit time integration techniques. Also, time steps are
adaptively adjusted throughout the simulations under the same CFL condition.

Altogether, we seek to evaluate whether one of the examined numerical methods is more suitable to
solve the shallow water equations. To this end, we address some test problems and assess the accuracy
and stability of the obtained solutions. The remainder of this paper is organized as follows: in Section (2),
the adopted shallow water model is introduced, while Section (3) presents the numerical methods used
to solve its governing equations. Then, Section (4) shows and compares the numerical results obtained
with the stabilized and FCT approaches. At last, concluding remarks and suggestions for future works
are displayed at Section (5).

2 Physical model

A schematic representation of the adopted shallow water model is presented in Fig. 1. It depicts a
fluid with density ρ and height (or depth) h(x, y, t) that flows over an irregular terrain whose elevation
from a datum fixed at its lowest point is zb(x, y). Thus, this model could easily represent the flow of
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sea-water across the seabed.

Figure 1. Schematic representation of the adopted shallow water model. It shows a fluid with density ρ
and height/thickness h(x, y, t) that flows over a terrain whose elevation is zb(x, y).

The model’s unknown variables are UT = [h, hu, hv] = [h, qx, qy]. Here, qT = [qx, qy] is the
vector of the fluid’s specific discharges (or discharges per unit width) and uT = [u(x, y, t), v(x, y, t)] is
its depth-averaged velocity vector.

The system of equations that governs the flow can be written as a generalized convection-diffusion
equation:

∂U

∂t
+A∇U −∇ · [K∇U ] = S, (1)

where:

A =
[
A1A2

]
, ∇U =

I3 ∂/∂x
I3 ∂/∂y

U , (∇·) =

[
I3

∂

∂x
I3

∂

∂y

]
, (2)

A1 =


0 1 0

gh− u2 2u 0

−uv v u

 , A2 =


0 0 1

−uv v u

gh− v2 0 2v

 , S =


0

−g∂zb
∂x

h− γqx

−g∂zb
∂y

h− γqy

 , (3)

K =

K11 K12

K21 K22

 , K11 = K22 =
µ

ρ


0 0 0

0 1 0

0 0 1

 , K12 = K21 =


0 0 0

0 0 0

0 0 0

 , (4)

and I3 is the third-order identity matrix. Also, µ = 10−3Pa s is the fluid’s dynamic viscosity, ρ =
103kg m−3 is its density, g = 9.81 m s−2 is the gravitational acceleration and γ = Cf ||q||. Here,
Cf is the bed friction coefficient, defined by the Manning’s equation Cf = gn2h−7/3, where n =
0.018 sm−1/3 is the Manning coefficient.

Therefore, we consider the following initial value problem: given the closed domain Ω̄ ∈ R2 ×
[t0, t1], of interior region Ω and boundary Γ = Γe ∪ Γn, with Γe ∩ Γn = ∅, we solve (1) for U(x, t),
subject to the initial condition:

U(x, t0) = U0(x), (5)

and to the essential and natural boundary conditions:

U = G on Γe× ]t0, t1], (6)

K
∂U

∂xk
nk = (K∇U) · n = 0 on Γn× ]t0, t1], (7)

where n is the outward-pointing unit normal at the boundary. In Eq. (7), the diffusive flux across the
boundary Γn is null and thus all the flow across the boundary is advective. This is a common approach
in convective-diffusive physical models. Another possible boundary condition is the non-penetration
condition q · n = 0 on Γe× ]t0, t1].
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3 Numerical models

We present the finite element approaches employed to solve Eq. (1) numerically. Initially, we obtain
the variational formulation of the problem. In sequence, we introduce the employed stabilized and flux-
correct transport methods. Afterwards, we show how the time steps vary according to a CFL condition
and discuss how to avoid the numerical instabilities that might arise near the transition between wet and
dry regions as a flooding front advances on a terrain. Here all finite element related implementations
were assisted by the deal.II library (Bangerth et al. [29]) and its module for parallel computing.

3.1 Variational formulation

To determine the variational formulation of the problem, let the sets of finite-dimensional trial and
test functions be respectively defined as Sh = {Uh ∈ (H1h(Ω̄))3 | Uh = G on Γe} and Vh =
{W h ∈ (H1h(Ω̄))3 | W h = 0 on Γe}, where H1h(Ω̄) is the finite-dimensional first-order Hilbert
space, specified in the closed domain Ω̄. Then, employing the continuous Galerkin method, we consider
Uh = V N and W h = CN , where V contains the nodal values of the solution, C defines arbitrary
constants andN holds the finite element basis (or interpolation) functions. Next, we adopt the following
weak formulation:∫

Ω

(
W h

)T (∂Uh

∂t
+Ah∇Uh − Sh

)
dΩ +

∫
Ω

(
∇W h

)T (
K∇Uh

)
dΩ = 0, (8)

where the forms Ah and Sh indicate that their respective matrices should be computed based on Uh.
Then, with a suitable choice of the constants C, the semi-discrete system of governing equations can be
defined:

M
∂V

∂t
= −DV + F , (9)

whereM andD are generalized mass and stiffness matrices, and F is the source term. In this case:

M =

nel∑
e=1

∫
Ωe

NTN dΩe, F =

nel∑
e=1

∫
Ωe

NTSh dΩe, (10)

D =

nel∑
e=1

∫
Ωe

(
NTAh∇N + (∇N)TK∇N

)
dΩe, (11)

where Ωe, e = 1, ..., nel are the nel elements that comprise the domain Ω, with Ωi ∩ Ωj = ∅, ∀ (i, j).
It should be noted that D and F depend on V , which confers nonlinearity to the system. The discrete
problem specification is completed by considering discrete versions of the initial and boundary conditions
defined in Eqs. (5)-(7).

3.2 Stabilized method

The stabilized formulation is obtained by adding, to their respective counterparts in Eqs. (10) and
(11), the matrices:

MSUPG =

nel∑
e=1

∫
Ωe

(
τAh∇N

)T
N dΩe, F SUPG =

nel∑
e=1

∫
Ωe

(
τAh∇N

)T
Sh dΩe, (12)

DSUPG =

nel∑
e=1

∫
Ωe

(
τAh∇N

)T (
Ah∇N −K∇2N

)
dΩe, (13)

DShock =

nel∑
e=1

∫
Ωe

δ(∇N)T∇N dΩe. (14)

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



T. L. Santos, A. L. G. A. Coutinho

In this case, τ and δ are, respectively, the SUPG and shock-capturing operators’ coefficients.
The adopted SUPG technique was proposed by Tezduyar [23] and adapted by Takase et al. [24] to

the shallow water equations, being defined as:

τ =

(
1

(τSUGN1)2
+

1

(τSUGN2)2

)−1/2

, (15)

with:

τSUGN1 =

(nnpe∑
i=1

c|j · ∇Ni|+ |u · ∇Ni|

)−1

, τSUGN2 =
∆t

2
. (16)

Here, ∆t is the current time step, nnpe = 4 is the number of nodes per element, c =
√
gh is the

propagation speed of a perturbation on the surface, and j = ∇η/||∇η|| is the normalized gradient of the
free surface elevation η = h+ zb.

Moreover, we employ the shock-capturing operator proposed by Rispoli and Saavedra [27], but,
instead of just using the advective term, we take into account the residual of Eq. (1) without the transient
term. Its coefficient is defined as:

δ = δ91−MOD = max(0, δ91 − δτ ), (17)

with:

δ91 =

∥∥Rh
∥∥
Ã0

−1(∑2
j=1

∥∥∥∥ ∂ξj∂xk

∂Uh

∂xk

∥∥∥∥2

Ã0
−1

)1/2
, δτ =

∥∥Rh
∥∥
Ã0

−1
τ∥∥∥∥∂Uh

∂xk

∥∥∥∥2

Ã0
−1

, (18)

Rh = Ah∇Uh −K∇2Uh − Sh, (19)

where ξi, with i ∈ {1, 2}, are the canonical reference coordinates. For a vector v and a matrix M ,

the norm ||v||M = (vTMv)1/2 is employed. Also, τ = τI3 and Ã0
−1

is the inverse Jacobian of the
transformation from entropy to conservation variables. Hence, we consider the energy functional:

E =
gh2 + u2h+ v2h

2
, (20)

from which the entropy variables V and the matrix Ã0
−1

can be defined (Tadmor and Zhong [30]):

V =
∂E

∂U
=


gh− u2 + v2

2

u

v

 , Ã0
−1

=
∂V

∂U
=

1

h


gh+ u2 + v2 −u −v

−u 1 0

−v 0 1

 . (21)

From a simple analysis, it can be seen that Ã0
−1

is symmetric positive definite if h > 0, which should
be true by definition.

Another shock-capturing operator adopted is the Y Zβ (Rispoli et al. [25]), whose coefficient is:

δ =
δβ=1 + δβ=2

2
, (22)

with:

δβ = ||Y −1Z||

(
2∑
i=1

∥∥∥∥Y −1∂U
h

∂xi

∥∥∥∥2
)β/2−1

‖Y −1Uh‖1−β
(
hshoc

2

)β
, (23)
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Y =


(h)ref 0 0

0 (qx)ref 0

0 0 (qy)ref

 , Z = Ai
h∂U

h

∂xi
, hshoc = 2

(nnpe∑
a=1

|j ·Na|

)−1

. (24)

In this case, (h)ref, (qx)ref and (qy)ref are reference values for the variables h, qx and qy. Alternatively, it
could be used δ = δβ=1 or δ = δβ=2, for smoother or sharper shocks, respectively.

Following a semi-discrete approach, the nodal values are integrated over time using the predictor
multi-corrector algorithm introduced by Aliabadi and Tezduyar [31], which is summarized in Algorithm
1. The nonlinear correction iterations are stopped if the l2-norm of linear system’s residual is less than
TOL1 times its value at the first iteration, or the relative difference between its current and previous
values is less than TOL2. Here we set TOL1 = 10−4 and TOL2 = 10−6. Also, the number of iterations
is limited to 100. The linear system is solved with the iterative GMRes (Generalized Minimal Residual)
algorithm (Saad and Schultz [32]), using a Krylov space of dimension 35 and the ILU(0) preconditioner.

Algorithm 1 Predictor multi-corrector algorithm employed for the time integration in the stabilized
method. Here, A = ∂V /∂t, θ = 0.5 is a parameter that controls the stability and precision of the
method, and ∆t is the time step.
• Prediction phase:

1: A(0) = 0.
2: V (0) = V n + (1− θ)∆tAn.
• Correction phase:

3: for m = 0, 1, 2, ... until the convergence criteria is met, do:
4: R(m) = F (m) − (MA(m) +D(m)V (m)).
5: M∗ = M + θ∆tD(m).
6: SolveM∗(∆A(m)) = R(m).
7: A(m+1) = A(m) + ∆A(m).
8: V (m+1) = V (m) + θ∆t∆A(m).
9: end for.

3.3 FCT method

To define the FCT method, first, we use the generalized trapezoidal method to discretize Eq. (9) in
time, obtaining an initial high-order equation:(

M + θ∆tDn+1
)
V n+1 = (M − (1− θ)∆tDn)V n + ∆tF n+θ, (25)

where n and n+ 1 denote the current and next states, ∆t = tn+1 − tn is the time step, and θ = 0.5 is a
parameter that controls the stability and precision of the method.

Then, to establish the low-order method, we initially note that it should respect the positivity con-
straint, i.e., it should not produce nonphysical negative values. Here, the fluid height should never be
negative. Thus, we start by replacing the consistent mass matrix M in Eq. (9) by its diagonally lumped
versionML, computed as:

ML = diag{MLi}, MLi =
∑
j

M ij , ∀i, (26)

so we have:
MLi

∂V i

∂t
= −DijV j + F i , ∀i. (27)

To obey the positivity criterion that requires that V i ≥ 0,∀i,∀t > 0 if V 0i ≥ 0, ∀i; it is sufficient to
ascertain that:

MLi > 0, Dij ≤ 0, F i > 0, ∀i, ∀j 6= i. (28)
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Going back to Eq. (25), it can be written in the form:

AV n+1 = BV n. (29)

If we ensure that A is monotonic, then, by definition, V n+1 ≥ 0 if AV n+1 ≥ 0. So, we restrict A to
being a M-matrix, which is the subset of monotone matrices that satisfies:

Aii > 0, ∀i, (30)

Aij ≤ 0, ∀ i 6= j, (31)∑
j

Aij ≥ 0, ∀i. (32)

Therefore, assuming the conditions (28) hold, the scheme is positivity preserving if A meets the
requirements (30)-(32) and B does not have negative values. Next, we adjust the system matrices to
meet such conditions.

To start, we add artificial diffusion to D to remove its positive off-diagonal entries. Following
Guermond et al. [33] and Audusse et al. [34], let the hydrostatic reconstruction of the fluid’s height at
the i-th node in respect to the j-th one be:

hij = max(0, hi + zbi −max(zbi , zbj )). (33)

Then, the associated reconstructed nodal specific discharge vector is qij = hijui.
Now, we define L(V ) = D(V ) + C(V ), where C(V ) is the Rusanov-like scalar dissipation

matrix proposed by Santos et al. [28]:

Cij(V ) = −max(cij , cji)I3 , ∀ i 6= j,

Cii(V ) = −
∑
j 6=i
Cij , (34)

with:

cij = |eij · uj |+ |eij · qji|
√
ghji , eij =

∫
Ωe

Ni∇NjdΩe, (35)

where Ni is the basis function of the i-th node. Formed this way,C has zero block-wise row and column
sums, and thus, being a generalized diffusion operator, conserves mass. Also, note that L should obey
the condition Lij ≤ 0 ∀i, ∀j 6= i of the positivity criteria in Eq. (28).

In addition, following Santos et al. [28], a shock detector is used to add more diffusion near discon-
tinuities in detriment to where the solution is smooth. Consider ∆hij = hi−hj and the function sign(x)
that returns 1 if x ≥ 0 and −1, otherwise. Then, we define:

ψi =


|
∑

j∈S(i) sign(∆hij)(∆hij − c)4|∑
j∈S(i)(∆hij − c)4

, if
∑

j∈S(i)(∆hij − c)4 6= 0,

0, otherwise,
(36)

where c = 0.001 and S(i) is the set of the neighbouring nodes of i, which includes all those belonging
to the elements adjacent to i. Then, the matrices Cij are scaled:

Cij(V ) = −max(ψi, ψj) max(cij , cji)I3, ∀ i 6= j. (37)

As a result, the equation for the low-order scheme becomes:(
ML + θ∆tL(m)

)
V (m+1) = (ML − (1− θ)∆tLn)V n + ∆tF n+θ, (38)

which is solved iteratively using the same stopping criteria and linear system solver used with the stabi-
lized approach. After convergence, we assign V L = V (m+1).
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In sequence, as suggested by Hsu [35] and Kuzmin et al. [19], we linearize the source term about
V n+1 to prevent the positivity condition of being violated by a negative source term. We set:

F = FC + FPV
n+1, (39)

with FC i > 0 and FP i ≤ 0, ∀i. This splitting can be done with:

F = F+ +

(
F−

V (m)

)
V (m+1), (40)

where F+ and F− are, respectively, the positive and negative parts of the source term, i.e., FC = F+

andFP = F−/V (m). This separation is computed for each quadrature point contribution independently.
Therefore, the final low-order equation is:[
ML + θ∆t

(
L(m) − FP (m)I

)
− (1− θ)∆tFP nI

]
V (m+1) =

[ML − (1− θ)∆tLn]V n + θ∆tFC
(m) + (1− θ)∆tFCn, (41)

where I is the identity matrix. We remark that this linearization reinforces the requirements (30)-(32)
needed for positivity preservation since the terms added to the diagonal of the left-hand side matrix are
positive (−FP i ≥ 0). Besides, the contribuition of the source term to the right-hand side is compelled to
be positive (FC i > 0), meeting the criteria (28).

At last, to guarantee that the low-order scheme preserves positivity, the time steps still have to be
constrained. While the left-hand side of Eq. (41) meets the necessary criteria by construction, its right-
hand side requires that:

ML − (1− θ)∆tLn ≥ 0. (42)

Since all off-diagonal entries of Ln should already be non-positive, the actual time step constraint de-
pends on its diagonal:

∆t ≤ 1

1− θ
min
i

{
MLi

Lnii

∣∣∣∣Lnii > 0

}
. (43)

Although the high-order system is defined by Eq. (25), the high-order method is built by adding
the anti-diffusive fluxes F to the right-hand side of the low-order system (41), recovering the initial
high-order equation:[

ML + θ∆t
(
L(m) − FP (m)I

)
− (1− θ)∆tFP nI

]
V (m+1) =

[ML − (1− θ)∆tLn]V n + θ∆tFC
(m) + (1− θ)∆tFCn + F (m). (44)

Consequently, the anti-diffusive term should correspond to the difference between the high-order
Eq. (25) and the low-order Eq. (41), which results in:

F(V (m),V n) = (ML −M)
(
V (m) − V n

)
+ θ∆tC(m)V (m) + (1− θ)∆tCnV n. (45)

Because we use the diagonal lumped mass matrix and C has zero row sums, the anti-diffusive flux
can be written in terms of edge contributions:

F i =
∑
j∈S(i)

F ij , (46)

with:

F ij =
(
M ij − θ∆tC(m)

ij

)
(V

(m)
i − V (m)

j )−
(
M ij + (1− θ)∆tCn

ij

)
(V n

i − V n
j ). (47)

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



T. L. Santos, A. L. G. A. Coutinho

Next, we scale the edge contributions to adaptively switch between the low- and high- order meth-
ods:

F i =
∑
j∈S(i)

αijF ij . (48)

Here, the correction factors are computed using the Zalesak-type flux limiter used by Santos et al. [28],
in which the individual factors of the solution components (αhij ,α

qx
ij and α

qy
ij ) are synchronized into

αij = αhij . Thus, let Fhij be the anti-diffusive flux component related to h. Then, the correction factor is:

αij =

min
(
R+
i , R

−
j

)
, if Fhij > 0,

min
(
R−i , R

+
j

)
, otherwise,

(49)

with:

R+
i = min

(
1,
MLiQ

+
i

P+
i

)
, R−i = min

(
1,
MLiQ

−
i

P−i

)
, (50)

P+
i =

∑
j∈S(i)

max(0,Fhij), P−i =
∑
j∈S(i)

min(0,Fhij), (51)

Q+
i = max

[
0, max

j∈S(i)
(hji − hi)

]
, Q−i = min

[
0, min

j∈S(i)
(hji − hi)

]
. (52)

Besides, before the computation of the correction factors, the fluxes are prelimited using a minmod
strategy, as suggested by Kuzmin [22]. This is done to avoid the consistent mass matrix of reversing the
sign of F ij or increasing its magnitude:

F ij = minmod
[
F ij ,−θ∆tC(m)

ij

(
V

(m)
i − V (m)

j

)
− (1− θ)∆tCn

ij

(
V n
i − V n

j

)]
. (53)

By definition, the minmod function returns zero if the arguments have opposite signs, or the argument
with the smallest magnitude, otherwise. This test is performed individually for each flux component.

Lastly, to reduce the computational cost, we use V L as an approximation to V (m) - and, thus, to
V n+1 - when computing the fluxes and correction factors. Hence, they have to be computed only once
per time step. Nonetheless, the low-order solution must be obtained before solving Eq. (44). We present
a summary of the full FCT scheme in Algorithm 2.

Algorithm 2 Summary of the adopted FCT scheme.
1: Choose ∆t based on the CFL condition (55).
2: Compute the low-order solution V L.
3: if condition (43) is not met then choose new ∆t.
4: Compute the anti-diffusive fluxes F(V L,V n).
5: Prelimit the fluxes.
6: Compute the αij factors and limit the fluxes.
7: Compute the high-order solution V H and set V n+1 = V H .

3.4 Adaptive time stepping

Throughout the simulations, we constrain the time step to limit the maximum CFL number of an
element e, defined as:

CFLe =
(
|ue|+

√
ghe

) ∆t

le
, (54)
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where le is the element’s characteristic length, defined here as the square root of its area. Also, the speeds
|ue| and

√
ghe are evaluated at the element’s barycenter. Then, the related restriction is given by:

∆t ≤ CFL min
e

(
le

|ue|+
√
ghe

)
. (55)

For the simulations ran in this work, CFL = 0.5. Thus, as we march through time, we adaptively choose
time steps that comply with condition (55). Do note that the adopted FCT scheme further constrain the
time step to ensure positivity, choosing time steps that also obey the Eq. (43).

3.5 Dry/wet handling

In real-world applications of a shallow water model, it is often required to simulate the fluid flow
over an initially dry irregular domain. In these cases, it is fundamental that we properly handle the
transitions between dry and wet states as the flooding front advances across the terrain. Otherwise,
instabilities and nonphysical behaviours might arise near the dry/wet interface. So, initially, it conveys to
distinguish between wet and dry elements. We classify a node as being wet if its height h is greater than
the threshold hdry = 0.01 m. Then, an element is wet or dry according to whether it has only wet or dry
nodes. Otherwise, it is in a dry/wet front. This type of procedure is commonly applied to shallow water
models (Brufau and Garcı́a-Navarro [36], Ricchiuto and Bollermann [37], Kesserwani and Liang [38]).

Another frequent plan is to define a cut-off height value, under which point velocities are considered
null. Often this value is the same as the one used for the dry/wet element classification (Kesserwani and
Liang [38]). Based on the work of Ricchiuto and Bollermann [37], we adopt:

u =

{q
h
, if h ≥ Cu,

0, otherwise,
(56)

where Cu = l/Lref, with Lref = maxi,j∈Ω (‖xi − xj‖) and l is the characteristic length of the associated
element. In addition, to allow the method to accept negative height values, we assign h = ||h|| when
assembling the element contributions.

Besides, spurious velocities can arise near dry/wet fronts and violate mass conservation, as a result
of trying to simulate a continuous surface elevation on a discrete mesh. This is particularly important at
elements with adverse slopes. An element is said to have an adverse slope if it has a wet node i and a
dry node j, where zbj > zbi (Ricchiuto and Bollermann [37]). For fronts over flat or downward sloping
surfaces, the discrete equilibrium correctly induces the flow in the direction of the dry nodes. However, in
adverse slopes, the discrete linear finite element approximation causes the momentum balance to produce
spurious velocities downslope. This undesired behaviour can be avoided by the solution proposed by
Brufau and Garcı́a-Navarro [36], where the bed gradient is locally redefined to obey the equilibrium
condition ∇zb = −∇h. For an element with an adverse slope, the bed elevation of its dry nodes is
updated as:

zbdry = max
i is Wet

(zbi + hi). (57)

In our implementation, the corrections are made locally during each element’s matrix assembly opera-
tion.

Therefore, the adopted correction algorithm keeps the same discrete fluid volume and preserves the
mass and the steady-state as it avoids the creation of nonphysical velocities. For fronts propagating over
adverse slopes, we apply the same procedure. However, after each time step, to avoid some fluid quickly
jumping to a dry node, we nullify the solution discharges using the same cut-off condition used for the
velocities in Eq. (56).

Another aspect to be considered concerns how the friction term varies when h tends to zero. As
we use the Manning formula to compute the drag coefficient, it could become arbitrarily large and bring
numerical problems. Nonetheless, based on the approach of Heniche et al. [39] in which the bed friction
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is increased when h → 0 as a means to decrease and stabilize the flow, we linearly vary the Manning
coefficient at dry nodes: ndry = n[1 + β(hdry − h)], with β = 102.

At last, in the stabilized formulation, the previously defined SUPG and shock-capturing operators
are nullified when evaluating a dry quadrature point’s contribution.

4 Numerical results

In this section, numerical results of some test cases are presented, and comparisons are made with
analytical or literature available solutions. Also, when it is relevant to compute the mass/volume relative
error Verror, we use the expression:

Verror(t) =
V (t)− V (0)

V (0)
, (58)

where V (t) is the volume stored in the domain at the time t.

4.1 1D dam break

The first problem we solve is the 1D dam break configuration where, initially, two reservoirs con-
taining the same fluid are separated by a dam. One reservoir has fluid with depth h1, while, in the other,
the fluid height is h0, with h1 > h0. At a given time, the barrier is instantly removed. Thus, we calculate
the subsequent fluid flow. For this arrangement, Stoker [40] presents the analytical solution we use as a
reference. A schematic representation of the solution and the initial state of the problem can be seen in
Fig. 2.

(a) (b)

Figure 2. Schematic representations of the 1D dam break problem (a) and its analytical solution (b). The
numbers represent the different regions of the initial state and the analytical solution.

The exact solution can be divided into 4 regions. In the transition between regions 2 and 0, a
shock wave propagates to the right with speed ξ. Also, the fluid has zero velocity in regions 1 and 0
(u1 = u0 = 0 m s−1). Let the propagation speed of a perturbation on the surface of each region be
defined as ci =

√
ghi, with i = 0, 1, 2, 3. Then, the shock wave speed is obtained by solving the

nonlinear equation:

ξ

2
+
c2

0

8ξ

1 +

√
1 + 8

(
ξ

c0

)2
+

c2
0

2

√1 + 8

(
ξ

c0

)2

− 1

1/2

= c1 , (59)

and the result is used as an input to the exact solution computation.
In sequence, it is defined:

c2 = c0

1

2

√
1 + 8

(
ξ

c0

)2

− 1

2

1/2

, c3 =
1

3

(
2c1 −

x

t

)
, (60)
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u2 = ξ − c2
0

4ξ

1 +

√
1 + 8

(
ξ

c0

)2
 , u3 =

2

3

(
c1 +

x

t

)
, (61)

where t is the elapsed time since the dam’s removal. So, the coordinates of each transition between
regions can be defined as:

x13 = −c1t, x32 = (u2 − c2)t, x20 = ξt. (62)

Here we consider x ∈ [−50, 50] m, t ∈ [0, 10] s, h1 = 2 m and h0 = 1 m, and compute ξ =
4.183 128 m s−1. Simulation is performed on a 2D regular mesh with 302 × 4 rectangular elements
comprising a 100 m × 1 m area. Non-penetration boundary conditions are applied at the limits of the
numerical domain. Also, we consider a frictionless horizontal bottom. To compute the Y Zβ operator,
we set (h)ref = h1, (qx)ref = h1c1 and (qy)ref = 1010 m2 s−1.

Figure 3 presents the exact solution and the results obtained with the stabilized and FCT methods at
t = 7.5 s . We observe that the results obtained with the FCT scheme are in better consonance with the
analytical solution than the ones produced by the stabilized techniques that use the δ91−MOD and Y Zβ
shock-capturing operators.

(a) (b)

Figure 3. Exact and simulated solutions at t = 7.5 s of the 1D dam break problem. (a) Fluid height;
(b) Water velocity.

4.2 Transcritical flow with a shock

We simulate the steady-state solution of a transcritical flow that presents a hydraulic shock. Follow-
ing Delestre et al. [41], we neglect frictional forces and viscous stresses (µ = 0 Pa s). The simulation
domain is a 25 m× 5 m area whose bed elevation is:

zb(x) =

{
0.2− 0.05(x− 10)2, if 8 m < x < 12 m ,

0, otherwise.
(63)

The adopted boundary conditions are q(x = 0) = q0 = 0.18 m2 s−1 and h(x = L = 25) = hL =
0.33 m, while the initial state is q(x) = q0 and h(x) = hL. According to Delestre et al. [41], for this
configuration, the exact solution at the steady state can be computed by solving:

h(x)3 +

(
z(x)− q2

0

2ghc
− hc − zmax

)
h(x)2 +

q2
0

2g
= 0, ∀x ∈ [0, xshock), (64)

h(x)3 +

(
z(x)− q2

0

2ghL
− hL

)
h(x)2 +

q2
0

2g
= 0, ∀x ∈ (xshock, L], (65)

q2
0

(
1

h2
1

− 1

h2
2

)
+
g

2

(
h2

1 − h2
2

)
= 0, for x = xshock, (66)
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where hc = (q2
0/g)1/3 is the critical water level at the subcritical to supercritical transition, zmax = 0.2 m

is the maximum bed elevation. h1 = h−(x = xshock) and h2 = h+(x = xshock) are the water height
upstream and downstream of the shock. The shock position xshock can be obtained by solving Eq. (66).
For the present case, xshock ≈ 11.665 615 m and hc ≈ 0.148 922 m. Computation is performed on a mesh
with 200× 10 quadrangular elements. To compute the Y Zβ operator, we set (h)ref = hL and (qx)ref =
(qy)ref = 1010 m2 s−1. We also tested it with (h)ref = hL, (qx)ref = q0 and (qy)ref = 1010 m2 s−1, but
the obtained solution was too oscillatory.

A comparison between the analytical and simulated solutions can be seen in Fig. 4. We observe that
the use of the δ91−MOD operator produced an undesired oscillation to the left of the mound. In contrast,
the Y Zβ approach created a nonphysical peak at the downstream side of the shock. At last, the FCT
scheme generated the best results, which are in good agreement with the exact solution.

Figure 4. Exact and simulated water elevation (η = h + zb) solutions of the transcritical flow with a
shock problem.

4.3 Asymmetric dam break

We simulate the frictionless inviscid flow triggered by the instantaneous break of the dam separating
two reservoirs connected by a channel. The initial water height at each reservoir is h1 = 10 m and
h2 = 5 m. Here, we run the simulations up to t = 7.2 s. Also, we enforce non-penetration boundary
conditions. A diagram of the domain’s geometry, dam’s placement and the initial fluid height distribution
can be seen in Fig. 5a. Plus, Fig. 5b depicts a detailed view of the employed 13488-element mesh and the
initial water heights near the dam. To compute the Y Zβ operator, let h2 = 7.27 m and u2 = 2.92 m s−1

be the fluid height and velocity at the region 2 of the 1D dam break problem that has an initial fluid
height distribution analogue to the present 2D case. Then, we set (h)ref = h2, (qx)ref = h2u2 and
(qy)ref = 1010 m2 s−1.

Figure 6 shows the final water height distribution with 40 contours between h = 5 m and h = 10 m.
We observe that both stabilized formulations produced undesired water height perturbations past the
wavefront in the right-most reservoir, where the water surface should be flat, as reproduced by the FCT
scheme. Figure 7 compares our results with the solutions obtained by Ricchiuto et al. [42] and Ricchiuto
[43]. In general, our results are in sound agreement with these reference solutions, even considering the
3D views and contours presented in their respective papers. Among the tested approaches, the one with
the Y Zβ operator produced a smoother profile, and the FCT scheme created the sharpest. Throughout
the simulations, the stabilized methods’ volume errors remained under 10−13, while the FCT’s volume
error stayed under 10−9. All in all, we remark that the FCT technique produced better results as it did
not create spurious perturbations in regions where the shock wave still had not arrived, and the obtained
height profiles are closer to the reference solutions.
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(a) (b)

Figure 5. Initial configuration of the asymmetric dam break problem. (a) Domain’s geometry and initial
fluid height distribution; (b) Detail of the mesh and the initial water heights near the dam.

Figure 6. 3D and map views of the water surface with height contours obtained at t = 7.2 s of the
asymmetric dam break problem. The ones with the green and blue borders were computed with the
stabilized approach using, respectively, the δ91−MOD and Y Zβ shock-capturing operators. Those with
the red borders are outcomes of the FCT scheme.

4.4 Dam break over a channel with bumps

We simulate the flow generated by a dam break over an initially dry bed that presents three bumps.
This problem was introduced by Kawahara and Umetsu [44], being later revisited by Brufau and Garcı́a-
Navarro [36], and Liang and Borthwick [45]. The initial dam encloses a reservoir 16 m long that contains
water 1.875 m deep. Here, the 75 m × 30 m domain is discretized with 1 m2 elements. Also, non-
penetration boundary conditions are enforced during the simulations carried out until t = 300 s. As

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



T. L. Santos, A. L. G. A. Coutinho

(a) (b)

Figure 7. Computed and reference solutions for the asymmetric dam break problem plotted along two
sections at t = 7.2 s. In (a), the reference is the result of Ricchiuto [43] at y = 132 m. In (b), the
reference is the solution of Ricchiuto et al. [42] at y = 160 m.

employed by Liang and Borthwick [45], the bed elevation is defined by:

zb(x, y) = max

[
0, 1− 1

8

√
(x− 30)2 + (y − 6)2 , 1− 1

8

√
(x− 30)2 + (y − 24)2,

3− 3

10

√
(x− 47.5)2 + (y − 15)2

]
. (67)

To compute the Y Zβ operator, we set (h)ref = 1.875 m and (qx)ref = (qy)ref = 1010 m2 s−1. A 3D view
of the problem’s initial state can be seen in Fig. 8a. Figure 8b depicts the simulation mesh and the initial
water surface elevation (η = zb + h).

(a) (b)

Figure 8. 3D view of the initial state (a) and 2D map of the simulation mesh (b) of the dam break over a
channel with bumps problem.

Results obtained at key simulation times are presented in Fig. 9, while Fig. 10 shows free surface
profiles computed along a section at y = 15 m and t = 300 s. After the dam release, the flooding front
advances and covers the small mounds, generating a reflection wave upstream. At t = 12 s, the initial
wave is being reflected by the highest mound, creating another upstream-directed wave. Meanwhile,
some of the incoming fluid goes downstream around the mound following the top and bottom walls. By
t = 30 s, the reflection of the first wave on the right wall is climbing the largest bump from its right
side. Then, at t = 300 s, after a series of reflections and dry/wet transitions, all bumps are left partially
submerged, and the water surface remains flat.

In general, the results achieved with the Y Zβ and FCT techniques are in better agreement with the
works of Liang and Borthwick [45] and Guermond et al. [33]. At t = 12 s, among the tested approaches,
the FCT scheme produced the sharpest water surface, as can be seen by the larger maximum fluid height
and the more detailed fringes that spread downstream along the top and bottom walls. At t = 30 s, we
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(a) t = 12 s

(b) t = 30 s

(c) t = 300 s

Figure 9. Map views of the obtained water heights at key simulation times of the dam break over a
channel with bumps problem. The green and blue borders indicate results computed with the stabilized
approach using, respectively, the δ91−MOD and Y Zβ shock-capturing operators. The maps with red
borders are outcomes of the FCT scheme.

observe that the FCT scheme presented some ripples to the left of the mounds, while the other methods’
surfaces are flat. By the end of the simulation, the solution of the δ91−MOD technique has fluid in all
the domain, and the Y Zβ formulation has made some fluid go up the highest bump, creating negative
fluid heights at a few points. In this case, the FCT method best represented the dry and wet regions and
their transitions. This can be seen in Fig. 9c by the water height distribution near and at the bumps’
regions, and the water surface profile in Fig. 10. In terms of the volume error, the δ91−MOD and FCT
approaches presented similar errors of the order of 10−10, while the Y Zβ technique showed an error of
the order of 10−2.

(a) (b)

Figure 10. Water surface elevation along a section at y = 15 m and t = 300 s (a) and detail of the free
surface near the highest bump (b) of the dam break over a channel with bumps problem.
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5 Conclusion

We examined the use of two finite element approaches to solve the shallow water equations. The
first one is a stabilized method built by adding Streamline Upwind Petrov-Galerkin and shock-capturing
terms to the Galerkin formulation. From the operators studied by Santos and Coutinho [18], we adopted
the SUPG operator presented by Takase et al. [24] and the Y Zβ (Rispoli et al. [25]) and δ91−MOD

(Rispoli and Saavedra [27]) shock-capturing operators. In this case, time integration is performed with
a predictor multi-corrector algorithm. The second technique is the flux-corrected transport scheme in-
troduced by Santos et al. [28]. Here, the low-order formulation is created by adding a Rusanov-like
scalar dissipation scaled by a shock-capturing operator to standard Galerkin equations. Meanwhile, its
high-order system is composed by summing, to the low-order one, limited anti-diffusive fluxes linearized
around the low-order solution. Limiting is performed with a Zalesak flux limiter that considers the hydro-
static reconstruction of the fluid’s height, together with a minmod prelimiter. Here, an iterative nonlinear
implicit time integration scheme is employed.

With both techniques, as the fluid height tends to zero, velocities are desingularized using a cut-off
value based on the local ratio between element and mesh sizes. Also, the bed elevation at dry nodes
is corrected to avoid unnatural dynamics due to the discretization of the fluid and bed surfaces, and we
linearly vary the bed friction near the bed to help stabilize the flow. Besides, time steps are adaptively
updated throughout the simulation to enforce a maximum CFL constraint. Also, in this work, all imple-
mentations related to these finite element techniques were aided by the deal.II library (Bangerth et al.
[29]).

We evaluated their performance in several test problems and found that the FCT scheme is more ro-
bust, presenting good results in all the cases tested. Regarding the stabilized method, the Y Zβ technique
also produced plausible results. However, its usage requires some tweaking with the reference values
for the variables h, qx and qy. We remark that the perturbations it created past the advancing wavefront
in Section 4.3 might have a greater impact on simulations with dry and wet cells. For the example in
Section 4.4, it made some fluid go up the larger bump and produced negative height values at some dry
points. Thus, this method might be unsuitable to regions with more irregular terrains and more complex
flow dynamics.

As future work, we suggest the evaluation of other stabilized and flux-corrected transport ap-
proaches, such as those presented by Ortiz [46] and Castro [14], possibly coupled with different dry/wet
handling procedures, like the one proposed by Barros et al. [47]. Besides, other finite element techniques
could be evaluated, such as residual distribution schemes (Ricchiuto [43]), a characteristic-based split
(CBS) method (Ortiz et al. [48]), or even discontinuous Galerkin techniques (Gandham et al. [49]). Plus,
we can perform an analysis regarding the effect of different mesh sizes on the simulation, which could
also include adaptive mesh refinement and coarsening.

At last, the studied methods should be applied to real-world scenarios, where the terrain is uneven
and the flow may pass from subcritical to supercritical (and vice-versa) in different portions of the do-
main. In these cases, the implementation of absorbing boundary conditions (Paz et al. [50]) might be
necessary, especially if different parts of the boundary switch between inlet/outlet or subcritical/super-
critical states during the simulation.
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