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Abstract. Numerous engineering problems require an enormous computational effort to solve large
sparse linear systems with matrices resulting of finite element discretizations. Parallel computing of
GMRES or other Krylov subspace-based method combined with a good preconditioner is an excellent
option to fulfill this role. Mostelly, the two main operations of Krylov subspace methods, the inner
and the matrix-vector products, demand less memory consumption and present better parallelism when
compared with the main operations of the traditional direct solvers. Global storage allows the use of
block Jacobi preconditioners based on incomplete LU factorization. In contrast, local storage schemes
provide preconditioners performed at the element level factorizations (e.g., the local LU, the local Gauss-
Seidel and the diagonal or the block-diagonal schemes). In this work, we present a trade-off analysis
between global and local preconditioners for parallel finite element implementations. In the context of a
specific domain decomposition approach, we evaluate the preconditioners according to memory usage,
load balancing and MPI communication. Robustness and scalability of these parallel preconditioning
strategies are demonstrated for two benchmark cases: the rotating cone modeled by the transient transport
equation, and the explosion problem modeled by the Euler equations. All experiments point out the
supremacy of the global preconditioners, and the local preconditioners dependence on the number of
degrees of freedom per node.
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1 Introduction

In practical applications, it is mandatory to exploit parallelism in combination with suitable solution
techniques to solve very large and sparse systems arising from finite element discretizations [1]. They
can be solved by either sparse direct solvers or by iterative methods. In the last decates, clever variations
of Gauss elimination have been tuned to perfection by finding strategies for reducing the bandwidth of
matrices to guarantee stable LU decompositions and small fill-in in the triangular factors of the elimi-
nation [2]. On the other hand, today the iterative methods that are applied for solving large-scale linear
systems are mostly preconditioned Krylov subspace solvers. Any of them may be a good option if it
converges after only a few iterations [3]. That might be the case if a good preconditioner is applied.
So, many efforts have been made to achieve this goal. Preconditioned Krylov space methods for solving
large sparse systems have the special feature that the matrix needs only be given as an operator: one must
be able to compute matrix-vector products. This operation include the application of a preconditioner,
which also requires the solution of a large linear system. In this context, the Generalized Minimal Resid-
ual (GMRES) [4] method has become a suitable option since the two main operations of Krylov subspace
methods, the inner and the matrix-vector products, demand less memory consumption and present better
parallelism when compared with the main operations of the traditional direct solvers. The great ques-
tion to ask is whether or not it is possible to find preconditioning techniques that have a high degree of
parallelism as well good intrinsic qualities [5].

Manguoglu et al. [6] showed that global preconditioners based on narrowband linear systems [7],
such as SPIKE [8], present robustness and scalability. In our work [9], we suggested an alternative ar-
rangement to use SPIKE that avoids excessive overhead and allows solving finite element applications
indeed in parallel, applying combinatorial techniques just once and in the beginning of the process.
After the proper preprocessing is established, we always work in parallel, from reading finite element
data, through the resolution of linear systems using preconditioners to post-processing. We also estab-
lished a domain decomposition that provides scalability and better convergence properties [9, 10]. For
finite element problems, our domain decomposition for narrowband systems [9] enables, with minimal
adjustments, parallelization of global ILU preconditioners based on Compressed Storage Row (CSR)
format [5] and local preconditioners based on element-by-element (EBE) storage. However, we need
combinatorial techniques to preprocess the original finite element linear systems that are not narrow-
band. In our work [10], several combinatorial techniques using SPIKE preconditioner are analyzed.
Based on this work, we selected the reverse Cuthill-McKee (RCM) [11] reordering method to obtain the
narrowband system in the preprocessing finite element model preparation.

The objective of this work is to present a trade-off analysis between global and local precondition-
ers for parallel finite element implementations. In our previous work [12], the efficiency of sequential
local preconditioners for 2D finite element transport and Euler problems were presented for different
types of data structures. We compared them with the most common sequential incomplete LU factor-
ization, that is, the well-known ILUp [13], where p represents the number of fill-in levels admitted.
Here, outstanding parallel versions of element-by-element representatives proposed by Muller et al. [12]
are provided for transport equation: a diagonal preconditioner (DIAGe), an LU -factorization precon-
ditioner (LUe) and a Gauss-Seidel preconditioner (SGSe); and for Euler Equations: a block diagonal
preconditioner (BlockDIAGe), a block LU -factorization preconditioner (BlockLUe) and a block Gauss-
Seidel preconditioner (BlockSGSe). The goal is to compare them with a parallel global block Jacobi
preconditioner based on incomplete LU factorization in CSR format. All global and local preconditioner
versions are adapted to the same domain decomposition context used in our global parallel precondi-
tioner SPIKE [9, 10]. The remainder of this text is organized as follows. Section 2 briefly describes the
finite element formulations and time advance algorithm. The global and local parallel preconditioners
are addressed in Section 3. Numerical experiments and conclusions are presented in Sections 4 and 5,
respectively.
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2 Finite Element Formulations and Time Advance Algorithm

Let us consider two class of problems characterized by the transport and Euler equations. Trans-
port equation describes quantities to be transported, for example, temperature and concentration. Euler
equations represent a system of conservative laws governed by inviscid compressible flows. To obtain
the finite element discretization, we consider Th a set of triangular partitions of the domain Ω into nel
elements such that

Th = {Ωe |Ω = ∪nele=1Ωe, Ωi ∩ Ωj = ∅, i 6= j, i, j = 1, . . . , nel}. (1)

After the discretization of the governing equations in space, the resulting time discrete equations are
solved using a predictor-multi-corrector algorithm. The details of both transport and Euler finite element
stabilized formulations are shown in the next two sub-sections. Later, the time advancing strategy used
on both equations is presented.

2.1 Transport Equation

The transport equation may be expressed by

∂u

∂t
−∇ · (κ∇u) + β · ∇u+ σu = f, in Ω× (0, tf ),

u = g, on Γ× (0, tf ), (2)

u(x, 0) = u0(x), in Ω,

where the functions g(x, t) and u0(x) = u(x, 0) are the boundary and initial conditions, respectively.
The variables are described as follows: u is the quantity being transported; Ω ⊂ R2 is the domain of the
problem and Γ = ∂Ω is its boundary; tf > 0 is the final time; κ represents the diffusivity tensor; β is
the velocity field, given by β = (βx, βy); σ is the reaction coefficient; and f represents the source term.
Also, consider the two finite element spaces, Vh (trial) and Sh (weighting), defined by

Vh = {vh ∈ H1
0 | v|Ωe ∈ P1(Ωe), ∀Ωe ∈ Th and v|ΓD = 0},

Sh = {uh = uh(·, t) ∈ H1 | t ∈ [0, tf ], uh(x, t) = g,∀x ∈ Γ},

where P1(Ωe) is the set of first order polynomial functions, defined in Ωe, and ΓD is the Dirichlet part of
the boundary. Thereby, the finite element stabilized formulation reads: given g and f , find u ∈ Sh such
that, for all vh ∈ Vh,∫

Ω

(
vh
∂uh
∂t

+ κ∇uh∇vh + (β · ∇uh) vh + σuhvh

)
dΩ +

nel∑
e=1

∫
Ωe

R(uh) τ β · ∇vh dΩe +

nel∑
e=1

∫
Ωe

∇vh δ∇uh dΩe =

∫
Ω
fvh dΩ +

∫
Γ
gvh ds, (3)

where R(uh) is the residual of Eq. (2), defined by

R(uh) =
∂uh
∂t

+ κ∇uh + (β · ∇uh) + σuh − f,

τ is the stabilization parameter for SUPG [14] and δ is the discontinuity-capturing operator YZβ [15].
The SUPG parameter is given as follows

τ =
hξ

2||β ||∞
, with ξ = max

{
0, 1− 1

Pe

}
and Pe =

||β ||∞h
2κ

(Peclet number).
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The discontinuity-capturing operator YZβ is defined as δ = δI , where

δ = |Y −1R|
(

d∑
i=1

∣∣∣∣Y −1∂uh
∂xi

∣∣∣∣2
)β

2
−1(

h̃

2

)β
,

with

h̃ = 2

(
nel∑
a=1

|j · ∇Na|
)−1

and j =
∇uh
|| ∇uh ||

,

and Y = uref is the reference value of the scalar field uh [16].

2.2 Euler Equations

The Euler equations model a system of conservation laws governing inviscid compressible flows.
For two-dimensional domains, the conservative form of the Euler equations with no source terms in given
by

∂U

∂t
+
∂Fx
∂x

+
∂Fy
∂y

= 0, on Ω× [0, tf ], (4)

where U = (ρ, ρvx, ρvy, ρe), ρ is the fluid density, v = (vx, vy)
T is the velocity field, e represents the

total energy per unit mass, Fx and Fy represents the Euler fluxes. Another way to represent the Euler
equations is to write Eq. (4) in terms of the Jacobian matrices Ax = ∂Fx

∂U and Ax =
∂Fy
∂U . Thus,

∂U

∂t
+ Ax

∂U

∂x
+ Ay

∂U

∂x
= 0. (5)

We consider the following boundary conditions associated with Eq. (5)

BU = G, on Γ× [0, tf ],

U(x, 0) = U0, on Ω,

with given G = (g1(t), g2(t), g3(t), g4(t))T , U0 and a general boundary condition operator B.
Now, consider the following two new finite dimensional spaces Sh and Vh given by

Sh =
{
Uh |Uh ∈ [H1h(Ω)]4, Uh|Ωe ∈ [P1(Ωe)]

4, Uh · ek = gk(t) on Γgk

}
,

Vh =
{
Wh |Wh ∈ [H1h(Ω)]4, Wh|Ωe ∈ [P1(Ωe)]

4, Wh · ek = 0 on Γgk

}
,

where k = 1, . . . , 4 and H1h(Ω) ⊂ C0(Ω) is the finite dimensional function space over Ω. The Euler
finite element stabilized formulation is: find Uh ∈ Sh such that, for all Wh ∈ Vh∫

Ω
Wh ·

(
∂Uh

∂t
+ Ah

x

∂Uh

∂x
+ Ah

y

∂Uh

∂y

)
dΩ +

nel∑
e=1

∫
Ωe

τAh
i

(
∂Wh

∂xi

)
·R(Uh) dΩ +

nel∑
e=1

∫
Ωe

δ

(
∂Wh

∂x

∂Uh

∂x
+
∂Wh

∂y

∂Uh

∂y

)
dΩ = 0, i = 1, 2, (6)

where R(Uh) is the residual vector, as

R(Uh) =
∂Uh

∂t
+ Ah

x

∂Uh

∂x
+ Ah

y

∂Uh

∂y
,
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and the associated SUPG stabilized parameter is given by τ = τI such that

τ = max {0, τt + ζ(τa − τδ)} ,

with

ζ =
2αCFL

1 + 2αCFL
, τt =

2

3(1 + 2αCFL)
τa, τa =

h

2(c+ |vβ |) , τδ =
δ

(c+ |vβ |)2
. (7)

The CFL parameter corresponds to the Courant-Friedrichs-Levy number, and it is defined here as

CFL =
(c+ |vβ |)∆t

h
, with β =

∇||U ||22
|| ∇||U ||22 ||2

.

In Eq. (7), c represents the acoustic speed, h is the mesh parameter, α controls stability and accu-
racy of the time-marching scheme and δ is the discontinuity-capturing parameter. In Eq.(6), δ is the
discontinuity-capturing operator YZβ given by δ = δI such that

δ = ||Y−1R(Uh) ||
(

d∑
i=1

∣∣∣∣∣∣∣∣Y−1∂U
h

∂xi

∣∣∣∣∣∣∣∣2
)β

2
−1 ∣∣∣∣∣∣Y−1Uh

∣∣∣∣∣∣1−β ( h̃
2

)
,

where Y is the following matrix

Y =


U1|ref 0 0 0

0 U2|ref 0 0

0 0 U3|ref 0

0 0 0 U4|ref

 ,

and Ui|ref , i = 1, · · · , 4, are the reference values for U [16].

2.3 Predictor-multi-corrector

The spatial discretization of the variational formulations, Eq. (3) for transport and Eq. (6) for
Euler, lead to a set of coupled non-linear ordinary differential equations, that can be represented by
Ma + C(v) = F, where v is the vector of nodal values of u for transport (or U for Euler), and a is
the time derivative of v. Here, M, C(v) and F are the resulting finite element spatial discretization
structures, with the residual vector defined as R = F−Ma−Cv. To perform the time advancing, we
adapted the implicit predictor-multi-corrector algorithm presented in [17] to our parallel approach (see
Algorithm 1). Basically, there is a main loop to advance in time, a prediction phase and inner multi-
correction loops performed on each partition i. In the algorithm, the superscripts n and j are related to
time and multi-corrector counters, respectively. Lines of MPI syncronizations with the parallel opera-
tions are highlighted. For each multi-correction, finite element matrices are calculated and assembled,
preconditioners are set up (see Section 3), and a GMRES solutions are required. Besides, scaling ope-
rations are performed just for LU and Gauss-Seidel local preconditioners (see Subsection 3.2). More
details can be found in [18].

3 Finite Element Preconditioning

The main idea behind a good preconditioner is to obtain an appropriate matrix M such that M−1A
is well-conditioned [5], where A is the coefficient matrix resulting from the finite element formulation.
Theoretically, the best choice for M is A, but to find A−1 is harder than to solve the system AX = F . In
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Algorithm 1 Parallel predictor-multi-corrector.
do

Predictor phase:
j ← 0
vn+1,0
i ← vni + (1− λ)∆tani
an+1,0
i ← 0

Multi-corrector phase:
do

MPI Update of vn,ji

MPI Update of an,ji

Calculation and assembly of matrix M∗i = M + λ∆tC and vector Rn,j
i from each elementary Ae

Scaling of matrix M∗i and vector Rn,j
i

Setup of the preconditioner
Solve M∗i ∆ai = Rn,j

i using the parallel preconditioned GMRES
vn,j+1
i ← vn,ji + λ∆t∆ai
an,j+1
i ← an,ji + ∆ai

Apply the parallel inner product to obtain the norm |an,ji |
Apply the parallel inner product to obtain the norm |∆ai|
j ← j + 1

while (j < jMAX .AND. |∆a|
|a| > tol)

tn+1 ← tn + ∆t
while (tn ≤ tfinal)

practice, instead of determining M−1 explicitly, the preconditioning is defined from matrix-vector prod-
ucts and through resolution of simple linear systems involving M . Since all preconditioners considered
here are conceived from our parallel version of SPIKE [10], a preprocessing of the coefficient matrix
should be employed, transforming the original sparse matrix A into a banded matrix.

For all parallel preconditioners, we use the Reverse Cuthill-McKee (RCM) reordering scheme as a
preprocessing stage to obtain the banded matrix A. They promote a suitable matrix rearrangement such
that a chosen central band produces a good preconditioner for Krylov iterative methods. Nevertheless,
for problems whose assembly and reassembly of the finite element matrices are numerous, such modi-
fications can become almost infeasible to the parallel processing due to computational demand. Thus,
still in the preprocess, we use a suitable domain decomposition assuring all phases of the parallel finite
element computation occurs indeed in parallel [9]: from the finite element data mesh reading through the
finite element matrices assembling to the preconditioned linear system solutions.

We established a domain decomposition that provides better scalability and convergence properties.
That is, the banded matrix A is divided as shown in Eq. (8), with diagonal blocks Ai (i = 1, 2, ..., p) and
coupling blocks Bi (i = 1, 2, · · · , p − 1) and Ci (i = 2, ..., p), where p is the number of partitions. In
general, the preconditioning matrix M is formed using these blocks or sub-matrices of them in different
ways, and their construction depend on the data structure used.

AX =



A1 B1

C2 A2 B2

. . . . . . . . .

Cp−1 Ap−1 Bp−1

Cp Ap





X1

X2

...

Xp−1

Xp


=



F1

F2

...

Fp−1

Fp


= F (8)

This partitioning step needs to balance the work-load among processors and should reduce the commu-
nication costs. An outstanding option is to consider the well known chains-on-chains partitioning [19],
together with the MinMax algorithm [20]. In summary, the domain decomposition preprocessing stage
is defined by the RCM reordering and by the partitioning algorithms (graphic manipuation stages), all
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performed before any calculations related to the finite element formulations. We emphasize that this
form of domain decomposition is assured whenever the RCM algorithm can reduce the bandwidth of the
finite element matrices. Unfortunately, if the RCM algorithm fails, the technique cannot be employed.

Once the domain decomposition preprocess is completed, the narrowband linear system format
is adapted to the context of parallel computing in combination with global preconditioners based on
Compressed Storage Row (CSR) [5] format or local preconditioners based on element-by-element (EBE)
structures [17]. In the most of cases, we consider left preconditioners, only the local Gauss-Seidel
preconditioner is a split preconditioner. We point out that the action of all global and local parallel
preconditioners is on the matrix-vector products.

3.1 Global Preconditining

One of the most genuine forms to define a preconditioner using CSR storage is to perform the
Incomplete LU factorization (ILU) of the original matrix A. We choose to apply the most common
sequential incomplete LU factorization, that is, the well-known ILUp [13], where p represents the number
of fill-in levels admitted. For each partition i, we neglect the coupling blocks, Bi and Ci, and consider
only the sequential ILU factorization of the block Ai (see Eq. 8), as

Ai ≈ L̃iŨi (9)

where for each partition i the matrix Mi = L̃iŨi and the factors L̃i and Ũi consider p fill-in levels. This
kind of preconditioner is identified as a parallel block Jacobi approach [5], and the factor L̃i and Ũi are
assembled by CSR storage.

For a long time, ILU preconditioners were widely believed to be ill-suited for implementation on
parallel computers with more than a few processors. The reason is that the Gaussian elimination, on
which ILU techniques are based, offers limited scope for parallelization. However, a series of excellent
works about parallel ILU factorizations presented in [3] motivated our parallel domain decomposition
version of the ILU preconditioner.

3.2 Local Preconditioning

On the other hand, it is well known that local preconditioners consumed less memory than global
preconditioners. Even more, for finite element applications, assembling the entire global matrix can
be costly. In this case, the preconditioners construction would be at the element level [21]. Such
as in [12], we proposed versions of well known sequential element-by-element preconditioners, as: a
diagonal based preconditioners (DIAGe and BlockDIAGe), Gauss-Seidel preconditioners (SGSe and
BlockSGSe), and LU factorization preconditioners (LUe and BlockLUe). Prefix “Block” means that the
preconditioner was designed for problems with more than one degree of freedom per node. Suffix “e”,
in turn, denotes that the preconditioner is stored in element-by-element format.

The local preconditioners are based on an abstraction to represent the relations between the local
matrices Ae within a partition i, that is,

A =

p⋃
i=1

A
EBE

i with A
EBE

i =
neli

A
e=1

Ae (10)

where, for a specific partition i, A
EBE

i is a substitute structure for blocks Ci, Ai, and Bi from Eq. (8); Ae

is an elementary finite element matrix of size ndof × 3 since our formulation admitted only triangular
linear elements; ndof is the degrees of freedom per node and neli is the number of elements of the

partition i. In practice, operator A is just symbolic, since this assembly is never performed when the
element-by-element storage scheme is used.

Due to the local preconditioners are based on the diagonal (or block diagonal for problems with
ndof > 1) of local matrices Ae, a scaling is used as a pre-preconditioner to normalize the coefficients
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of A by its diagonal coefficients (or block diagonal). The original system defined in Eq. (8) may be
rewritten as ÃX = F̃ in which

Ã =

p⋃
i=1

Ã
EBE

i with Ã
EBE

i =
neli

A
e=1

Ãe (11)

and

F̃ =

p⋃
i=1

F̃
EBE

i with F̃
EBE

i =
neli

A
e=1

F̃ e, (12)

where Ãe and F̃ e are local scaling of Ae and F e:

Ãe =


A−1
I Ae11 A−1

I Ae12 A−1
I Ae13

A−1
J Ae21 A−1

J Ae22 A−1
J Ae23

A−1
K Ae31 A−1

K Ae32 A−1
K Ae33

 (13)

and

F̃ e =


A−1
I F e1

A−1
J F e2

A−1
K F e3

 , (14)

with Ae11, Ae12, Ae13, Ae21, Ae22, Ae31, Ae32, and Ae33 block matrices of dimension ndof × ndof for each
element matrix Ae. The submatrices AI , AJ , and AK have dimension ndof × ndof but represent the
global block matrices according to the number of degrees of freedom of the global nodes I , J , and K,
respectively. F e1 , F e2 , and F e3 , in turn, are blocks of dimension ndof×1 for each element vector F e. The
inverse of each global block matrix AI , with 1 ≤ I ≤ nnodesi (nnodesi defines the number of nodes in
a partition i of the mesh), is calculated explicitly.

REMARK 1: The scaling (or block-scaling) is proposed with exactly 3 subgroups because only trian-
gular linear elements are considered in our finite element formulations.

REMARK 2: To obtain a block AI , all the contributions of the element matrices that have node I as a
common node are added. For example, if a node I is surrounded by 6 elements, the contributions of these
6 element matrices must be considered to compute the block AI . For simplicity, consider a problem with
one degree of freedom per node. In this case, AI would be a real number represented by the sum of all
coefficients of the element matrices that are related to the node I . In the general case, when ndof > 1,
AI will be a matrix block of dimension ndof× ndof.

REMARK 3: After to calculate the inverse of the block AI , it is necessary to check if some row of AI
– or degree of freedom – is associated with Dirichlet boundary conditions. In the affirmative case, the
corresponding row and column of A−1

I should be set with the row and column of the equivalent identity
matrix.

DIAGe and BlockDIAGe Preconditioners

The numerical results of the DIAGe and BlockDIAGe preconditioners are equivalent to the scaling
processes, as described in Eqs. (11) and (12). That is, such preconditioners are basically a simulation of
a scaling. There are two possibilities to perform this issue:

(i) DIAGe and BlockDIAGe are executed just once as a scaling described in Eqs. (11) and (12),
exactly to perform the GMRES algorithm on the linear system AX = F ;
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(ii) DIAGe and BlockDIAGe are not executed as described in Eqs. (11) and (12). Instead that, after
each matrix-vector product, we perform some convenient scalar multiplications on each resulting
vector. The effective preconditioning is a simple multiplication of the diagonal (or block diagonal)
over the vector resulting from matrix-vector product.

Despite the preconditioners need to be applied for every iteration when a matrix-vector product is re-
quired, the runtime of the DIAGe or BlockDIAGe for the second possibility is smaller when compared
to diagonal (or block diagonal) scalings presented by the first possibility. Thus, these preconditioners are
set according to the second possibility described. Moreover, these are the only two local preconditioners
tested here that need to be assembled for each node.

LUe and BlockLUe Preconditioners

Let Āe be an approximation of each element matrix Ãe:

Āe =


Indof Ae12 Ae13

Ae21 Indof Ae23

Ae31 Ae32 Indof

 , (15)

where Aemn, with 1 ≤ m,n ≤ 3, are block matrices of dimension ndof× ndof for each element matrix
Ãe and Indof is the identity matrix of order ndof. Preconditioners LUe and BlockLUe are defined simply
as LU decompositions of Āe in element level. The preconditioning matrix Mi can be defined as

Mi =
neli

A
e=1

Āe =
neli

A
e=1

LeU e. (16)

For each matrix-vector pi = M−1
i Ã

EBE

i vi, with Ã
EBE

i defined as in the Eq. (11), preconditioners LUe
and BlockLUe are applied following two main steps:

Step 1: Perform the matrix-vector product zi = Ã
EBE

i vi;

Step 2: Calculate the lower and upper triangular systems from pi = M−1
i zi,

pi = M−1
i zi =⇒Mipi = zi =⇒

neli

A
e=1

(LeU epe = ze)

(lower triangular) =⇒ Leqe = ze

and

(upper triangular) =⇒ U epe = qe.

REMARK 4: The triangular systems Leqe = ze and U epe = qe are solved for each element. That is, a
single loop with e = {1, ..., nel} is executed whenever the preconditioner is applied.

SGSe and BlockSGSe Preconditioners

SGSe and BlockSGSe are split preconditioners given by the preconditioning matrices MLi and
MRi. These matrices are obtained by the trivial Gauss-Seidel decomposition of matrix Āe (defined in
Eq. 15) at the element level as

MLi =
neli

A
e=1

Le with Le =


Indof O O

Ae21 Indof O

Ae31 Ae32 Indof

 (17)
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and

MRi =
1

A
e=neli

U e with Ue =


Indof Ae12 Ae13

O Indof Ae23

O O Indof

 . (18)

For each matrix-vector pi = ML
−1
i Ã

EBE

i MR
−1
i vi, preconditioners SGSe and BlockSGSe are applied

following three main steps:

Step 1: Calculate the upper triangular system from wi = MR
−1
i vi,

wi = MR
−1
i vi =⇒MRiwi = vi =⇒

1

A
e=neli

(U ewe = ve) ;

Step 2: Perform the matrix-vector product zi = Ã
EBE

i wi;

Step 3: Calculate the lower triangular system from pi = ML
−1
i zi,

pi = ML
−1
i zi =⇒MLipi = zi =⇒

neli

A
e=1

(Lepe = ze) .

4 Numerical Experiments

The numerical experiments were performed on the Lobo Carneiro cluster (LoboC)1 operating with
504 CPUs Intel Xeon E5-2670v3 (Haswell), totalizing 6048 cores. LoboC has 252 processing nodes, and
each node has 64GB of RAM and 24 cores (48 with Hyper-Threading). Our codes have been developed
in C language and compiled with Intel compiler version 2017.5.239. The parallel environment takes into
account the same Intel version of the Message Passing Interface (MPI) protocol. Speedup is redefined
proportionally to 24 MPI ranks,

Speedup(n) =
CPU time of 24MPI ranks

CPU time of nMPI ranks
, (19)

and preconditioner memory usage is evaluated using the Valgrind package2 with the Massif3 tool. Here,
we evaluate the most significant preconditioner functions: Build Matrices obtains the finite element
matrices and independent vectors; Matrix V ector Product process the matrix-vector products;
Preconditioner Setup prepares the preconditioning structures; Preconditioner is in charge of the
preconditioning itself; V ectors is formed by the vector operations as implemented in BLAS level 1;
MPI Allreduce, MPI Barrier, MPI Isend, and MPI Recv are the native MPI functions. Since
the linear systems size and preconditioning can vary significantly for problems with different number of
degrees of freedom per node, we consider two representative benchmarks: the rotating fluid flow field
modeled by transport equation (1 degree of freedom per node) and the explosion problem modeled by
the Euler equations (4 degrees of freedom per node). In both cases, a parallel preconditioned GMRES
solver is used with tolerance εGMRES = 10−6 and 30 Krylov basis vectors.

4.1 Rotating cone – Modeled by Transport Equation

A rigid rotation of a cone about the center of the square domain Ω = [0, 10]× [0, 10] is the transient
problem considered, as described in [22]. Figure 1(a) shows the problem statement, where the diffusivity

1http://portal.nacad.ufrj.br/recurso-icex.html
2http://valgrind.org/
3http://valgrind.org/info/tools.html#massif
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is ε = 10−8, the flow velocity is β = (−y, x)T , and the reaction coefficient and the source term are null
in Eq. (2). We use a time step size ∆t = 10−2 in the interval [0, 6.28], and 3 multi-corrections on each
timestep. Consequently, the parallel preconditioned GMRES method runs exactly 1884 times to solve
this problem. Figure 1(b) presents the transient solution of the rotating cone at time t = 6.28 seconds,
using ILU0 in 24 MPI ranks. A mesh with 1,321,646 nodes and 2,639,290 triangular linear elements and

x

y

A A

U = 0

U = 0

U = 0 U = 0

FLOW
DIRECTION

VIEWING
DIRECTION

A A

βx = −y
βy = x

U(t = 0)

1

(a) Problem statement (b) Numerical solution

Figure 1. Rotating cone: (a) problem statement; (b) solution with ILU0 in 24 MPI ranks.

six preconditioning cases are considered: three local preconditioners, DIAGe, LUe and SGSe, and three
global preconditioners, ILU0, ILU1 and ILU2. In this example, the bandwidth is reduced from 1,317,171
to 2,077 in 3.8 seconds using the RCM algorithm. The total time to perform the domain decomposition
preprocess is less than 37 seconds and the memory usage is 843 MB.

This parallel experiment uses 24, 48, 72, 96, and 192 MPI ranks. Table 1 presents total CPU time
and average number of GMRES iterations per GMRES execution (iterav) – the total number of GMRES
iterations is divided by 1884. DIAGe, LUe and SGSe preconditioners keep their iterav almost constant
when the number of MPI ranks increases. The ILUp preconditioner with the lower fill-in, ILU0, is the
best option among all global preconditioners. However, comparing all preconditioners (local and global),
LUe presents the best results in terms of iterav and CPU time.

Table 1. Rotating cone: CPU time and the average number of GMRES iterations.

Number of MPI ranks

Type 24 48 72 96 192

time iterav time iterav time iterav time iterav time iterav

DIAGe 1157.2 65.8 559.8 64.3 388.1 64.2 285.9 65.0 133.6 65.5

LUe 355.1 11.5 178.5 11.6 123.1 11.6 89.8 11.6 43.3 12.0

SGSe 771.6 24.5 380.9 24.7 252.1 24.6 179.4 24.5 72.1 24.4

ILU0 372.6 12.8 186.1 14.8 119.6 16.0 84.7 17.0 44.0 20.5

ILU1 375.4 12.4 190.5 14.3 124.2 15.5 91.8 16.8 45.2 20.1

ILU2 420.9 12.4 212.6 14.3 142.6 15.5 105.0 16.8 50.7 20.3

Figures 2 shows CPU time and speedup for all MPI ranks. SGSe presents superlinear speedup.
However, LUe is about three times faster than DIAGe and twice as fast as SGSe. ILU0 and ILU1 present
runtime similar to LUe. All preconditioners present good scalability. The graphics of functions runtime
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analysis for all parallel are showed in Fig. 3. In general, ILU preconditioners demand similar runtimes
to perform functions Build Matrices, Matrix Vector Product, and Vector, since they presented similar
average number of GMRES iterations (see Tab. 1). Local preconditioners Build Matrices runtime is
slightly smaller when compared with corresponding global preconditioners functions. That occurs due
to complexity of CSR matrix assembly. On the other hand, local preconditioners Matrix Vector Product
runtimes are the largest. Even so, LUe is the fastest because Preconditioner and Precontitioner Setup
are much smaller compared to the corresponding ILUp functions (fact assured by the smaller number
of GMRES iterations obtained by LUe – see Tab. 1). We also note that the CPU time demanded by
MPI Allreduce is proportionally larger when the number of MPI ranks is greater.
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Figure 2. Rotating cone – CPU time (left) and speedup (right).
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Figure 3. Rotating cone – Analysis for the functions runtime - (left 24, right 192).

Figure 4(a) shows the graphics of total memory usage for all parallel preconditioners and number of
MPI ranks. ILU preconditioners demand more memory compared with local preconditioners and when
the fill-in level increases. On the other hand, LUe demands more memory when compared with the other
local preconditioners. The average memory usage for DIAGe and ILU0 preconditioner considering 1,
2, 3, 4, and 8 processing nodes are showed in Fig. 4(b). There is not a very large discrepancy between
the minimum and maximum memory values used in each MPI rank. This behavior confirms that our
domain decomposition approach Lima et al. [9] has been successful in load balancing for global and
local preconditioners for problems modeled by transport equation.

4.2 Explosion Problem – Modeled by Euler Equations

The second problem considered is a transient problem with 4 degrees of freedom per node. That
problem, known as explosion problem, is described in Toro [23]. The 2D Euler equations are solved in
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Figure 4. Rotating cone – Memory usage.

a 2.0× 2.0 square domain in the xy−plane. The initial condition consists of the region inside of a circle
with radius R = 0.4 centered at (1, 1) and the region outside the circle, see Fig. 5. The flow variables
are constant in each of these regions and are separated by a circular discontinuity at time t = 0. The two
constant states are chosen as

ins


ρ = 1.0

u = 0.0

v = 0.0

p = 1.0

out


ρ = 0.125

u = 0.0

v = 0.0

p = 0.1

(20)

The time advancing is solved using the parallel predictor-multi-corrector algorithm as described in the
Algorithm 1. The final time tfinal = 0.25 and the time step ∆t = 10−3 are chosen to represent the nu-
merical solution. For each time step is set 3 fixed multi-corrections. In short, the parallel preconditioned
GMRES runs exactly 750 times to solve each experiment.

1 2

1

2

1

Figure 5. Explosion: Problem statement.

An unstructured mesh with 531,166 nodes and 1,059,798 triangular linear elements and five precon-
ditioning cases are considered: the three local preconditioners (BlockDIAGe, BlockLUe, and BlockSGSe)
and ILU0, ILU1 global preconditioners. In this example, the bandwidth is reduced from 2,114,275 to
2,663 in 6.1 seconds using the RCM algorithm. The total time to perform the domain decomposition
preprocess is less than 55 seconds and the memory used is 2094 MB. As we can highlight, the number
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of unknowns is about four times greater than the number of nodes because it is a problem with 4 degrees
of freedom per node. This experiment consider 24, 96, 192, and 384 MPI ranks.

Figure 6 presents the density solution of the explosion problem at time t = 0.25 second, obtained
with the preconditioner ILU0 and 24 MPI ranks.

Figure 6. Problem 3 : Density solution at t = 0.25 second with the preconditioner ILU0 and 24 MPI
ranks.

Table 2 presents the total CPU time and average number of GMRES iterations per GMRES execu-
tion (iterav) – the total number of GMRES iterations is divided by 750. This table shows, respectively, the
parallel preconditioners BlockDIAGe, BlockLUe, BlockSGSe, ILU0, and ILU1 considering 24, 96, 192,
and 384 MPI ranks. As we can note, iterav performed by the BlockDIAGe preconditioner is basically
constant. Such behavior is expected since this preconditioner is just a block scaling based on the main
block diagonal of the matrix (see Section 3.2) and it has the same effect of preconditioning independent
of the number of MPI ranks. Local preconditioners BlockLUe and BlockSGSe present a number of
GMRES iterations (iterav) much smaller than that reached by the preconditioner BlockDIAGe, however,
the CPU times are larger. Unfortunately, that becomes BlockLUe and BlockSGSe less attractive than
BlockDIAGe. For a number of 24 and 96 MPI ranks, BlockDIAGe presented the best CPU times at all,
however, from 192 MPI ranks, preconditioner ILU0 became more advantageous.

Table 2. Explosion problem: CPU time and the average number of GMRES iterations.

Number of MPI ranks

Type 24 96 192 384

time iterav time iterav time iterav time iterav

BlockDIAGe 334.5 13.7 83.8 13.7 49.8 13.7 35.3 13.7

BlockLUe 428.4 8.2 110.8 8.4 65.9 8.4 46.5 8.7

BlockSGSe 442.3 7.5 112.8 7.5 67.18 7.5 45.4 7.6

ILU0 382.2 7.4 98.9 8.6 47.6 9.3 23.4 10.5

ILU1 453.4 7.4 115.9 8.6 56.5 9.3 27.0 10.5

Figure 7 shows CPU time and speedup for local and global preconditioners. BlockDIAGe, BlockLUe,
and BlockSGSe present scalability until 192 partitions. However, for 384 partitions, the speedup dropped
significantly. Such behavior is related to the fact that EBE matrix-vector products for problems with
ndof > 1 tend to suffer more with the overlapping generated by the greater number of partitions. As can
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be emphasized, BlockLUe and BlockSGSe reduced the number of iterations, but the performance is not
substantial when compared with the preconditioner BlockDIAGe. On the other hand, speedup of ILU
preconditioners point out good scalability.
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Figure 7. Explosion problem – CPU time (left) and speedup (right).

Figure 8 shows the functions runtime analysis for the parallel preconditioners BlockDIAGe,
BlockLUe, BlockSGSe, ILU0, and ILU1 considering 24 and 384 MPI ranks. When 24 MPI ranks
are considered, BlockDIAGe present the best overall runtime even its Matrix V ector Product de-
mands the greatest runtime. As the number of MPI ranks increases, ILU preconditioners become the
best options, because the runtimes of the Preconditioner and Preconditioner Setup ILU functions
decrease significatively. Function Build Matrices keeps similar behavior as the problem modeled by
transport equation – Build Matrices is slower for global preconditioners because CSR assembly is
more complex. Note the Matrix V ector Product function demands a greater runtime for local pre-
conditioners, i.e., in our implementation, CSR matrix-vector products are more efficient than EBE ones.
The runtime of the functions Scaling, MPI Barrier and even of the functions Preconditioner and
Preconditioner Setup make these local preconditioners a bad choice to solve this problem. As in the
previous experiments,MPI Allreduce runtime is proportionally larger for a high number of MPI ranks.
Runtimes of MPI Isend and MPI Recv can also be considered proportionally tiny.
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Figure 8. Explosion problem – Analysis for the functions runtime - (left 24, right 384).

Figure 9(a) shows the total memory usage for the parallel preconditioners BlockDIAGe, BlockLUe,
BlockSGSe, ILU0, and ILU1 considering 24, 96, 192, and 384 MPI ranks. The difference between
the total memory usage of global preconditioners and the total memory usage of local precondition-
ers becomes more evident. Global preconditioners use more memory during processing, however, this
difference tends to decrease as the number of MPI ranks increases.

Figure 9(b) shows the bar min and max graph of average memory usage per node for the local
preconditioner BlockDIAGe and the global preconditioner ILU0 considering 1, 4, 8, and 16 processing
nodes. In this experiment, there is no large discrepancy between the minimum and maximum memory

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Template for CILAMCE 2019 (A COMPARATIVE STUDY OF GLOBAL AND LOCAL PRECONDITIONERS)

values used in each MPI rank as well. We also point out that memory usage of the local preconditioners
is significantly lower compared to global preconditioners memory usage. However, as we increase the
number of processing nodes this difference is reduced considerably.
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Figure 9. Explosion problem – Memory usage.

5 Conclusions

In this work, we compare the efficiency of the global parallel ILUp preconditioners, p = 0, 1, 2,
with the following local parallel preconditioners: diagonal (DIAGe), block-diagonal (BlockDIAGe),
LU-factorization (LUe), block-LU-factorization (BlockLUe), Gauss-Seidel (SGSe) and block-Gauss-
Seidel (BlockSGSe). The global and local preconditioners are based on the Compressed Storage Row
(CSR) format and the element-by-element (EBE) structures, respectively. The robustness and scalability
of these parallel preconditioning strategies have been demonstrated for two benchmarks: a rotating cone
fluid flow problem modeled by transport equation and the explosion problem modeled by the Euler
equations.

In both examples, the bandwidth reduction using the RCM algorithm is very large and also very
fast, and the total time to perform the domain decomposition preprocess is very small. Also, the local
preconditioners demand less memory usage when compared with the global representatives. Moreover,
for the global ILUp preconditioners, higher fill-in levels and, consequently, greater memory consump-
tions do not mean improvement on CPU time. Instead of that, the best results are reached by the global
ILU0 preconditioner. So, in the Euler equations problem we do not consider the ILU2 preconditioner.

For the transport equation problem, all global and local preconditioners present good scalability.
In terms of total memory usage, CPU time and average number of GMRES iterations, the local LUe
and the global ILU0 preconditioners present the best results. Overall in this example, the local LUe
preconditioner is slightly better than the global ILU0 preconditioner. However, the other two local pre-
conditioners (DIAGe e BlockLUe) do not perform well compared with all global ILUp preconditioners
tested here. We also observe that the ILU preconditioners demand similar runtimes to perform the most
significant preconditioner functions, since the global preconditioners present similar average number of
GMRES iterations. This is not the case of the local preconditioners, where the matrix-vector products
can be very expensive and the native MPI functions can be proportionally larger when the number of
MPI ranks increases.

For the Euler equations problem, the speedups of the ILUp preconditioners point out good scalabil-
ity. In contrast, the speedups of the local preconditioners dropped significantly for the largest number
of MPI ranks. Such behavior is related to the fact that EBE matrix-vector products, for problems with
more than 1 degree of freedom per node, tend to suffer more with the overlapping generated by the
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greater number of partitions. In this example, the local BlockDIAGe preconditioner presents favorable
CPU time and memory usage, but the global ILU0 preconditioner becomes more advantageous when the
number of MPI ranks increases. Moreover, the average number of GMRES iterations performed by all
local preconditioners is basically constant for all partitions. However, the runtimes of their MPI functions
increase significantly. For the global preconditioners, the functions in charge of the preconditioning itself
and their structures decrease remarkably. As a consequence, the global ILU0 preconditioner become the
best option among all global and local preconditioners. Even more, we also observe in this example the
local preconditioners dependence on the number of degrees of freedom per node.
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