
 
 
FINITE ELEMENT MODELLING OF PLANE FRAME SUBJECTED TO 
RANDOM WIND EXCITATION WITH DYNAMIC ELASTOPLASTIC 
BEHAVIOR 
 

Hsu Yang Shang 
hsu.shang@pucpr.br 
Igor Alexandre Deitos 
igor.deitos@gmail.com 
 
Pontifícia Universidade Católica do Paraná, Polytechnic School, Graduate Program in Mechanical 
Engineering. Rua Imaculada Conceição, 1155, Prado Velho, CEP 80215-901, Curitiba, Paraná, 
Brazil. 

Abstract. This work presents a finite element approach of dynamic elastoplastic analysis in plane 
frame subjected to random excitation caused by wind action. The wind random velocity is modelled 
mathematically by using Power Spectra Density Method in combination with Shinozuka’s model, with 
commonly employed wind spectra, such as von Kármán, Davenport, Kaimal and Harris. From these 
spectra, the dynamic wind loading is determined from the sum of the mean and floating wind 
velocities. Thus, it is possible to obtain the wind loading vector that is applied in the structure dynamic 
governing equation. The governing equation is formulated by Euler-Bernoulli beam theory, and it is 
discretized by using a conventional Lagrange – Hermite element. The time stepping process is carry 
out by HHT algorithm, and the material nonlinearity is modelled by von Mises isotropic hardening 
model. Finally, several applications are presented, where different wind spectra are employed to 
determine mechanical parameters of structure responses, such as stress, strain, displacement, among 
the other. The error norm L2 of displacement is determined for different finite element discretization 
refine, which aims to analyze the effects of space discretization in this type of analysis. Also, the 
relative differences are determined with the purpose to compare the different mechanical behavior of 
structure when subjected to different wind spectra. 
  
Keywords: Finite element modelling, Power spectral density, random wind loadings, Elastoplastic 
structure behavior, Error in norm L2 of displacement. 
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1  Introduction 

Nowadays, steel structures are used in almost all construction sectors, such as industrial sheds, 
buildings, telecommunications towers, chimneys, among others. Its usage has increased significantly 
due to its versatility, ease of manufacture, high reliability and its well-defined mechanical properties. 
Due to these reasons, the project design of steel structure has gained more complexity in the recent 
decades. The growth of urban centers, characterized by scanty regions of horizontal space, leads to the 
necessity to have buildings even taller. Consequently, these are more susceptible to problems of wind 
excitation, which is characterized as random behavior. Furthermore, this behavior provides loading 
conditions that could generate resonant vibration and elastoplastic deformation in the structure, 
leading it to possible collapse [34]. Therefore, the prediction of structure yielding conditions and 
collapse conditions subjected to a random excitation plays an important role during the development 
phase of project design, since the wind action has been one of the accidents causes in tall buildings 
around the world. However, the analysis of structural random behavior is complex and analytical 
solution is not always possible in the situation that involves multiple degrees of freedom. Therefore, 
due to the recent advances in computational mechanics and proposal of new numerical methods, the 
modelling of steel frame has become more accurate during the project design phase. Such model 
makes the numerical approach more assertive with less computational processing time.  

This work aims to present a numerical modelling of plane frame subjected to random excitation 
considering that the structure suffers dynamic elastoplastic deformation. For wind action modeling, the 
Power Spectral Density Method is adopted, and several wind spectra are employed for the numerical 
approach. Moreover, the method proposed by Shinozuka and Jan (1972) is adopted to calculate the 
wind velocity. Besides, the Finite Element Method is adopted for structure discretization and a 
Lagrange – Hermite linear element with three nodes is employed to discretize the governing equation, 
which is formulated by Euler – Bernoulli beam theory. Furthermore, for structure elastoplastic 
behavior, the von Mises isotropic hardening model is employed. Several applications are carried out to 
show the competitiveness of the proposed numerical modelling. Moreover, the error in norm L2 of 
displacement is determined. In the following, a brief literature review is presented. 

Experiments carried out in wind tunnels have shown a relationship between the distribution of 
fluctuating pressures of the floating wind in the atmospheric boundary layer with the incoming 
conditions [13]. And this relationship is expressed by the Reynolds number [21][11][35]. To obtain 
more reliable responses of the dynamic wind loading, researchers usually use wind tunnel aeroelastic 
models [16][38]. Furthermore, the combination of numerical methods and probabilistic methods 
through the computational tools has enabled the solution of problems that involves the random loading 
of wind in complex structures [5][19]. 

Dynamic analyses are commonly suggested in tall and slender structures subjected to vibrations 
induced by wind loads [23][28], such as in the Taipei 101 Tower skyscraper, where there are natural 
events such as earthquakes and hurricanes [25]. To analyze the inelastic responses of wind-excited in 
tall buildings, [12] perform a comparative analysis for the differences between elastic and inelastic 
responses through two statistical linearization approaches. The first elastoplastic analysis of plane 
frames has begun in the early 60's, shortly after the birth of digital computers, with the numerical 
model positioning the plastic hinges below the maximum point of beams [24]. This consideration 
serves as a reference for many researches that introduce nonlinear behavior into plane frame structures 
[23]. Other methodologies of nonlinear analysis have been developed with the Euller-Bernoulli beam 
theory, where effects due to shear and torsion were neglected, or Timshenko beam theory. Another 
important aspect in the study of dynamic elastoplastic behavior of structures is the yielding criterion 
adopted in the analysis. Thus, the von Mises criterion is widely used in the researches [31]. An 
important advantage of the steel structures is its ductility, which becomes a main characteristic in the 
studies of elastoplastic analysis due to the fact that it provides more mechanical strength to the 
structure, in comparison with other material [18][6]. Three-dimensional steel plane frames are 
employed in the numerical approach where the material and geometrical nonlinearities are developed 
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through the controlled displacement technique or generalized displacements technique [22][30]. 
The study of elastodynamics phenomenon has begun in 1972. The main issue in this area of study 

is the estimation of spatial and temporal errors that are inherent in the employed numerical 
approaches. Thus, the method proposed by Goudreau and Taylor (1972) for the capture of wave 
propagation uses beam finite element [14]. A few years later, for time increment algorithm, other 
researchers developed several methods, modified from Newmark method [25], such as HHT [17], 
which aims to insert an adjustable parameter to control the numerical dissipation. Furthermore, the 
Newmark linear acceleration methods do not guarantee the numerical stability in the analysis of 
structures with nonlinear behavior [25][1]. Therefore, some algorithms based on the momentum 
conservation and energy dissipation were developed to guarantee the second order precision and 
stability in nonlinear problem [10][1][29][7]. Recently, developments of enriched finite element 
approach, such as the Generalized Finite Element Method are strongly investigated in the dynamic 
elastoplastic analyses to verify the enriched elements quality and efficiency [32][33]. 

 

2  Modelling of Wind Excitation 

Wind excitation plays an important role in the dynamic analysis of slender steel frames. Further, 
the wind actions present random characteristics and make its prediction difficult to be done by 
deterministic treatment [36]. Therefore, wind power density spectra (Kim et al., 2001) are tools widely 
employed for the determination of wind loadings. The wind loading is calculated based on its velocity 
[26]: 

 
𝑉(𝑧, 𝑡) = 𝑉ത(𝑧) + 𝑣(𝑧, 𝑡)                                                (1) 

 
where 𝑉(𝑧, 𝑡) is the wind velocity as a function of time and height, 𝑉ത(𝑧) is the average velocity, a 
parameter determined by NBR 6123 (1988), and 𝑣(𝑧, 𝑡) is the floating velocity. 

Over the years, many researchers have devoted efforts to develop several mathematical 
expressions that represent the wind random excitation, based on measurements and experimental 
results. The most common used spectra are those proposed by Kaimal, Davenport, Harris, Lumley and 
Panowski and von Kármán [35], as shown in Table 1, where 𝑓 is the frequency, in Hz; 𝑆௩(𝑓) is the 
spectral density of the longitudinal component of turbulence in the frequency 𝑓; 𝑥(𝑓) is the 
dimensionless frequency; 𝑢∗ is the friction velocity; 𝑉ଵ଴ is the average wind velocity at 10 m above 
ground level, in m/s. For spectra that vary with frequency and height, the 𝑉௭ is equal to the average 
wind velocity in m/s, above ground level 𝑧, which is the height of load application in m; the von 
Kármán constant, 𝑘, is 0,4 [35] and the roughness length, 𝑧଴, is 0,07 m. 

 

Table 1 – Wind power spectral density functions. 
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In Figure 1, the abscissa axis presents the number of waves in cycles per meter and the ordinate 
axis presents the power spectral density normalized by the variance. In this case, the total energy of 
the system is represented proportionally by the area delimited under the curve of the frequencies. The 
power density spectra depicted in Figure 1 are divided into two main groups: velocity that dependents 
the height and the frequency, and velocity that is independent of the height. The power spectra with 
wind velocity independent of the structure height, are Davenport, Harris and Lumley and Panowsky. 
Besides, the spectra of Kaimal and von Kármán have the velocity dependents the height and 
frequency. 

 

 

Figure 1 – Wind power spectral density curves. 

Studies concerning the determination of wind velocity randomness over time are developed using 
the digital simulation technique based on multivariate random processes [34], which serve as an 
essential tool for large numbers of problems in structural engineering, such as numerical analysis of 
dynamic nonlinear response in structures subjected to random excitations; analysis of linear structures 
under random excitations in time and frequency domain; numerical approach of wave propagation in a 
random medium and solution of eigenvalue problems in structures with randomly nonhomogeneous 
materials. As one of commonly used method, the essential aspect of Shinozuka and Jan's approach 
(1972) states that the random process can be simulated by a series of trigonometric functions with 
random frequency, or wave number.  

 The present work adopts the method proposed by Shinozuka and Jan (1972), where the floating 
part of the wind velocity is inserted into a stationary random process. This part is determined by the 
superposition of harmonic waves, as represented by Equation 2: 

 

𝑣(𝑡) = ∑ ඥ2𝑆௩(𝑓௜)𝛥𝑓 cos(2𝜋𝑓௜𝑡 + 𝜃௜)ே
௜ୀଵ                               (2) 

 
where 𝑁 is the number of divisions in the power spectral density; 𝑆௩(𝑓௜) is the power density spectrum 
of the longitudinal turbulence component of the frequency 𝑓; 𝛥𝑓 is the increment of frequency, in Hz; 
𝑓௜ is the variation of the frequency range, in Hz; 𝑡 is the time, in second and 𝜃௜ is the random phase 
angle, between 0 and 2π. Thus, the equation of the dynamic pressure represented in the Brazilian 
Association of Technical Standards (1988) is rewritten as follows: 

 
𝑞(𝑧, 𝑡) = 0,613(𝑉௭

ഥ + 𝑣(𝑧, 𝑡))ଶ                                          (3) 
where 𝑞(𝑧, 𝑡) is the dynamic pressure of the wind as a function of height and time, in N/m²; 𝑉ത௭ is the 
average wind velocity, in m/s and 𝑣(𝑧, 𝑡) is the floating part of wind velocity, in m/s. After 
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determining the dynamic pressure of the wind as a function of time and height, it is necessary to 
determine the force acting on the structure: 

 
𝐹(𝑧, 𝑡) = 𝐶௔௜𝑞(𝑧, 𝑡)𝐴௜                                                (4) 

 
where 𝐹(𝑧, 𝑡) is the load acting on the structure as a function of height and time, in N; 𝐶௔௜ is the 
coefficient of drag [3] and 𝐴௜ is the area of influence of the load, in m². After obtaining the equation 
(4), it is used in the structure governing equilibrium equation to be presented in following section.  
 

3  Structure Governing Equations 

 This section briefly presents the formulation of the structural vibration phenomenon 
considered in this work and its finite element discretization. Consider an isotropic, homogeneous solid 
with volume 𝑉, and Euler – Bernoulli beam theory, the governing equation of motion of such body is: 
 

𝜌𝐴
డమ௨భ

డ௧మ − 𝐸(𝑥, 𝑡)𝐴
డమ௨భ

డ௫మ = 𝑓௨భ
(𝑥, 𝑡)                                     (5a) 

 

𝜌𝐴
డమ௨మ

డ௧మ +
డమ

డ௫మ ቀ𝐸(𝑥, 𝑡)𝐼
డమ௨మ

డ௫మ ቁ = 𝑓௨మ
(𝑥, 𝑡)                              (5b) 

 
where 𝜌 is the mass density, 𝑢ଵ and 𝑢ଶ is the displacement in axial and transversal direction, 
respectively, 𝐴 and 𝐼 is area and moment of inertia, respectively, 𝐸(𝑥, 𝑡) is the elastoplastic modulus, 
𝑓௨భ

(𝑥, 𝑡) and 𝑓௨మ
(𝑥, 𝑡) is the force in axial and transversal direction, respectively.  

The Total Lagrangian Formulation is used to describe the elastoplastic dynamic behavior of 
the solid. Consider the infinitesimal strain, small displacement and elastoplastic behavior, the weak 
form of governing equation is derived by the principle of virtual displacements:  
  

∫ ൣ𝛿𝑢்𝜌𝑢̈ + 𝑆௜௝𝛿𝜀௜௝൧𝑑𝑉
௏

= 𝑅(𝑡)                                   (6) 
 
where 𝑆௜௝ is the second Piola-Kirchoff stress tensor, 𝜀௜௝ is the Green-Lagrange strain tensor, 𝛿𝑢 is the 
virtual displacement, and 𝑅(𝑡) is the time dependent external virtual work. The Green-Lagrange strain 
tensor can be evaluated by Eq. (7), which includes the nonlinear terms.  
 

𝜀௜௝ =
ଵ

ଶ
൫𝑢௜,௝ + 𝑢௝,௜ + 𝑢௞,௜𝑢௞,௝൯                                               (7) 

  
The finite element discretization is done here by using Euler-Bernoulli beam element with 

three nodes, depicted in Figure 2. The element field displacements are evaluated according to Eq. (8).  
 

𝒖 = 𝑵𝒖𝒆                                                               (8) 
 
where 𝒖𝒆 is the vector of nodal values in element coordinates, and 𝑵 is the matrix of beam shape 
function, constituted by Lagrange – Hermite polynomials. Introducing Eq. (7) and Eq. (8) into Eq. (6), 
and neglecting damping effect, the finite element equilibrium equations are derived: 
 

෍ න 𝜹𝒖𝒆
𝑻𝑵𝑻𝝆𝑨𝑵𝒖̈𝒆𝒅𝒙

𝑳𝑬

+ ෍ න 𝜹𝒖𝒆
𝑻𝑩𝑳𝑻

𝑫𝑬𝑷𝑩𝑳𝒖𝒆𝒅𝒙
𝑳𝑬

+ 

+ ∑ ∫ 𝜹𝒖𝒆
𝑻 ቀ𝑩𝟏

𝑵𝑳𝑻
𝑭𝑩𝟏

𝑵𝑳 + 𝑩𝑳𝑻
𝑴𝑩𝟐

𝑵𝑳ቁ
𝑳𝑬

𝒖𝒆𝒅𝒙 =                                (9) 

= ෍ 𝜹𝒖𝒆
𝑻𝑷𝒆𝒙𝒕

𝒆 − ෍ න 𝜹𝒖𝒆
𝑻𝑩𝑳𝑻

𝑷
𝑳𝑬

𝒅𝒙 
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Where 𝑩𝑳 is the linear strain-displacement matrix, 𝑩𝟏

𝑵𝑳 and 𝑩𝟐
𝑵𝑳 are nonlinear strain-displacement 

matrices, 𝜌 is the density, 𝐴 is the cross-section area, and 𝑫𝑬𝑷 is the constitutive matrix, which is 
updated according to the von Mises isotropic hardening model, and 𝑷 is comprised by equivalent 
forces 𝑭 and equivalent moments 𝑴. Further, 𝒖𝒆and 𝒖̈𝒆 are the element nodal displacements and 
accelerations, respectively, 𝑵 are the shape functions, and 𝑷𝒆𝒙𝒕

𝒆  are the external forces, produced by 
wind random excitation. 

 

Figure 2 – Three-nodes element. 

The equation (9) can also be represented in the following element coordinate equation: 
 

𝑴𝒆 = ∫ 𝑵𝑻𝝆𝑨𝑵𝒅𝒙
𝑳𝑬

                                               (10a) 

𝑲𝑬𝑷
𝒆 = ∫ 𝑩𝑳𝑻

𝑫𝑷𝑩𝑳𝒅𝒙
𝑳𝑬

                                                (10b) 

𝑲𝑮
𝒆 = ∫ ቀ𝑩𝟏

𝑵𝑳𝑻
𝑭𝑩𝟏

𝑵𝑳 + 𝑩𝟐
𝑵𝑳𝑻

𝑴𝑩𝟐
𝑵𝑳ቁ

𝑳𝑬
𝒅𝒙                                 (10c) 

𝑸𝑷
𝒆 = ∫ 𝑩𝑳𝑻

𝑷
𝑳𝑬

𝒅𝒙                                                    (10d) 

 
where 𝑴𝒆 is the element mass matrix, 𝑲𝑬𝑷

𝒆  is the element elastoplastic stiffness matrix, which is 
updated according to stress level, 𝑲𝑮

𝒆  is the element geometric stiffness matrix, which is updated at 
each iteration due to equivalent force and moment, and, finally, 𝑸𝑷

𝒆  is the residual force vector. After 
introducing Eq. (10a) through Eq. (10d) into Eq. (9), with proper coordinate transformation and 
element assembling, the finite element global equilibrium equations reduce to:  
 

𝑴𝒖̈ + 𝑲𝒖 = 𝒇(𝒕)                                                   (11) 
  

The matrix of shape function 𝑵 used in previous equation is defined by equation (12a). In 
addition, the linear and nonlinear strain – displacement matrices are defined by equations (12b) – 
(12d): 

 

𝑵 = ൤
𝑁ଵ 0 0 𝑁ସ 0 0 𝑁଻ 0 0
0 𝑁ଶ 𝑁ଷ 0 𝑁ହ 𝑁଺ 0 𝑁଼ 𝑁ଽ

൨                          (12a) 

𝑩𝑳 = ൤
𝑁ଵ′ 0 0 𝑁ସ′ 0 0 𝑁଻′ 0 0
0 𝑁ଶ" 𝑁ଷ" 0 𝑁ହ" 𝑁଺" 0 𝑁଼" 𝑁ଽ"

൨                     (12b) 

𝑩𝟏
𝑵𝑳 = ൤

𝑁ଵ′ 0 0 𝑁ସ′ 0 0 𝑁଻′ 0 0

0 𝑁ଶ′ 𝑁ଷ′ 0 𝑁ହ′ 𝑁଺′ 0 𝑁଼′ 𝑁ଽ′
൨                      (12c) 

𝑩𝟐
𝑵𝑳 = ൤

0 𝑁ଶ" 𝑁ଷ" 0 𝑁ହ" 𝑁଺" 0 𝑁଼" 𝑁ଽ"

𝑁ଵ′ 0 0 𝑁ସ′ 0 0 𝑁଻′ 0 0
൨                   (12d) 

 
The constitutive matrix 𝑫𝑬𝑷 is defined by the stress-strain relationship of material. The von 

Mises model is adopted for isotropic hardening. By using indicial notation for Cartesian axes, the 
incremental stress is given by [2]: 
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 𝑑𝜎௜௝ = 𝐷௜௝௞௟

௘௣
𝑑𝜀௞௟                                                        (13) 

 
The equation (13) is written incrementally for constitutive law, where the incremental strain 

components 𝑑𝜀௜௝ are defined as a sum of linear strain and nonlinear strain from expansion of Taylor 
series. In equation (13), 𝐷௜௝௞௟

௘௣  is a tangential tensor defined by suitable state variables, such as 
constitutive tensor and effective stress, among others. Additionally, in this work, appropriate 
directions are also considered for 𝐷௜௝௞௟

௘௣  in unidimensional problems. Within the context of isotropic 
work hardening theory, the tangent constitutive tensor is defined as: 
 

𝐷௜௝௞௟
௘௣

= 𝐷௜௝௞௟ − (1 𝛾⁄ )𝐷௜௝௠௡𝑎௠௡𝑎௢௣𝐷௢௣௞௟                                       (14) 
 

Where 
 

𝐷௜௝௞௟ = 2𝜇𝜈 (1 − 2𝜈)⁄ 𝛿௜௝𝛿௞௟ + 𝜇൫𝛿௜௞𝛿௝௜ + 𝛿௜௟𝛿௝௞൯                               (15) 
𝑎௞௟ = 𝜕𝜎̄ 𝜕𝜎௞௟⁄                                                            (16a) 

𝛾 = 𝑎௜௝𝐷௜௝௞௟𝑎௞௟ + 𝐻                                                         (16b) 
𝐻 = 𝜕𝜎௢ 𝜕𝜀̄௉⁄                                                            (16c) 

 
In equation (16a) – (16c), 𝜎̄ and 𝜀̄௉ are the effective stress and plastic strain, respectively; 𝜎଴ 

is the uniaxial yield stress; 𝐻 is the plastic hardening modulus and 𝜇 and 𝜈 stand for the material shear 
modulus and the Poisson ratio, respectively. In case of von Mises isotropic strain-hardening material, 
the tensor of incremental elastoplastic material moduli takes the form 𝐷௜௝௞௟

௘௣
= 𝐷௜௝௞௟ −

ቀ3𝜇 ቀ𝜎଴
ଶ(1 + 𝐻 3⁄ )ቁൗ ቁ 𝑠௜௝𝑠௞௟, where 𝑠௜௝ = 𝜎௜௝ − (1 3⁄ )𝛿௜௝𝜎௞௞ is the stress deviator; and for the case of 

a perfectly plastic material, 𝐻 = 0. In case of elastic analyses, the Cauchy stresses can be defined by 
𝜎௜௝ = 𝐷௜௝௞௟𝜀௞௟, where 𝐷௜௝௞௟ is the elastic constitutive tensor.  

For the initial stress formulation, it is convenient to define a fictitious “elastic” stress 
increment as follows: 
 

𝑑𝜎௜௝
௘ = 𝐷௜௝௞௟𝑑𝜀௞௟                                                      (17) 

 
And equation (13) can be rewritten as indicated below 
 

𝑑𝜎௜௝ = 𝑑𝜎௜௝
௘ − 𝑑𝜎௜௝

௉                                                   (18) 
 

Where the initial stress increments are computed by  
 

𝑑𝜎௜௝
௉ = (1 𝛾⁄ )𝐷௜௝௠௡𝑎௠௡𝑎௞௟𝑑𝜎௞௟

௘                                             (19) 
 

In present work, an a-posteriori error estimator is adopted in a simple form. The error in norm 
L2 for displacement is calculated, as stated in expression (20). In addition, several refinement in spatial 
discretization is adopted in present work, therefore, the error is measured between different degree of 
refinement in the finite element discretization. This consideration is made due to limitation to found a 
literature results to be considered as a reference.  

 

‖𝑒‖௅మ
= ቂ∫ (𝑢 − 𝑢ො)்(𝑢 − 𝑢ො)𝑑Ω

ஐ
ቃ

ଵ ଶ⁄

                                       (20) 
 
The flowchart, presented in Figure 3, shows the numerical solution procedure. The solution 

procedure begins with the input data for plane frame mechanical properties, follows by input data to 
evaluate the synthetic accelerogram by using power spectral density function. Then, the HHT 
algorithm is activated to calculate the nodal displacement vector, which is used to evaluate the strain, 
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then the von Mises stress is calculated. Then the von Mises criterion is initiated to verify if the plane 
frame is undergoing material hardening. If affirmative, the Newton- Raphson algorithm is initiated to 
update the new stress state of the material, and stiffness matrix is updated by changing the material 
modulus according to stress – strain relationship. Otherwise, the algorithm continues to verify the 
loading and unloading condition. The global convergence is verified in each point mesh of the plane 
frame. This work uses a point mesh constituted by seven point of numerical integration along the 
element. In every numerical integration point, the hardening condition is verified in the cross section. 
After this procedure, the residual force of pipe and foundation is calculated, and convergence 
condition is verified. This work adopts energy criterion to evaluate the convergence parameter with 
the tolerance value defined as 1x10-8. This loop continues until the convergence condition is fulfilled. 
Finally, the time step is incremented, and the procedure is restarted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Flowchart of the incremental-iterative solution procedure. 

4  Applications 

This work adopts structural steel ASTM A36 [21] as material for the following analyses. The 
stress-strain relationship of this material is established by Ramberg-Osgood equation, as it is stated in 
equation (21):  
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೙
                                                (21) 

 
Where the Young's modulus for steel, 𝐸, is 166.667 MPa; the yield stress, 𝜎, is 250 MPa; the stress-
strain parameter, 𝑛, is 1,798 and the initial strain, 𝜀଴, is 0,0015 (𝜀଴ = 𝜎/𝐸). The material density, 𝜌, is 
7830 kg/m³, and Poisson coefficient, 𝑣, is 0,3. Effect of damping is neglected. 

In this work, the first application presents free vibration analysis. The second application 
presents the dynamic elastoplastic analyses of steel frame proposed by Orbison et al. (1982) and it is 
subjected to the wind loading modelled by spectra proposed by Kaimal [35]. The input data adopted 
for the following three applications are presented in Table 2. In addition, the table 3 presents the 
geometric properties of the structures. The HHT method [18] is adopted with α=1/3. 

 

Table 2 - Data to calculate the wind loading, a roadmap for the examples. 

Parameters  Unit Origin 

Height of point A [𝑧] 9,144 𝑚 Node coordinate 

Exponential coefficient [𝑝] 0,15 - NBR-6123:1988 

Roughness length [𝑧଴] 0,07 𝑚 NBR-6123:1988 

Basic wind velocity [𝑉଴] 45 𝑚/𝑠 NBR-6123:1988 

Topographic factor [𝑆ଵ] 1,0 - NBR-6123:1988 

Statistical factor [𝑆ଷ] 1,0 - NBR-6123:1988 

Average velocity at 10 m [𝑉ଵ଴] 31,05 𝑚/𝑠 - 

Average velocity in Z quota [𝑉௭] Variable 𝑚/𝑠 - 

Initial frequency [𝑓଴] 0,010 𝐻௭ Assumed 

Final Frequency [𝑓௙] 9,510 𝐻௭ Assumed 

Frequency range divisions [𝑁] 100 - Assumed 

Frequency increment [∆𝑓] 0,095 𝐻௭ (𝑓௙-𝑓௙)/100 

Initial time [𝑡଴] 0,0 𝑠 Assumed 

Steps 250.000 - Assumed 

Time increment [∆𝑇] 0,001 𝑠 Assumed 

Final time [𝑡௙] 250,0 𝑠 (𝑡௙ x ∆𝑇) 

Friction velocity [𝑢∗] Variable 𝑚/𝑠 - 

PSD [𝑆௩(𝑓, 𝑧)] Variable - - 

Phase angle (0-2π) [𝜃௜] - - Random 

Floating wind velocity [𝑉(𝑧, 𝑡)] Variable 𝑚/𝑠 - 

Dynamic pressure [𝑞(𝑧, 𝑡)] Variable 𝑁/𝑚² - 

Wind loading [𝐹(𝑧, 𝑡)] Variable 𝑁 - 

Drag coefficient [𝐶௔௜] 1,50 - Assumed 

Width of influence area [𝑏] 5,00 𝑚 Assumed 

Table 3 – Cross sectional properties of the structural elements. 
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Parameters  Unit 

Horizontal beam length [𝐿] 4,572 𝑚 

Horizontal beam cross-sectional area [𝐴௘] 0,0047 𝑚ଶ 

Horizontal beam moment of inertia [𝐼௫ = 𝐼௬] 13,3x10-6 𝑚ସ 

Vertical beam length [𝐿] 9,144 𝑚 

Vertical beam cross-sectional area [𝐴௘] 0,0004 𝑚ଶ 

Vertical beam moment of inertia [𝐼௫ = 𝐼௬] 0,106x10-6 𝑚ସ 

1.1 Free vibration analysis of plane frame using FEM3  

Table 4. First ten modes of natural frequency of FEM3. 

 Ansys Beam 188 FEM3 

dof 2691 45 99 207 423 

Mode      

1 31,3757 31,8035 31,8035 31,8035 31,8035 

2 97,1883 98,4630 98,4627 98,4627 98,4627 

3 160,4600 162,4355 162,4310 162,4310 162,4310 

4 261,0663 265,0555 265,0715 265,0712 265,0712 

5 295,7684 302,5289 302,5948 302,5943 302,5943 

6 317,5145 326,1567 326,2795 326,2787 326,2787 

7 545,7826 564,5898 564,2142 564,2065 564,2065 

8 615,2684 621,8889 620,0581 620,0638 620,0638 

9 632,0884 666,3821 669,4541 669,4304 669,4304 

10 651,3778 684,2713 686,6102 686,5914 686,5913 

 

1.2 Dynamic elastoplastic analysis of the modified Orbison plane steel frame 

This example presents analyses of a plane frame with parameters adopted by Orbison et al. 
(1982), and it is shown schematically in the figure 4(b). The floating part of the velocity is determined 
by Kaimal power spectrum. The finite element mesh is consisted by refining h, where present 4 
meshes. The purpose of this example is to validate the computational code, developed in present work, 
by making comparisons with well-known finite element code.  
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Figure 4 – a) Cross section; b) Plane steel frame analyzed with the action of random wind loading, unit 
(m). 

 
For effects of visualization, the wind loading distribution along the height of the structure is 

depicted in t = 125 seconds, obtained with time increment Δt = 10-3 s, as shown in Figure 5. Further, it 
is possible to observe the randomness in the behavior nature over the height.  

For a better visualization of the behavior of the wind loading distribution over the time, Figure 
6a shows the wind loading at point A from 100 to 101 s, and Figure 6b shows a zoom of this curve 
between the time interval of 100,1 and 100,2s. The Figures 7 show the displacement, velocity and 
acceleration profile in horizontal direction at the point A of the plane steel frame. The displacement 
shown in Figure 7a occurs during the structure yielding at 125s, with the magnitude approximately 
equal to 0,1 m. The velocity and acceleration profiles are also presented in Figure 7b and 7c, 
respectively. For better analysis of results, Figure 8a, Figure 9a and Figure 10a, show the results, over 
the time range covered by present example, which is 250 seconds. While Figures 8b, 9b and 10b show 
a zoom of the curves for the first 5 seconds. The randomness over the time is observed in all cases. 

 

(a) (b) 
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Figure 5 – Wind loading profile along the height of the structure at t = 125 s. 

 
The von Mises stress is determined at vertical beam cross section’s point A, as shown in 

Figure 4a. It may be observed in the Figure 11 that the material yielding initiates with strain 1,5x10-3 
and stress 250 MPa, caused by compression, as presented by the material properties of ASTM A36. 
After this instance, the material hardening continues, until the moment of unloading. The process of 
loading and unloading repeats consecutively and material hardening does not occur again, due to the 
material hardening in the plane steel frame during first yielding process. 
 

 
 

 
 

Figure 6 –Behavior of the wind load curve at point A. 

 

(a) (b) 
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Figure 7 - Responses profile along the height of the structure at t = 125 s. 

 

 
      (a) 

 
     (b) 

Figure 8 – Displacement at point A at t = 250 s (a) and zoom in (b). 

 

                                          (a)        (b) 

Figure 9 – Velocity at point A at t = 250 s (a) and zoom in (b). 

 

(a) (b) (c) 
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       (a)  

 
     (b) 

Figure 10 – Acceleration at point A at t = 250 s (a) and zoom in (b). 

 

 

Figure 11 – Plane steel frame stress x strain hysteresis curves. 

 
Also, an error analysis was performed on a refining h, where the mesh 1 has 9 elements, the 

mesh 2 has 18 elements, the mesh 3 has 36 elements and, finally, the mesh 4 has 72 elements.  
The Figures 12 and 13 show the refining h errors behavior along the first 5 seconds of 

analysis. For the three results: acceleration, velocity and displacement, it is possible to see the high 
error for mesh 1 and 2 and a lower for mesh 3 and 4. However, the results of errors for acceleration 
remain high when compared to the displacement errors. For the acceleration and displacement errors 
the refining h has an improvement of approximately 90% and 37%, respectively.  
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Figure 12 – Refining h errors for acceleration, velocity and displacement in the first 5 s. 

 

     
 

Figure 13 – Refining h errors for acceleration, velocity and displacement in the first 5 s. 

5  Conclusions 

The employed methodology for evaluation of random excitation in this work is based on the 
theory of stochastic modelling of wind action, where the velocity of the wind is determined by the 
Shinozuka and Jan mode, with different wind spectra. The wind loading profile along the height of the 
structure and over the time has a random behavior, since the phase angle is determined randomly.  

The dynamic elastoplastic behavior of the structure, subject to different wind spectra, is 
analyzed in the several examples. The hysteresis curve of stress and strain is calculated, as well as the 
mechanical behavior of the structure, such as displacement, velocity and acceleration, is also obtained 
from the analyzed structure. The relative difference is also calculated for the displacement of the 
structure subjected to different wind spectra. These have similar characteristics to the one known in 
the literature. However, with the input data used in this work, Kaimal and Davenport wind spectrum 
produces dynamic elastoplastic responses in the structure, with 7% of relative difference 
approximately. From the observation on wind loading profile, the Davenport and Harris spectra 
present higher oscillation frequency, while the Kaimal and von Kármán spectra present lower 
oscillation frequency. However, these characteristics does not affect significantly the structure 
response. Furthermore, the displacement and velocity responses obtained from von Kármán spectrum 
have smaller amplitude in the oscillation during the time range covered in this study. This occurs since 
the von Kármán's wind loading has more uniform action and less amplitude in the oscillation.  
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