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Abstract. In order to obtain the modal parameters of a structure, different approaches can be used: (i) 

Experimental Modal Analysis (EMA), which uses excitation (input) and response (output) data; (ii) 

Output-Only Modal Analysis (O-OMA), which uses only the output. Both techniques are widely used 

and their advantages and disadvantages are known. The EMA allows performing a full numerical 

validation, because the estimated modal matrix is already mass normalized. In the O-OMA case, since 

the excitation force is unmeasured, the estimated modal matrix can only be normalized to unity. This 

paper aims to identify the modal parameters of a rectangular beam, simulating “free-free” boundary 

condition in the excitation’s direction. The beam was instrumented with 9 accelerometers equidistantly 

arranged along the length and the excitation was through a multiple reference impact testing. The 

modal parameters were identified using the Polyreference Least Square Complex Frequency Domain 

method, considering two approaches: (i) EMA and (ii) O-OMA methods. Results from the EMA and 

O-OMA showed that the discrepancies between the natural frequencies were at most 0.5%, and all the 

vibration modes presented MAC values higher than 0.9. Experimental results were also compared with 

those obtained through a finite element model of the rectangular beam, showing small differences both 

in the natural frequencies and vibration modes. It is therefore concluded that the two approaches lead 

to good estimates of natural frequencies. As for the vibration modes, the modal matrices obtained by 

the two methods present a small difference, since the mass of the beam is small. 

Keywords: Output-Only Modal Analysis (O-OMA), Multiple Reference Impact Testing (MRIT); 

Polyreference Least Square Complex Frequency Domain (p-LSCF). 
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1  Introduction 

In engineering, the study of vibrations is extremely important, after all, any kind of structure is 

subject excitations by external forces. The vibrations can be caused, for example, by motors, fluids, 

winds, and waves, especially in the cases of ships and platforms. In some cases, the source of 

excitation, the input, is known, but in many cases, it is not possible to measure its value. Therefore, 

Experimental Modal Analysis (EMA) and Output-Only Modal Analysis (O-OMA) which aims at 

estimating the modal parameters (vibration modes, damping ratios and natural frequency), are vital to 

subsequent studies to prevent and prolong the life of any type of structure, minimizing the effects of 

fatigue and avoiding resonance (Zhi-Fang and Fu [1]. 

It is possible to estimate the modal parameters with EMA or O-OMA methodologies, regardless 

of the fact that the input excitation is not known for O-OMA. Examples of these estimates can be 

found in Orlowitz and Brandt [2]. Eventually, an analysis that uses excitation and output (vibration) 

measurements may be seem more reliable, since if the excitations are known, it is possible to do a full 

numerical validation. However, an analysis performed only with output measurements becomes more 

versatile, after all, it can be performed during a normal operation routine of a structure/equipment 

where, in many cases, the excitation forces are not known in advance. 

Theoretically, the modal parameters estimated by EMA and O-OMA techniques should be 

similar, unless the normalization of the modal matrices. In this work, to evaluate the results of using 

these two methodologies, an impact test was performed in an aluminum rectangular beam. During this 

experiment, care was taken to avoid influences from the external environment. 

The vibration time series obtained in the experiment were processed using the Polyreference 

Least Square Complex Frequency Domain (p-LSCF) method for EMA and O-OMA cases, thus 

obtaining natural frequencies, damping ratios and mode shapes estimates. Mode shapes were 

compared using MAC criterion. A finite element model (FEM) of the rectangular beam was developed 

and used for comparison purpose, at this research stage. In the future it will be used for performing 

model calibration. 

2  Polyreference Least Square Complex Frequency Domain (p-LSCF) 

The Least-Squares Complex Frequency-domain (LSCF) estimator can be viewed as a frequency-

domain implementation of the well-known Least-Squares Complex Exponential (LSCE) estimator. In 

this paper, the LSCF estimator used is a “poly-reference” estimator (p-LSCF), which means that a so-

called Right Matrix-Fraction Description (RMFD) was used to estimate the modal participation factor 

and the poles directly, as described in Peeters et al. [3]. 

2.1 Poles and Modal Participation Factors Estimation 

According to Peeters et al. [3], the relationship between output “o” (o = 1,…,No) and input “i” (i 

= 1,..,Ni ) can be modeled in the frequency domain by means of right matrix-fraction description 

(RMFD) as Peeters et al. [3]:  

 

 𝐇𝒐(𝜔) = 𝐍𝑜(𝜔)𝐃
−𝟏(𝜔) (1) 

With the numerator row-vector polynomial of output “o”: 

 
𝐍𝑜(𝜔) =∑𝛀𝑗(𝜔)𝐁𝑜𝑗

𝑛

𝑗=0

 (2) 

And the denominator matrix polynomial:  

 
𝐃(𝜔) =∑𝛀𝑗(𝜔)𝐀𝑗

𝑛

𝑗=0

 (3) 
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Several choices are possible for the polynomial basis 𝛀𝑗(𝜔). For a discrete-time domain model, 

functions 𝛀𝑗(𝜔) are usually given by: 

 𝛀𝑗(𝜔) = 𝑒
−𝑖𝜔𝑇𝑠∙𝑗 (4) 

Where 𝑇𝑠 is the sampling period. The matrix coefficients 𝐀𝑗 and 𝐁𝑜𝑗 are the parameters to be 

estimated. All these coefficients are grouped together in one matrix 𝛉 = [𝛃1
T, … , 𝛃N0

T , 𝜶T]
T
 with: 

 

 

𝐁𝑜𝑗 =

{
 
 

 
 
𝐁𝑜0
𝐁𝑜1
.
.
.

𝐁𝑜𝑛}
 
 

 
 

,   𝛂 =

{
 
 

 
 
𝐀0
𝐀1
.
.
.
𝐀𝑛}
 
 

 
 

 
(5) 

Estimates of the transfer-function matrix coefficients can be obtained by minimizing the weighted 

nonlinear least-squares (NLS) cost function with respect to the parameter matrix 𝛉. However, this 

WNLS problem can be approximated by a (sub-optimal) weighted linear least-squares (WLS) one, 

which is found by minimizing the cost function (Peeters et al. [3]): 

 

C𝐿𝑆(𝛉) = ∑ tr((𝛆0
𝐿𝑆(𝛉))

𝐻
∙ 𝛆0
𝐿𝑆(𝛉))

N0

𝑜=1

 
(6) 

With tr(⋅) the trace operator and where the (weighted) LS equation error, 𝛆0
𝐿𝑆(𝛉), which is linear 

in the parameters, is a row-vector defined as: 

 
𝛆0
𝐿𝑆(𝜔𝑓 , 𝛉) ≝ 𝛆0

𝐿𝑆(𝛉) = 𝑊𝑜(𝜔𝑓)∑(𝛀𝑗(𝜔𝑓)𝐁𝑜𝑗 −𝛀𝑗(𝜔𝑓)𝐇𝒐(𝜔𝑓)𝐀𝑗)

𝑛

𝑗=0

 (7) 

With 𝑊𝑜(𝜔𝑓) an arbitrary weighting function and 𝐇𝒐(𝜔𝑓) the o-th row of the FRF matrix. Eq. (7) 

can be reformulated in matrix notation as: 

 

𝛆0
𝐿𝑆(𝛉) = {

𝛆0
𝐿𝑆(𝜔1, 𝛉)

⋮

𝛆0
𝐿𝑆 (𝜔𝑁𝑓 , 𝛉)

} = [𝐗𝑜    𝐘𝑜] ∙ {
𝛃𝒐
𝛂
} (8) 

With: 

 

𝐗𝑜 = [

(𝑊𝑜(𝜔1)[𝛀0(𝜔1)⋯𝛀𝑛(𝜔1)])⨂𝐈𝑁𝑖
⋮

(𝑊𝑜 (𝜔𝑁𝑓) [𝛀0 (𝜔𝑁𝑓)⋯𝛀𝑛 (𝜔𝑁𝑓)])⨂𝐈𝑁𝑖

] (9) 

 

 

𝐘𝑜 = [

−(𝑊𝑜(𝜔1)[𝛀0(𝜔1)⋯𝛀𝑛(𝜔1)])⨂𝐇𝒐(𝜔1)
⋮

− (𝑊𝑜 (𝜔𝑁𝑓) [𝛀0 (𝜔𝑁𝑓)⋯𝛀𝑛 (𝜔𝑁𝑓)])⨂𝐇𝒐(𝜔𝑁𝑓)
] (10) 

 

Therefore, Eq. (6) can be rewritten as: 

 

 

C𝐿𝑆(𝛉) = ∑ tr ([𝛃𝑜
𝑇   𝛂𝑻 ] ∙ [

𝐑𝒐    𝐒𝒐
𝑺𝒐
𝑻    𝐓𝒐

] ∙ {
𝛃𝒐
𝛂
})

N0

𝑜=1

 
(11) 

 

With 𝐑𝒐 = 𝑅𝑒(𝐗𝑜
𝑇𝐗𝑜), 𝐒𝒐 = 𝑅𝑒(𝐗𝑜

𝑇𝐘𝑜) and 𝐓𝒐 = 𝑅𝑒(𝐘𝑜
𝐻𝐘𝑜). 

 

When the cost function (Eq. (11)) is minimum, the derivatives of with respect to the unknown 

matrix coefficients 𝛃𝒐 and 𝛂 will be zero, which leads to: 

 𝐌 ∙ 𝛂 = 𝟎 
(12) 
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With: 

 

𝐌 = [2∑(𝐓𝒐 − 𝑺𝒐
𝑻𝑹𝒐

−𝟏𝐒𝒐)

N0

𝑜=1

] (13) 

To remove the parameter redundancy of the RMFD transfer function model, Eq. (1), a constraint 

has to be imposed on the matrix coefficients. For instance, by imposing that the last matrix coefficient 

of 𝛂 is constrained to the identity matrix.  

Once 𝛂̂𝑳𝑺, the least-squares estimate of 𝛂, is known, 𝛃̂𝒐=−𝑹𝒐
−𝟏𝐒𝒐 ∙ 𝛂̂𝑳𝑺, can be used to derive all 

𝛃̂𝑳𝑺,𝒐 matrix coefficients. From the knowledge of the denominator matrix coefficients it is now 

possible to compute the poles and corresponding modal participation factors by computing the 

eigenvalue decomposition of the so-called companion matrix (Peeters et al. [3]). 

2.2 Mode Shape Estimation 

Once the poles (𝜆𝑚) together with the modal participation factors (𝐋𝒎) have been determined by 

means of a stabilization diagram, the well-known Least-Squares Frequency-Domain (LSFD) estimator 

can be used to directly estimate the mode shapes, 𝚿𝒎, (Peeters et al. [3]) occurring in: 

 

 

𝐇(𝑠) = ∑ (
𝚿𝒎 ∙ 𝐋𝒎

𝑇

𝑠 − 𝜆𝑚
+
𝚿𝒎
∗ ∙ 𝐋𝒎

𝐻

𝑠 − 𝜆𝑚
∗ ) +

𝐋𝐑

𝑠2
+ 𝐔𝐑

𝑁𝑚

𝑚=1

 
(14) 

Where LR is the lower residue, UR is the upper residue, 𝑁𝑚 is the number of modes; 𝜆𝑚 is the 

mth pole, and are related to the damping factor (𝜎𝑚), damped modal frequency (𝜔𝑑𝑚) and modal 

damping ratio (𝜁𝑚) as given in Eq. (15): 

 
 

𝜆𝑚 = −𝜎𝑚 + 𝑖𝜔𝑑𝑚 ; 𝜔𝑚 = √𝜎𝑚
2 +𝜔𝑑𝑚

2 ;  𝜁𝑚 =
𝜎𝑚

√𝜎𝑚
2 +𝜔𝑑𝑚

2
 (15) 

3  Experimental Procedure 

The objective of the experiment described in this article was to measure the inputs (excitation 

forces) and outputs (vibration responses) due to the impacts in a rectangular test beam. For this, the 

following equipment was used: 

 

• 01 B&K Model 8200 Impact Hammer (10.2 mV / N) 

• 09 Uniaxial Accelerometers (6 Kistlers, 2 Kjaer and 1 PCB) 

• A National Instruments Model NI 92334 Data Acquisition Card 

 

Table 1 presents the dimensional data of the rectangular aluminum beam.  

Table 1. Aluminum beam dimensions 

Dimensions Data 

Thickness 6.17 mm 

Width 25.42 mm 

Length 2145 mm 

  

The nine accelerometers were equally distributed and attached to the test beam used, with a 

distance of 268 mm between them. This arrangement is shown in Fig. 1. The test was performed using 

an impact hammer with a steel tip, which is best suited for the frequency range. The analysis was 
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limited to the range between 0 to 200 Hz, where 7 vibration modes were identified. The impacts were 

directed at the accelerometers position arranged on the test beam, defining the 09 degrees of freedom. 

During the experiment, care was taken to prevent beam movements and from being restricted in 

the direction of impact, as the purpose was to represent the beam boundary condition as free-free. 

 

 

 Figure 1. Rectangular aluminum beam used instrumented with 9 uniaxial accelerometers  

4  Result Analysis and Discussion 

The vibration time series obtained were processed using the LSCF method described in section 2. 

Natural frequency, damping ratios and mode shapes were estimate. In Table 2, results obtained for 

natural frequency and damping ratios are presented, for EMA and O-OMA, in the range between 0 and 

200 Hz. Table 1 also provides a comparison between the estimation obtained by O-OMA and EMA 

analyses. 

Table 2. Comparison between modal parameters obtained using the LSCF method for O-OMA and 

EMA analyses 

 O-OMA EMA Difference (%)  

Vibration 

Modes 

𝒇𝒏 [Hz]  𝜻𝒏 [%] 𝒇𝜼 [Hz]  𝜻𝒏  [%] 𝒇𝒏  𝜻𝒏  

1 6.324 1.84 6.326 1.82 0.03% 1.09% 

2 17.592 1.39 17.592 1.28 0.00% 7.91% 

3 34.035 0.44 34.205 0.57 0.49% 22,8% 

4 56.623 0.75 56.846 0.67 0.39% 10.67% 

5 84.608 0.61 84.811 0.69 0.24% 13.12% 

6 119.381 0.38 119.407 0.35 0.02% 7.90% 

7 153.972 0.26 153.986 0.31 0.01% 19.23% 

 

In relation to the natural frequencies, it can be seen that the differences between results found 

using EMA and O-OMA are not larger than 1%, as shown in table 1. 

Regarding the experimentally obtained damping ratios, it can be seen that the differences is 

considerably larger than those of natural frequencies. It is known that damping ratios estimation are 

much more susceptible to noise than the natural frequencies. 
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Another comparison was made using a FEM of the rectangular beam. Table 3 shows the natural 

frequencies calculated for a simple beam in free-free boundary condition. It also shows the difference 

between FEM and O-OMA results. 

Table 3. Comparison between natural frequencies obtained using O-OMA and FEM analyses 

 
FEM O-OMA 

Difference 

(%) 

Vibration 

Modes 

𝒇𝒏 [Hz] 𝒇𝒏 [Hz]  𝒇𝒏 [Hz] 

1 6.26 6.324 1.02% 

2 17.528 17.592 0.37% 

3 34.43 34.035 1.15% 

4 56.966 56.623 0.60% 

5 85.136 84.608 0.62% 

6 118.94 119.381 0.37% 

7 153.996 153.972 0.02% 

 

Table 4 shows the natural frequencies calculated for a simple beam in free-free boundary 

condition. It also shows the difference between FEM and EMA results. 

It can be noted that all natural frequencies in the frequency range of 0 to 200 Hz were 

experimentally identified, mainly because the hammer tip material used was suitable for the desired 

frequency range. 

 

Table 4. Comparison between natural frequencies obtained using EMA and FEM analyses 

 
FEM EMA 

Difference 

(%) 

Vibration 

Modes 

𝒇𝒏 [Hz] 𝒇𝒏 [Hz]  𝒇𝒏 [Hz] 

1 6.26 6.326 1.05% 

2 17.528 17.592 0.37% 

3 34.43 34.205 0.65% 

4 56.966 56.846 0.21% 

5 85.136 84.811 0.38% 

6 118.94 119.407 0.39% 

7 153.996 153.986 0.01% 

 

It can also be observed that the largest difference between the natural frequencies obtained by 

experimental and FEM analyses is 1.15%, as shown in Tables 3 and 4. This difference can be 

attributed to modeling issues and can be corrected by numerical model calibration. 

The mode shapes obtained using O-OMA, EMA, FEM and analytical analyses are presented in 

Fig. (2). It is possible to visually compare the results and see that experimental mode shapes are well 

correlated to the numerical and analytical ones. 

A small difference in mode shapes amplitudes can be seen in Fig. (2) between EMA (in blue) and 

O-OMA (in red) results. This is because the modal matrix from EMA analysis is already mass-

normalized, while the modal matrix from O-OMA analysis is normalized to unity. For this reason, 

mode shapes from O-OMA analysis cannot be used for load estimation, for instance, unless mass-

normalization are done. 
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Figure 2. Mode shapes obtained using O-OMA, EMA, FEM and analytical analyses 
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By analyzing the vibration modes found experimentally (with EMA and O-OMA) and those 

obtained from the numerical model, it is noted that all seven mode shapes are well correlated. This 

statement can also be verified by noting high MAC values in the main diagonal of Fig. (3a,b,c), 

normally greater than 0.9 and lower values in the off-diagonal elements, typically below 0.1.   

 

 

Figure 3. MAC Chart for mode shapes comparison 
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5  Conclusion 

After performing impact test experiment using a rectangular beam, two types of modal analysis 

methodologies were used in order to estimate the modal parameters: one using only the output 

vibration measurement, and another using the input (force excitation) and output (vibration) 

measurement. After, a comparison was made between their results. In this comparison, it is noted that 

the difference between the natural frequency estimations of both analyses does not exceed 1%. So, it 

can be concluded that both methodologies, EMA and O-OMA, have the same level of precision in 

calculating natural frequencies. 

Regarding the damping ratios, it can be seen that the differences are bigger between the two 

methodologies. It is known that damping is more susceptible to measurement noises and still the 

object of many researches. 

In addition, a numerical model was also used in order to obtain another comparison criterion. It is 

observed that the largest difference (for natural frequency) between experimental analysis and 

numerical model is 1.15%. As this value can be considered negligible, it was concluded that the 

numerical model results were compatible with the experimental estimations, thus considering that 

model valid. 

Regarding the vibration modes, when making a comparison using MAC as a criterion, we see that 

the mode shapes from experimental analyses and those from the numerical model are all well 

correlated with each other, since all have MAC values greater than 0.9. Vibration modes from the 

EMA and O-OMA analyses show a small difference in their amplitude, and this can be explained as 

modal matrix from EMA are already mass-normalized, whereas the modal matrix from O-OMA is 

normalized to unity. 

Finally, it can be concluded that EMA and O-OMA analyses have the same precision in 

calculating natural frequencies, but caution must be used when using results from damping ratios (for 

both methods) and the modal matrix from O-OMA tests. 
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