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Abstract. The SSI-COV method (Covariance-driven Stochastic Subspace Identification) is a technique 

within time domain modal identification methods that uses ambient vibrations as the input forces for the 

identification of modal parameters (natural frequencies, damping ratios and vibration modes). In this 

method two alternatives are available for the identification of the state space transition matrix: a) 

applying the decomposition property of a shifted block Toeplitz correlation matrix or b) by applying the 

shift property of the observability matrix. In this research, the SSI-COV was applied for the 

determination of dynamic characteristics (natural frequencies and damping ratios) of a concrete block 

of the Itaipú Hydroelectric Dam. This dam is equipped with a monitoring system, currently in operation, 

which collects acceleration data.  For the implementation, the method was programmed in the Python 

language and validated through two types of simulations in which the sensitivity of the method was 

evaluated. Then, for the identification of modal parameters of the concrete block, it was applied to the 

acceleration records from a sensor installed in it the two alternatives for identification. Finally, the 

obtained results from the two variants to compute the state transition matrix allowed us to define that 

applying the shift property of the observability matrix is more advantageous in terms of data accuracy 

and computational cost. 

Keywords: Identification, concrete block, modal parameters. 

1  Introduction 

Due to the growth in the construction of large civil structures, it has become necessary to develop 

structural monitoring systems that allow real-time data to be obtained directly from the structure and 

thus support decisions that lead to keeping the structures at a high level of performance and safety [1]. 

Furthermore, due to technological advances in the treatment of information and sensors, the control of 

structures that were usually carried out by visual inspection techniques evolved with the emergence of 

new non-destructive methodologies based on different approaches such as deformations, stresses, 

acoustic emissions, ambient vibrations, etc [2]. 

 

mailto:ivan.araujo@unila.edu.br
mailto:jesus.villalba@javeriana.edu.co


Numerical analisis and application on covariance-driven stochastic subspace method in modal parameters identification 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

Civil structures are excited by ambient vibrations (traffic, wind, microseisms). Methods based on 

this type of vibration allow the identification of the modal parameters of the structure (natural 

frequencies, damping ratios, vibration modes), based on the response of the excitation produced by the 

ambient, i.e. the modal identification is carried out under normal operating conditions, which is more 

advantageous in comparison with other methods [3,4]. These modal identification methods are based on 

the hypothesis that significant changes in the modal parameters of the structure provide information 

about structural health, because the modal properties are associated with the physical properties of the 

structure (mass, stiffness, damping). 

 

According to Cunha et al. [5], methods using ambient vibrations assume that the input excitation 

is a white noise with an average Gaussian distribution of zero. Currently, these modal identification 

methods are divided into two main groups: Frequency domain and time domain methods [6]. The 

frequency domain methods can be non-parametric methods, while the methods in the time domain are 

all parametric methods. The time domain methods adjust mathematical models to dynamically idealize 

the system and are more efficient at automating the calculation, which is advantageous when a 

considerable amount of data is available. In the group of methods in the frequency domain, Frequency 

Domain Decomposition (FDD) [7] and Poly-Least Squares Complex Frequency Domain (P-LSCF) [8] 

are the two methods commonly used in the application of civil structures. On the other hand, SSI-COV 

and SSI-DATA are two methods that perform good in the time domain [9]. 

 

The Stochastic Subspace Identification SSI-COV method [9], has been applied in the identification 

of modal parameters in dams [1,10], bridges [11,12,13], wind towers [14] and buildings [15]. This 

method is based on covariance matrices of the measured structural responses time series, which are 

organized in a Toeplitz matrix. The corresponding algorithm explores the properties of stochastic 

systems [16] and involves the performance of a singular value decomposition and the resolution of a 

least-squares equation using Moore-Penrose pseudo-inverse [9]. In short, the main purpose of the SSI-

COV is to identify a transition matrix A, which contains all the modal information. There are available 

two ways to compute this matrix A. The first one applying the shift property of the observability matrix 

[17] and the second applying the decomposition property of a shifted block Toeplitz correlation matrix. 

[18].  

 

In this work, the SSI-COV method is applied to identify the natural frequencies and damping ratios 

of a concrete block of the Itaipú Hydroelectric Dam. The transition matrix A will be computed in the 

two ways described above with the aim of establishing if any of them offers advantages in terms of 

precision and computational cost. 

 

2  Covariance-driven stochastic subspace method 

The stochastic state-space model for a structure that is being excited by unmeasurable stochastic 

input forces has the following form: 

{𝑥𝑘+1} = [𝐴]{𝑥𝑘} + {𝑤𝑘}, (1) 

{𝑦𝑘} = [𝐶]{𝑥𝑘} + {𝑣𝑘} , 
 

(2) 

where {𝑥𝑘}  ∈  ℛ2𝑛𝑥1 is the state vector and {𝑦𝑘}  ∈  ℛ𝑙𝑥1 is the measurement vector, {𝑤𝑘} and {𝑣𝑘} are 

unknown, nonetheless it is assumed that they have a discrete white noise nature with expected value 

equal to zero and that they have covariance matrices equal to: 

 

𝐸 [(
𝑤𝑝

𝑣𝑝
) (𝑤𝑝

𝑇 𝑣𝑞
𝑇)] = (

𝑄 𝑆

𝑆𝑇 𝑅
)𝛿𝑝𝑞, (3) 
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where 𝐸 is the expected value operator and 𝛿𝑝𝑞 is the Kronecker delta. The sub-indices in Eq. (1) and 

Eq. (2), correspond to discrete time sample numbering, related to the time through 𝑡 = (𝑘 − 1)𝑓𝑠
−1

, 

where 𝑓𝑠 is the sampling frequency. The purpose of the SSI-COV algorithm is to identify the transition 

matrix A which contains all the modal information. The starting point of the method is to establish the 

data Hankel data matrix Eq. (4) and then form the block Toeplitz matrix by a multiplication between 

future and transpose of past measurements Eq (5). 

 

[𝐻] =  
1

√𝑁

[
 
 
 
 
 
 

𝑦1

𝑦2
⋯
𝑦𝑖

𝑦2

𝑦3
⋯

𝑦𝑖+1

⋯
⋯
⋯
⋯

𝑦𝑁

𝑦𝑁+1
⋯

𝑦𝑖+𝑁−1
𝑦𝑖+1

𝑦𝑖+1
⋯
𝑦2𝑖

𝑦𝑖+2

𝑦𝑖+3
⋯

𝑦2𝑖+1

⋯
⋯
⋯
⋯

𝑦𝑖+𝑁

𝑦𝑖+𝑁+1
⋯

𝑦2𝑖+𝑁−1]
 
 
 
 
 
 

=  [
𝑌𝑝

𝑌𝑓
]  , (4) 

 

[𝑇]
1│𝑖

= [

[𝑅𝑖]

[𝑅𝑖+1]
⋯

[𝑅2𝑖−1]

[𝑅𝑖−1]

[𝑅𝑖]
⋯

[𝑅2𝑖−2]

⋯
⋯
⋯
⋯

[𝑅1]

[𝑅2]
⋯

[𝑅𝑖]

] =  𝑌𝑓(𝑌𝑝)
𝑇

, 
(5) 

 

where 𝑌𝑝 denotes the past measurements and 𝑌𝑓 denotes for the future measurements. The discrete 

correlation matrix with time lag 𝑖 is defined as 𝑅𝑖 and has the following factorization properties: 

 

[𝑅𝑖] = 𝐸[{𝑦𝑘}{𝑦𝑘−𝑖}
𝑇] = 𝐶𝐴𝑖−1𝐺, (6) 

where 𝐺 is the next-step state and output covariance matrix 𝐺 = 𝐸[𝑥𝑘+1𝑦𝑘
𝑇]. The discrete correlation 

matrix can be estimated by employing FFT and IFFT or implemented with the Python function 

numpy.correlate, without normalization. 

 

The Toeplitz matrix can be factorized into the extended observability matrix 𝑂𝑖  𝜖 ℛ
𝑙𝑖𝑥2𝑛 and the 

reversed extended stochastic controllability matrix 𝛤𝑖  𝜖 ℛ
2𝑛𝑥𝑙𝑖, as show below: 

 

[𝑇]
1│𝑖

= 𝑂𝑖𝛤𝑖 = [

𝐶
𝐶𝐴
⋯

𝐶𝐴𝑖−1

] [𝐴𝑖−1𝐺 ⋯ 𝐴𝐺 𝐺]. (7) 

 

As the rank of  𝑂𝑖 and 𝛤𝑖 is 2n, then of Eq. (7) it can be concluded that the rank of [𝑇]
1│𝑖

 is also 2n. 

The rank of [𝑇]
1│𝑖

 is not less than 2n due to the noises in the observed data. Generally, singular values 

caused by noise are much lower than those caused by true data. To reduce the effects of noise, it is used 

the truncated decomposition of singular values, which converts the singular values caused by noise into 

zeros. This is a common method used in signal processing. Then, [𝑇]
1│𝑖

 can be written as a 

decomposition of singular values in the following way: 

 

𝑇
1│𝑖

= 𝑈𝑆𝑉𝑇 = [𝑈1 𝑈2] [
𝑆1 0
0 𝑆2

] [
𝑉1

𝑉2
]
𝑇

= 𝑈1𝑆1𝑉1
𝑇, (8) 

 

where 𝑈 and 𝑉 are orthonormal matrices, and S is a diagonal matrix containing positive singular values 

in descending order. The comparison of Eq. (7) and (8) shows that the observability and the 

controllability matrices can be calculated from the outputs of the SVD using, for instance, the following 

partition of the singular values matrix: 
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𝑂𝑖 = 𝑈1𝑆1
1/2, (9) 

𝛤𝑖 = 𝑆1
1/2𝑉1

𝑇. 

 

(10) 

From 𝑂𝑖 matrices A and C can be obtained easily. The system matrix A can be computed by 

exploiting the shift structure of the extended observability matrix [19]: 

 

[

𝐶𝐴
𝐶𝐴2

⋯
𝐶𝐴𝑖

] =  [

𝐶
𝐶𝐴
⋯

𝐶𝐴𝑖−1

]𝐴 ⟺  𝐴 =  [

𝐶
𝐶𝐴
⋯

𝐶𝐴𝑖−1

]

+

[

𝐶𝐴
𝐶𝐴2

⋯
𝐶𝐴𝑖

] = 𝑂𝑖(1: 𝑙(𝑖 − 1), : )+𝑂𝑖(𝑙 + 1: 𝑙𝑖, : ), 

 

(11) 

where + represents the Moore-Penrose pseudo-inverse of a matrix, which is used to solve least squares 

problems (minimizes the sum of the squared errors of the individual equations of an overdetermined 

system of equations).   

 

A second possible way to compute the state transition matrix 𝐴 [18] follows from the decomposition 

property of a shifted block Toeplitz matrix: 

 

𝑇
2│𝑖+1

= 𝑂𝑖𝐴𝛤𝑖  , (12) 

 

where the shifted matrix 𝑇
2│𝑖+1

 has a similar structure as 𝑇
1│𝑖

, but is composed of covariances 𝑅𝑘 from 

lag 2 to 2i. Matrix 𝐴 is found by introducing Eq. (9), Eq. (10) in Eq. (12)  and solving for 𝐴: 

 

𝐴 =  𝑂𝑖
+𝑇

2│𝑖+1
𝛤𝑖

+ = 𝑆1
−1/2𝑈1

𝑇𝑇
2│𝑖+1

𝑉1𝑆1
−1/2 , (13) 

 

where + denotes the Moore-Penrose pseudo-inverse of a matrix. Matrix C, can be calculated with the 

following way: 

 

[𝐶] = 𝑂𝑖(1: 𝑙, : ), (14) 

 

Finally, modal parameters can be obtained from matrices A and C. First, the eigenvalues of A, which 

are the poles of the discrete-time state-space model, have to be related with poles of the continuous-time 

model 𝜆𝑘. Then the poles with a positive imaginary component are used to obtain natural frequencies 

(𝑓𝑘) and modal damping ratios (𝜉𝑘) [12] and the observed modes, can be computed with Eq. (18),  where 
[𝜓], is eigenvector matrix of A. 

 

𝜆𝑘 =
𝑙𝑛(𝜇𝑘)

∆𝑡
 , (15) 

 

𝑓𝑘 =
│𝜆𝑘│

2𝜋
 , 

(16) 

 

𝜉𝑘 = −
𝑅𝑒(𝜆𝑘)

│𝜆𝑘│
, (17) 

 
[𝑉] = [𝐶][𝜓]. 

(18) 
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2.1 Stabilization of poles 

In the SSI-COV method, the system order is indicated by the non-zero singular values of the 

Toeplitz matrix 𝑇
1│𝑖

. In practice, the order can be determined by looking at a gap between two 

successive singular values [9], however, according to Reynders et al. [19], even the higher singular 

values that should be zero, in practice present some residual values due to the presence of noise in the 

system which is also reflected on the output measurements. To overcome this difficulty, it is common 

to construct a stabilization diagram. The stabilization diagrams are used to discriminate spurious modes, 

as often these do not achieve stabilization criteria as in the case of the physical poles. Other spurious 

poles can be identified and eliminated according to physical criteria [20]. For a model order equal to 𝑛∗, 

the resulting poles 𝑚∗ are compared with all poles in preceding orders 𝑛 = 𝑛∗ − 𝜎 , where 𝜎 =
1,2,3, . . , 𝑠 and  𝑠 is a positive integer that defines the required stability level [11]. 

If the comparison of eigenfrequencies, damping ratios and mode shapes are within the present 

criteria, then the pole is considered stable. For the present study, the criteria to satisfy are: 

 

 

│𝑓𝑛∗,𝑚∗ − 𝑓𝑛,𝑚│ ∗ 100

𝑓𝑛∗,𝑚∗
 ≤ 1% (19) 

 

│𝜉𝑛∗,𝑚∗ − 𝜉𝑛,𝑚│ ∗ 100

𝜉𝑛∗,𝑚∗
 ≤ 5% 

(20) 

 

100 ∗ (1 − 𝑀𝐴𝐶({𝑉𝑛∗,𝑚∗}, {𝑉𝑛,𝑚})) ≤ 2%. 
(21) 

 

 

Figure 1 shows that applying the decomposition of singular values of the block Toeplitz matrix 

𝑛𝑦𝑖 𝑏𝑦 𝑛𝑦𝑖 of output covariances, produces three 𝑛𝑦𝑖 𝑏𝑦 𝑛𝑦𝑖 matrices. Afterwards a variable even 

number of singular values (2m1 < 2m2) is successively chosen to reconstruct the system matrices 

𝑂, 𝛤, 𝐴, 𝐶 and then the modal parameters are estimated through Eqs. (15), (16), (17) and (18). In the 

figure, two cases are shown: the choice of 2m2 singular values, leads to m2 modes estimates, while the 

choice of 2m1 singular values leads to m1 modes estimates. Thereafter, those parameters satisfying the 

stability criteria described by Eqs. (19), (20) and (21) are plotted in the stabilization diagram and the 

arising vertical alignments of stable poles are representing the physical modes of the model [21]. 

 

 
Figure 1. SSI-COV method: Construction of stabilization diagram 
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2.2 Validation of SSI-COV method  

 

To validate the method, a simulation of experimental data was performed in the programming 

language Python in order to obtain data similar to those that would be obtained in a dynamic test of 

measurement of ambient vibrations. This allowed to compare the exact characteristics of the structural 

model considered in the simulation, which was a beam simply supported at its ends, discretized in 6 

elements, each one with length of 1 𝑚 (Fig 2). A square section of 0.15 𝑚 was set, a modulus of 

elasticity of the material equal to 1.787 ∗ 1010  
𝑁

𝑚2 and concentrated masses in the vertical directions 

equal to 288.36 𝐾𝑔. In order to reduce the size of the problem the axial degrees of freedom were not 

considered, and the rotational degrees of freedom were condensed to 5 vertical degrees of freedom [22].  

 

Figure 2. Structural model with five degrees of freedom 

From the geometric and material properties, the matrices of masses M and stiffness K of the 

structure were determined, which turned out to have a size of 5x5 each one. A constant modal damping 

ratio of 2% is assumed for all modes i. The eigenfrequencies and damping ratios are given in Table 1 

and the corresponding eigenmodes are shown in Fig. 3. 

Table 1. First five eigenfrequencies f and damping ratios 𝛏 of the simply supported beam 

 

# f [Hz] 𝛏 [%] 

1 2.231 2 

2 8.915 2 

3 19.933 2 

4 34.526 2 

5 49.398 2 
 

Time series of vertical accelerations were created in each of the degrees of freedom. These 

accelerations were obtained from a random excitation. To represent the random vibration, a time series 

of white noise (mean zero and unit variance) was set with a duration of 5 minutes at a sampling frequency 

of 400 Hz.  

Figure 3. First five mode shapes of the simply supported beam 
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In order to evaluate the sensitivity of the SSI-COV method, 2 types of simulations were performed, 

in the first, the noise effect was evaluated, a noise with a mean equal to zero and a variance equal to the 

intensity of the noise was introduced to the response vector. Three different noise levels were 

considered: 𝑆𝑁𝑅  = 14 𝑑𝐵, 𝑆𝑁𝑅 = 22 𝑑𝐵, and 𝑆𝑁𝑅 = 30 𝑑𝐵, where SNR is the Signal-to-noise ratio. 

In the second simulation was evaluated the time duration. In this case, the frequency was maintained at 

400 Hz and the random vibration was re-established for 100, 300 and 500 seconds and a 𝑆𝑁𝑅 = 10 𝑑𝐵 

was set. As it was required to identify 5 modes, in the two simulations a maximum order of nmax = 10 

was used. Stabilization was performed for orders equal to n = 2,4,… ,40 with a stability level of s = 1 

and the stability criteria detailed in Eq. (19), (20), and (21). 

 

Tables 2, 3 and 4 show the parameters identified in the structure that were obtained through the 

noise contaminated responses. A high value of SNR indicate that a small amount of signal noise is added 

to the vibration, while a low SNR indicates that the signal is noise dominant. In practice, acceleration 

records are frequently contaminated with noise, which can lead to increased error in the estimated modal 

parameters. The damping is highly sensitive to the quality of the estimated correlation function, which 

may be distorted by signal noise [14]. This can be seen in the parameters identified: natural frequencies 

and vibration modes presented low and acceptable errors compared to damping ratios specifically by 

tracking mode 5, it can be clearly observed how the error increases in magnitude as noise increases. 

 

Table 2. Frequencies identified in the first simulation 

 

Noise Mode fmean [Hz] fstd [Hz] Error[%] 

(No-noise) 

1 2.229 8.375e-05 0.050 

2 8.918 0.000755 0.038 

3 19.929 0.001835 0.019 

4 34.518 0.005303 0.022 

5 49.406 0.00644 0.017 

 

(SNR 30) 

1 2.2197 0.000566 0.503 

2 8.9102 0.003763 0.053 

3 19.951 0.001170 0.095 

4 34.619 0.003978 0.270 

5 49.503 0.001267 0.213 

 

(SNR 22) 

1 2.2209 0.001267 0.453 

2 8.9004 0.001929 0.164 

3 19.917 0.003896 0.080 

4 34.601 0.002114 0.217 

5 49.678 0.001376 0.567 

 

(SNR 14) 

1 2.234 0.00154 0.146 

2 8.905 0.00500 0.104 

3 19.973 0.004838 0.202 

4 35.563 0.264314 3.006 

5 50.343 0.001547 1.914 

 

Table 3. MAC obtained in the first simulation 

 

Mode (No-noise) (SNR 30)  (SNR 22) (SNR 14) 

1 100% 99.76%  99.45% 99.6% 

2 100% 99.98%  98.67% 98.9% 

3 100% 99.93%  99.87% 99.9% 

4 100% 99.9%  99.37% 97.65% 

5 100% 100%  99.9% 96.45% 
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Table 4. Damping ratios identified in the first simulation 

 

Noise Mode 𝛏 mean [%] 𝛏 std [%] Error[%] 

(No-noise) 

1 2.010 3.997E-03 0.50 

2 2.032 2.577E-03 1.60 

3 2.054 9.410E-03 2.70 

4 2.020 4.305E-03 1.00 

5 2.005 9.314E-03 0.232 

 

(SNR 30) 

1 1.856 0.0166 7.219 

2 1.956 0.0239 2.207 

3 2.147 0.0086 7.327 

4 2.136 0.0289 6.780 

5 2.549 0.0134 27.429 

 

(SNR 22) 

1 2.132 0.0281 6.625 

2 2.129 0.0321 6.451 

3 1.856 0.0150 7.154 

4 2.116 0.0218 5.808 

5 3.366 0.0389 68.339 

 

 (SNR 14) 

1 1.855 0.0898 7.206 

2 1.917 0.0111 4.145 

3 2.118 0.0329 5.902 

4 3.753 0.0567 87.650 

1 1.855 0.0898 7.206 

 

       In the SSI-COV method, the time duration is assumed infinite long, however, infinite data is not 

possible in reality. The second simulation was carried out in order to violate that assumption. Tables 5, 

6 and 7 show the parameters identified by performing three variations in measurement duration.  Results 

again show that the method is robust in identifying natural frequencies and vibration modes. In the case 

of damping ratios, it is shown that time duration affects the estimate of this parameter. A shortening of 

the duration of the vibration records yield an increase in the bias and variance error for the correlation 

function estimates [14].  

 

 

Table 5. Frequencies identified in the second simulation 

 

Time duration Mode fmean [Hz] fstd [Hz] Error[%] 

100 [Sec] 

1 2.235 0.000769 0.203 

2 8.903 0.010457 0.133 

3 19.948 0.121414 0.078 

4 35.280 0.571537 2.184 

5 51.678 0.79612 4.617 

 

300 [Sec] 

1 2.226 0.00141 0.1916 

2 8.916 0.00253 0.0127 

3 19.984 0.02258 0.2557 

4 34.509 0.15816 0.0494 

5 49.833 0.25417 0.8806 

 

600 [Sec] 

1 2.2382 0.000259 0.3227 

2 8.9220 0.009725 0.0785 

3 19.954 0.010024 0.1053 

4 34.386 0.029387 0.4054 

5 49.456 0.18937 0.1174 
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In table 7, it is observed that for mode 5 the method failed to identify the damping rate when time 

duration was 100 [sec] and 300 [sec] also errors decreased as duration increased. Finally, the two 

simulations carried out allowed to determine that the damping ratios are the most sensitive parameter 

due to the changes in the correlation function and the similarity between the identified parameters and 

the theoretical values made it possible to validate the method. 

 

 

 

Table 6. MAC obtained in the second simulation 

 

Mode 100 [Sec] 300 [Sec] 600 [Sec] 

1 97.36% 99.90% 99.95% 

2 98.95% 99.36% 99.95% 

3 98.76% 98.90& 98.97% 

4 99.13% 99.20% 99.56% 

5 99.24% 99.50% 100% 

 

 

 

Table 7. Damping ratios identified in the second simulation 

 

Time duration Mode 𝛏 mean [%] 𝛏 std [%] Error[%] 

100 [Sec] 

1 2.4934 0.0282 24.667 

2 1.9682 0.0174 1.5920 

3 2.3380 0.2135 16.902 

4 3.7800 0.2621 89.000 

5 - - - 

 

 300 [Sec] 

1 2.2513 0.0108 12.563 

2 2.0218 0.0364 1.088 

3 1.9681 0.0927 1.5971 

4 2.5124 0.0886 25.619 

5 - - - 

 

600 [Sec] 

1 1.9338 0.0203 3.3120 

2 1.9881 0.0157 0.5952 

3 2.0230 0.0171 1.1479 

4 2.0040 0.0141 0.2003 

5 2.7361 0.0457 36.805 

 

3  Brief description of the case study 

The SSI-COV method was implemented to identify frequencies and damping ratios of the D38 

concrete block of the Itaipú Hydroelectric Dam. This block is located in section D of the dam as shown 

presented in Fig. 4, and it’s equipped with a 3-channel sensor. This sensor is configured to acquire 

acceleration signals with a sampling frequency of 200 Hz and produce 24-hour time series. To apply the 

method, data of 19/05/2019 were collected from 10:00 a.m. to 10:30 a.m. with a total of 360000 samples 

in each direction (Longitudinal, transversal and vertical). Fig. 5 shows the time history of collected 

acceleration. As the block is only equipped with only one sensor, the information was not enough to 

identify vibration modes. 
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Figure 4. Itaipú accelerograph network (CEASB, 2019) 

 

 

 
(a) Longitudinal direction 

 

 
(b) Transversal direction 

 

 
(c) Vertical direction 

 

Figure 5. Acceleration time series 

 

 



Y. Ardila, I. Gómez, J. Villalba, L. Aracayo 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

3.1    Data preprocessing 

The acceleration data measured in block D38 were pre-processed for assessing the frequency 

content of the response in the recordings. First, the obtain dataset were decimated in order to obtain a 

final sampling frequency of 40 Hz. Then, the power spectral densities (PSD) of each signal was 

determined using the Welch’s method. The power spectral density of the signal is suitable to represent 

transient signals that are similar to pulsation and with total finite energy [12]. PSD of the signal can be 

determined by: 

 

𝐺𝑥𝑥(𝑓) =
2

𝑇
𝐸[│𝑋(𝑓, 𝑇)│2], (22) 

where 𝐸 is a mathematical expectancy, 𝑓 is the frequency, 𝑋(𝑓, 𝑇) is the finite Fourier transform of the 

signal 𝑥(𝑡) in a window of duration T, determined by: 

 

𝑋(𝑓, 𝑇) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
𝑇

0

, (23) 

 

where 𝑖 = √−1 the imaginary number and 𝑡 the time.  

 

Figure 6. shows the PSDs of the vibration signals measured by the ACL03-D38 accelerometer. 

Python 3.7's signal.welch function was used in the analysis, with the following input variables: 

acceleration times series with a duration of 30 minutes, the sampling frequency (Fs = 40 Hz), Window 

(hanning), length of each segment (nperseg = 2048), Number of points to overlap between segments 

(noverlap = 1024), length of the FFT (nfft = 2048). 

 

 

 
 

Figure 6. PSDs of ACL03-D38 
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The Averaged Normalized Power Spectral Density (ANPSD) [24], is useful for avoiding the 

analysis of several graphs in each degree of freedom instrumented. The ANPSD can be determined as: 

 

𝐴𝑁𝑃𝑆𝐷(𝑤) =
1

𝑙
∑ 𝑁𝑃𝑆𝐷𝑖(𝑤)𝑙

𝑖=1 , (24) 

 

Where 𝑙 is the number of degrees of freedom instrumented and 𝑁𝑃𝑆𝐷𝑖 are the normalized spectra, 

which are obtained by dividing the estimate of the 𝑃𝑆𝐷𝑖 by the sum of their N ordinates.  

 

 

𝑁𝑃𝑆𝐷𝑖(𝑤) =
𝑃𝑆𝐷𝑖(𝑤)

∑ 𝑃𝑆𝐷(𝑤𝑘)𝑁
𝑘=1

. (25) 

 

 

With the calculated spectral density functions, the ANPSD standardized mean spectrum is 

determined. The spectrum presented in Fig. 7 corresponds to the mean of the PSDs shown in Fig. 6, 

normalized according to equation (24). 

 

 

 
 

Figure 7. ANPSD of ACL03-D38 

4  Results and discussion 

The most important aspect observed in this application was the identification of the maximum order 

of the model order. In order to identify the frequencies and damping rat in the concrete block, different 

executions of the algorithm were carried with different orders. This methodology was performed 

because it was not possible to identify in the singular values diagram in Fig. 8. a gap between two 

successive singular values. In all executions, a stability level of s=2 and n = 2,4, … ,150 was used. The 

set of values adopted for the maximum order were: nmax = [10,20,30,… ,60] and to compute the state 

transition matrix 𝐴 was used Eq. (11). 
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Figure 8. Singular values diagram 

 

Figure 9. and 10, shows the stabilization diagrams obtained for each case. ANPSD it is plotted over 

the stabilization diagram as a visual aid to select the stable frequencies. The stabilization criteria used 

were those detailed in the Eq. (19) and Eq. (20). Using different orders, it could be observed that values 

higher than nmax = 40, leads to the appearance of spurious modes associated to the noise content of 

measurements. For the case study, it was determined that a value of nmax = 30 was suitable, thus, the 

SSI-COV method provided information of the first 14 vibration modes. Figure 11., shows a zoom of the 

stabilization diagram using nmax = 30, for orders between 80 and 150, in which stabilization was 

achieved. Also, can be observed in Fig. 11 that SSI-COV method is able to correctly identify closely 

spaced modes, for example, those close to 8 [Hz].  

 

 

 

 

Figure 9. Stabilization diagram for different nmax values: 10, 20 
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Figure 10. Stabilization diagram for different nmax values: 30, 40, 50, 60 

 

 
Figure 11. Stabilization diagram for nmax = 30 
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After the value of  nmax was set, the identification process was performed computed the state 

transition matrix 𝐴 as described in Eq. (13). Tables 8 and 9 show the identified parameters using 

statistical parameters such as minimum and maximum values, mean and their corresponding standard 

deviation.  Frequency 1. and Damping 1. refers to the frequencies and damping ratios obtained by 

computed matrix 𝐴 with Eq. (11), while Frequency 2. and Damping 2. refers to the parameters obtained 

by computed matrix  𝐴 with Eq. (13). The natural frequencies identified in the two cases are very similar; 

however, those obtained using Eq. (11) show less variability than those obtained with Eq. (13). For each 

mode, the relative standard deviation of case 1 is lower than case 2. The maximum relative standard 

deviation for the two cases was presented in the mode 3, for case 1. was 0.25%, while for case 2. was 

0.59%. 

 

Table 8. Frequencies identified in the concrete block D38. 

 

Mode 
Case 1. Frequency 1. [Hz] Case 2. Frequency 2. [Hz] 

𝑓[𝑀𝑖𝑛;𝑀𝑎𝑥] 𝑓𝑚𝑒𝑎𝑛 𝑓𝑠𝑡𝑑 𝑓[𝑀𝑖𝑛;𝑀𝑎𝑥] 𝑓𝑚𝑒𝑎𝑛 𝑓𝑠𝑡𝑑 

1 [6.0357; 6.0570] 6.0520 0.00036 [6.0354; 6.0570] 6.0525 0.00627 

2 [6.4356; 6.4531] 6.4465 0.00395 [6.4349; 6.4534] 6.4458 0.00527 

3 [6.6991; 6.8224] 6.7361 0.01748 [6.6983; 6.8227] 6.7362 0.03958 

4 [7.5166; 7.5696] 7.5604 0.00169 [7.5212; 7.5694] 7.5609 0.00917 

5 [8.1546; 8.1756] 8.1695 0.00032 [8.1544; 8.1757] 8.1695 0.00428 

6 [8.2436; 8.2843] 8.2677 0.00174 [8.2413; 8.2847] 8.2687 0.01156 

7 [8.7583; 8.7801] 8.7713 0.00271 [8.7581; 8.7803] 8.7716 0.00555 

8 [9.2609; 9.3033] 9.2774 0.00060 [9.2672; 9.2834] 9.2779 0.00393 

9 [9.4984; 9.6732] 9.5514 0.00445 [9.4964; 9.6729] 9.5492 0.04640 

10 [10.4843; 10.633] 10.5447 0.00193 [10.4820; 10.6317] 10.5413 0.03754 

11 [10.6496; 10.803] 10.7591 0.00431 [10.6379; 10.8047] 10.7522 0.04143 

12 [12.0450; 12.160] 12.0838 0.00090 [12.0455; 12.1629] 12.0833 0.02825 

13 [12.6062; 12.628] 12.6189 0.00085 [12.6066; 12.6281] 12.6190 0.00534 

14 [12.9370; 13.103] 13.0311 0.00190 [12.9371; 13.1039] 13.0309 0.04655 

 

 

Table 9. Damping ratios identified in the concrete block D38. 

 

Mode 
Case 1. Damping 1. [%] Case 2. Damping 2. [%] 

𝜉[𝑀𝑖𝑛;𝑀𝑎𝑥] 𝜉𝑚𝑒𝑎𝑛 𝜉𝑠𝑡𝑑 𝜉[𝑀𝑖𝑛;𝑀𝑎𝑥] 𝜉𝑚𝑒𝑎𝑛 𝜉𝑠𝑡𝑑 

1 [0.2400; 0.3549] 0.32390 0.036 [0.2388; 0.3548] 0.31165 0.043 

2 [3.9505; 4.9539] 4.29042 0.395 [3.9471; 4.9549] 4.29021 0.388 

3 [0.3453; 4.8641] 1.37237 0.748 [0.5288; 4.8211] 2.27996 2.049 

4 [0.2584; 1.0724] 0.57311 0.169 [0.2616; 0.8359] 0.53227 0.175 

5 [1.4014; 1.6175] 1.42328 0.032 [1.4001; 1.6365] 1.42292 0.033 

6 [1.5696; 2.2074] 1.89665 0.174 [1.5987; 2.2138] 1.89182 0.180 

7 [0.8550; 1.9053] 1.17713 0.188 [0.8888; 1.4661] 1.16465 0.271 

8 [1.5846; 1.8304] 1.64582 0.058 [1.5804; 1.7888] 1.64573 0.061 

9 [0.1251; 1.9883] 1.36273 0.438 [0.2378; 2.0129] 1.36078 0.445 

10 [1.1485; 2.0989] 1.74104 0.191 [1.0303; 1.9465] 1.73458 0.193 

11 [2.0181; 3.9450] 2.84762 0.430 [2.0955; 3.9464] 2.95531 0.512 

12 [0.7117; 1.3054] 1.21452 0.090 [0.7124; 1.3070] 1.20039 0.119 

13 [1.0354; 1.3903] 1.12222 0.084 [1.0352; 1.4198] 1.12514 0.085 

14 [1.7383; 2.5023] 2.05335 0.190 [1.7447; 2.5036] 2.06549 0.200 

 

For damping ratios, the values obtained are similar in both cases in most modes, however the same 

behavior occurs, the variability of the values for case 1. are lower than those for case 2. in most modes. 

The maximum relative standard deviation for damping ratios for both cases was presented in the mode 
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3, for the case 1. was 54.5% while for case 2. was 89.87%. These results allow us to define an advantage 

in data accuracy when carrying out the identification process applying the shift property of the 

observability matrix Eq. (11). In terms of computational cost, both cases achieved stability after an order 

of 80, however, the computational time for case 2. was greater because the Toeplitz matrices [𝑇]
1│𝑖

 and 

[𝑇]
2│𝑖+1

 must be calculated, while for case 1. Only the Toeplitz matrix [𝑇]
1│𝑖

 is necessary. 

 

5  Final considerations 

The SSI-COV method was applied in the identification of modal parameters of a concrete block of 

the Itaipu Hydroelectric Dam. The simulations performed to validate the method showed that the most 

sensitive parameter to distortions and changes in the correlation function are the damping rates. These 

distortions and changes in the correlation function were reflected by adding noise to the response and 

altering the measurement time. 

In the identification of natural frequencies and damping ratios of the concrete block, the method 

provided information of the first 14 vibration modes and showed its ability to identify quite close modes.  

The two alternatives offered by the method to compute the state transition matrix [A], were used in 

the identification process and it could be determined that applying the shift property of the observability 

matrix is more advantageous in terms of precision and computational cost. 
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