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Abstract. The constitutive behavior of geomaterials is generally affected by the presence at different 

scales of discontinuity surfaces with different sizes and orientations. According to their mechanical 

behavior, such discontinuities can be distinguished as cracks or fractures. Fractures are interfaces that 

can transmit normal and tangential stresses, whereas cracks are discontinuities without stress transfer. 

As far as the formulation of the behavior of materials with isotropic distribution of micro-cracks or 

fractures is concerned, previous works had essentially focused on their instantaneous response induced 

by structural loading. Few research works have addressed time-dependent (delayed) behavior of such 

materials. The present contribution describes the formulation and computational implementation of a 

micromechanics-based modeling for viscoelastic micro-fractured media. The effective viscoelastic 

properties are assessed by implementing a reasoning based on linear homogenization schemes (Mori-

Tanaka) together with the correspondence principle for non-aging viscoelastic materials. It is shown 

that the homogenized viscoelastic behavior can be described by means of a generalized Maxwell 

rheological model. The computational implementation is developed within the finite element 

framework to analyze the delayed behavior of geomaterials with presence of isotropically distributed 

micro-fractures under plane strain conditions. Several examples of applications are presented with the 

aim to illustrate the performances of the finite element modeling. The accuracy of the approach is also 

assessed by comparing the numerical predictions with analytical solutions. 
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1  Introduction 

One of the most common causes of material degradation in civil engineering structures is the 

presence of discontinuity surfaces, which can appear in certain zones with different sizes and 

orientations. The existence of these small thickness regions increases the risk of mechanical properties 

deterioration during the service life of structures because of a significative reduction of stiffness, 

strength, ductility and a serious increase of permeability. From a mechanical behavior perspective of 

materials, there are two principal types of discontinuities: cracks and fractures. Essentially, cracks 

have no stress transfer between faces, whereas fractures can transfer normal and tangential stress. 

Consequently, a medium can be considered as cracked or fractured depending on the characteristics of 

its discontinuities. 

Geomaterials under long-term loading present two types of response: instantaneous and delayed. 

The instantaneous response of geomaterials have been object of research over the years, but less 

attention has been given to delayed response in fractured mediums. Recently, there was an increase in 

research works on time-dependent response that simultaneously address fracture mechanics and 

viscoelasticity. Such tendency reveals positive even more when it is known that delayed behavior has 

an important impact on stress-strain response of geomaterials. In order to study and characterize that 

behavior, several mathematical models have been analytically formulated. Among these models, there 

exist those based on a micromechanics framework. 

Some important micromechanics-based research works that considered delayed behavior were 

developed by Nguyen [1] and Nguyen et al. [2]. These researchers formulated a micromechanics-

based model for a viscoelastic medium where the heterogeneities were considered as cracks. However, 

as mentioned above, there are no stress transfer in this type of discontinuities. Subsequently, Nguyen´s 

analysis was extended by Aguiar and Maghous [3], who added the fracture behavior studied. In this 

context, the overall aim of this paper is to show the computational implementation of the 

micromechanics-based viscoelastic model formulated by Aguiar and Maghous [3] considering an 

isotropic distribution of micro-fractures in geomaterials. 

The paper content is organized as follows. Section 2 presents succinctly the theoretical 

formulation for the homogenized viscoelastic behavior of fractured mediums considering an isotropic 

distribution of micro-fractures. Section 3 describes the algorithm used for time discretization of the 

viscoelastic model. Section 4 aims to verify the implementation code by presenting several examples 

of application where the accuracy of the numerical responses is assessed through comparison with the 

corresponding analytical solutions. Finally, section 5 illustrates the predictive capabilities of the 

computational tool by analyzing the delayed response of complex geo-structures. 

2  Formulation of the homogenized viscoelastic model 

As mentioned above, Aguiar and Maghous [3] formulated the homogenized viscoelastic 

properties for a fractured medium. This approach is based on prior research works developed within 

the framework of elastic fractured mediums (Maghous et al. [4]) and the elastic-viscoelastic 

correspondence principle in the context of non-aging materials. There are two principal steps in order 

to formulate the macroscopic viscoelastic properties: in the first place, it is necessary to formulate the 

overall elastic properties of the medium taking advantage of linear homogenization schemes. The 

second step is to associate the elastic-viscoelastic correspondence principle (Le [5]) with a specific 

procedure to determinate the inverse Laplace-Carson transform of a function. 

Since paper focus is the display of the computational implementation of the viscoelastic model, 

only the formulation of the homogenized viscoelastic properties in a medium with isotropically 

distributed fractures will be shown below in a concise way. The formulation of the elastic properties in 

a fracture medium, the complete procedure of inverse Laplace-Carson transform and other basic 

concepts of the theoretical model can be found in the research work of Aguiar and Maghous [3]. 
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2.1 Homogenized viscoelastic properties in a medium with isotropic distribution of micro-

fractures 

To formulate non-aging viscoelastic properties of a homogenized medium involves the 

determination of the fourth-order relaxation tensor hom  components since the boundary condition of 

the viscoelastic problem is an homogeneous strain  applied to the fractured medium. In such 

conditions, the homogenized constitutive law for a fractured viscoelastic medium can be defined as: 

    hom hom             swith = =  (1) 

where   is the macroscopic stress,  is the strain concentration tensor associated with a 

representative elementary volume (REV) composed of a matrix and micro-fractures. The fourth-order 

matrix relaxation tensor is represented by s , the symbol  denotes the Boltzmann operator and the 

symbol     represents the volume average over the matrix. In order to determine tensor hom  is 

required to work with the elastic-viscoelastic correspondence principle. This principle enables to 

formulate the time-domain viscoelastic problem in terms of an equivalent elastic problem in the 

Laplace-Carson domain. 

In view of all the above mentioned, it is possible to take advantage of the elastic properties of a 

fractured medium. It should be taken into account that in the elastic problem, fractures were 

considered as randomly oriented oblate ellipsoids. This particular feature can be considered as an 

isotropic distribution of fractures in the REV as shown in Fig. 1. It is also important to point out that 

for the determination of the homogenized stiffness tensor hom  in the elastic problem, it was adopted 

the Mori-Tanaka linear homogenization scheme. The same scheme will be used for determination of 

the relaxation tensor in the Laplace-Carson space, which can be denoted by hom . 

 

Figure 1. Isotropic distribution of fractures in the REV 

After tensor hom  determination in Laplace-Carson domain, it becomes essential to express the 

relaxation tensor components in the real time domain. This raises the need for a specific inverse 

Laplace-Carson transform procedure ( )hom hom1
c

−= , which was developed by Aguiar and 

Maghous [3] in a simplified form. This procedure was conceived to work with the tensor hom  

obtained from a Mori-Tanaka homogenization scheme when used classical rheological models for 

description of matrix and fractures behavior. 

The relaxation function of a Generalized Maxwell rheological model in Fig. 2 has a mathematical 

equivalence with the results obtained by applying the inverse Laplace-Carson transform. From this 

equivalence, it can be stated that the mentioned rheological model represents the delayed behavior of 

non-aging linear viscoelastic materials and, therefore, it can be considered as the exact viscoelastic 

model. 
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Figure 2. Generalized Maxwell model and its relaxation function 

In the case of macroscopic isotropy, it is deduced that the bulk and shear viscoelastic behavior in 

Eq. (5) can also be exactly represented by a Generalized Maxwell rheological model, as displayed in 

Fig. 3. 

 

Figure 3. Generalized Maxwell model for viscoelastic moduli homk  and 
hom  

In an isotropic distribution of randomly oriented fractures, tensor hom ( )t  depends on the 

viscoelastic moduli homk  and hom . In this way, taking advantage of the elastic-viscoelastic 

correspondence principle, viscoelastic moduli homk   and hom   in Laplace-Carson domain must be 

obtained in order to apply subsequently the inverse Laplace-Carson transform. The expressions for 

these viscoelastic moduli in Laplace-Carson domain are shown below: 

    
hom hom=      ;     =

1  1  

s s

k

k
k

M M




 

 
 

+ +
 (2) 

where 3a =  is the fracture density parameter,  is the number of fractures per unit volume and 

a  is the radius of the oblate fracture. Aguiar and Maghous (2018) defined the dimensionless functions 

 ( , , , )s s
k n tk ak akM      and  ( , , , )s s

n tk ak akM    
. Moduli  homk   and 

hom 
 depend on the 

rheological models adopted by matrix and fractures. Now, only remains to apply the inverse Laplace-

Carson transform procedure in order to obtain the moduli in time domain: 
hom ( )k t  and hom( )t . 
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3  Algorithm for time discretization of the viscoelastic model 

It is necessary to develop a numerical programming scheme which considers a time discretization 

in the finite element framework. Essentially, what needs to be implemented is the viscoelastic 

constitutive law that describes the material behavior when applied a homogeneous strain boundary 

condition. Subroutines to be generated will be responsible for the calculation of homogenized stresses 

at Gauss points in finite element mesh of the analyzed structure. It is important that greek letters used 

for denote stress and strain macroscopic tensors will be   and  , respectively. 

The relaxation tensor can be expressed as hom hom hom( ) 3 ( ) 2 ( ) t k t t= +  for an isotropic 

distribution of microfractures, where fourth-order tensors  and  are the spherical and deviatoric 

tensors, respectively. These tensors can be defined as 
1

1 1
3

=   and = − , where  is the 

fourth-order unitary tensor. It must be emphasized that numerical expressions for the viscoelastic 

moduli are previously obtained by any calculus software. 

Once the relaxation tensor hom ( )t  is computed, the macroscopic stress tensor can be 

determined, according to the constitutive law, as follows: 

    
0

hom hom ( ) ( ) : (0)  ( , ) :  ( )  
t

t t s t s ds
s







+


=   (3) 

where ) (0  is the instantaneous strain tensor that appear right in the moment of load 

application. 

Regarding the code development, it will be considered n  time steps with the same size t  and 

0 0t = . For the 1i +  time step, the corresponding time can be defined as: 

    1 ( 1)          0,  ... , 1  .i it t t i t with i n+ = + = +  = −  (4) 

An incremental procedure is applied in the integral equation in Eq. (3). Thus, the stress tensor at 

time 1it + , is: 

    
1hom hom

1 1 1

0

 ( ) ( ) : (0)  ( , ) :  . ( )  
k

k

i t

i i i
t

k

t t s t s ds
s




 +

+ + +

=

 
+  

 
=    (5) 

A linear variation is assumed for the strain in the interval where the variable of integration 

 1 ,k ks t t + . This assumption allows to express the derivative 
s




 as: 

    
11

(
.

) ( )
 k k kt t

s t t

  ++


=
 

−
=


 (6) 

In order to update the stress tensor equation, Eq. (6) is replaced in Eq. (5). In a summarized form, 

the stress tensor 1 ( )it +  can be expressed as: 

    
11 ( ) :   ( )

i

hT
it K t 

++  +=  (7) 

where 
TK  and ( )

h
t  are fourth-order tensors defined as: 

    

1

1o

1
0 1

1 1

0

hom

1

h m hom0 1
1 1 1

1
( , )     ;    ( ) ( ) :

1
( ) ( ) : (0)    ;    ( , )   . 

i

i

k

k

i
k

k

t
hT

i i
t

k

t
k

i i i
t

K s t ds t t A
t

t t A s t ds
t

 







+

+

−
+

+ +

=

+
+ + +

+

   = = +      

 
= =  

  





 (8) 



Finite element numerical implementation of a micromechanics-based viscoelastic model for fractured geomaterials 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

At this point, it must be remembered that the relaxation function for a Generalized Maxwell 

rheological model have mathematical equivalence with the relaxation tensor hom ( )t  components and 

it can be expressed in a generic way as: 

    
1

( , )                

t sp

ijklR s t R R e with
R

 
 






 −
−  
 



=

= + =  (9) 

where R  stands for the stiffness of spring model. R  and   are, respectively, the elastic spring 

stiffness and dashpot viscosity of branch   and p  is the total number of branches. Since tensors TK  

and 1kA +  depend on tensor hom , their components can be conveniently expressed as: 

    
( ) ( 1)

1

1 1

1   ;  .

t tp p i k i kt
T k
ijkl ijkl

R R
K R e A R e e

t t

     

 

  

    
  − − − − +    −     

+     
 

= =

   
     
 = + − = + −    

                         

   (10) 

It is known that in an isotropic distribution of fractures, for the non-zero components of tensor 
hom , the following applies: 

    hom hom hom hom hom hom hom hom hom hom hom hom
1111 2222 3333 1212 1313 2323 1122 1133 2211 2233 3311 3322  ;    ;   .R R R R R R R R R R R R= = = = = = = = =  (11) 

The same equalities shown in Eq. (11) applies also to tensors TK  and 1kA + . Now, considering 

Eq. (5), it can be determined the expressions for non-zero components of tensor TK : 

    
( )

( )
( )

( )  0 0
1111

0 01 1

4
1 1

3  

R
n

tT R
n

ta a
K e e

b bt

D

R t

D

R

 
 

   
 

  
  

 

= =

    
    = + − + + −
    −  − 

    

   (12) 

    
( )

( )
( )

( )  0 0
1122

0 01 1

2
1 1

3  

R
n

tT R
n

ta a
K e e

b bt

D

R t

D

R

 
 

   
 

  
  

 

= =

    
    = + − − + −
    −  − 

    

   (13) 

    
( )

( ) 0
1212

0 1

2 1
 

R
n

tT a
K e

D

Rb t




 


 
 



=

  
  = + −
  − 

  

  (14) 

Similarly, for tensor 1kA + , the corresponding non-zero components are: 

    
( )

( )
( )

( )

    

1 0 0
1111

0 01

( ) ( 1) ( ) 1) 

1

(
  4

3  

t t t ti k R i k R i k R i k
n

k

R
ne e e ea a

A
t

D D

Rb b tR

   
    

  

  
  

   −

=

− + − − +

+

=

    − −
    

= + + +    −  −         

   (15) 

    
( )

( )
( )

( )

    

1 0 0
1122

0 01

( ) ( 1) ( ) 1) 

1

(
  2

3  

t t t ti k R i k R i k R i k
n

k

R
ne e e ea a

A
t

D D

Rb b tR

   
    

  

  
  

   −

=

− + − − +

+

=

    − −
    

= + − +    −  −         

   (16) 

    
( )

( )

( ) ( 1)   

1 0
1212

0 1

 
2

 

t t

k

i k R R
n

i k
e ea

A
D

Rb t

 
 

 

 
 

 

+

=

− − +  −
  

= +  −     

  (17) 

where   corresponds to the bulk relaxation modulus and   to the shear relaxation modulus. 
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The precedent equations make possible the stress calculation at Gauss point for all the considered 

step times. According to the way the stress tensor was formulated in Eq. (7), it is proposed to define 

the stress tensor components for three different time steps: TS = 1, TS = 2 and TS ≥ 3. 

For TS = 1, where 1 1it t+ =  and 0i = , the stress tensor 
TS  can be defined as: 

    
1 011

:   :TK   +=  (18) 

    

1 1
1111 1122 1111

2

1122

1 1
1111

1 1 0 0

1 11 22 11 22
11

1 1 0 01
22 22 11 2 11

1
1 1 0 033

11 22 11 2

1122 1111 1122

1 1
1122 1122 1122 112

21
12

1
13

1
23

2

1212

    

    

    

T T

T T

T T

T

K K R R

K K R R

K K R R

K

   


   
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





 
 
 

  
 
   =
 
 
 
 
  

+ + +

+ + +

+ + +

1 0

12 12

1
1212

 .

  

0

0
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 
 
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 
 
 
 
 
 
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+

 (19) 

For TS = 2, where 1 2it t+ =  and 1i = , the stress tensor 
TS  can be defined as: 

    
2 0 122 1:   : :TK A    + + =  (20) 

    

2 2 1 1
1111 1122 1111 1122 1111 1122

2 2 1 1
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 (21) 

For TS ≥ 3, where 1 3it t+  , 1i TS= −  and  0, 1k i − , the stress tensor 
TS  can be defined as: 

    
0 1

0

1
1

:   : :  .
i

TS T kTS kTS

k

K A   
−

+ +

=

 + + 
 

=   (22) 

The matrix form of tensor 
TS  for TS ≥ 3 is presented below: 
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 (23) 

where SAE11, SAE22, SAE33 and SAE12 are defined as: 
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 (24) 

From Eq. (24), 
1 1 0  = −  and 1  is the homogenized relaxation tensor evaluated at TS=1. It 

is known that 
0  is the instantaneous strain tensor. The matrix form of tensor 

1  is found in Eq. 

(19). From Eq. (26), 
2 2 1  = −  and 2  is the homogenized relaxation tensor evaluated at TS=2. 

1A  is the tensor 1kA +  evaluated at TS=1 ( 0k = ). The matrix form of tensor 
2  is found in Eq. (21). 

Finally, Eq. (19), (21) and (23) can be considered as the basis for the implementation code. 

4  Verification of the implementation code 

This section is focused on the verification of the implementation code through the analysis of 

three examples of application under plane strain conditions. Each one of them presents a time-

dependent analytical solution that will be compared with the corresponding numerical responses. The 

correspondence between the delayed responses will serve to verify the developed code. 

It will be used the same specimen for the three examples. With respect to the specimen 

dimensions, it is a quadrilateral with a height and base of 1.00 m. Concerning the discretized 

geometric model, it is composed of four quadrilateral finite elements, even though it is possible to use 

just one finite element since stress and strain fields are homogeneous for all these examples. Fig. 4 

displays the finite elements, nodes and dimensions of the geometric model. 

With regard to viscoelastic characteristics of the material, the related parameters depend on the 

rheological model chosen to describe matrix and fractures behavior. The general case considers a 

Burger rheological model for representation of the matrix and fractures delayed behavior. However, 

for the examples in this paper, it will be analyzed a particular case of viscoelastic behavior that 

combine rheological models adopted by the material constituents. In this case, matrix adopt a Burger 

rheological model and fractures adopt a Maxwell rheological model. 
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Figure 4. Elements of the discretized geometric model 

Figure 5 displays the rheological model elements and their corresponding parameters for case 
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Burger-Maxwell case. Tables 1 and 2 show, respectively, the mechanical parameters used for matrix 

and fractures. The fracture density parameter is 0.20 =  and the number of fractures per unit volume 

1.0= . 

 

Figure 5. Rheological model elements for Burger-Maxwell case 

Burger model is composed by a Maxwell component (subscript M) connected in series with a 

Kelvin component (subscript K). With respect to matrix material, elastic parameters associated with a 

spring in bulk are denoted by ,
s
e Mk  and ,

s
e Kk , whereas that associated in shear are ,

s
e M  and ,

s
e K . 

Viscosity parameters associated to a dashpot in bulk are denoted by ,
s
v Mk  and ,

s
v Kk , whereas that 

associated in shear are ,
s
v M  and ,

s
v K . 

Table 1. Matrix mechanical parameters for Burger model 

MATRIX 

Parameter Value Unit Parameter Value Unit 

,
s
e Mk  24.42 GPa ,

s
e Kk  39.27 GPa 

,
s
v Mk  7.33x108 GPa-s ,

s
v Kk  5.07x107 GPa-s 

,
s
e M  13.27 GPa ,

s
e K  14.07 GPa 

,
s
v M  3.88x108 GPa-s ,

s
v K  1.27x107 GPa-s 

As regards the fractures behavior, the elastic parameter associated with a spring under normal 

stress is denoted by ,
n
e Mk , whereas that associated under tangential stress is ,

t
e Mk . The viscosity 

parameter associated to a dashpot under normal stress is denoted by ,
n
v Mk , whereas that associated 

under tangential stress is ,
t
v Mk . 

Table 2. Fractures mechanical parameters for Maxwell model 

FRACTURES 

Parameter Value Unit 

,
n
e Mk  42.22 GPa / m 

,
n
v Mk  7x107 GPa-s / m 

,
t
e Mk  16.88 GPa / m 

,
t
v Mk  4x107 GPa-s / m 
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4.1 Example 1: Compression under prescribed stress 

Figure 6 shows a specimen with height H subjected to constant compressive stress ( )Y t−   

under plane strain conditions, where ( )Y t  denotes the Heaviside step function at origin. Material will 

be considered homogeneous, isotropic and linear viscoelastic. The initial stress state is 
0

0 = .  

H

z

yx z = 0

z = H



 

Figure 6. YZ-plane for specimen subjected to compressive stress 

The problem solution involves the calculation of time-dependent stress and displacement fields 

( )( ), ( , )t X t  by using basic concepts of continuum mechanics [6] and viscoelasticity [7]. The 

analytical solution tensorial fields are: 

    

( )
( )

( )
( )

( )
( )

 

2 '( ) 3 '( ) 3 '( ) 4 '( )
( , )     

4 '( ) 3 '( ) '( ) 4 '( ) 3 '( ) '( )

3 '( ) 2 '( )
( )   

2 3 '( ) '( )

  

 

y z

x x z z

t k t k t t
X t y e z e

t k t t t k t t

k t t
t e e e e

k t t


 

   





 


 

   − +
= +   

+ +      

 −
=  −  

+  

− −

−

 (25) 

where '( )k t  stands for viscoelastic bulk modulus and '( )t  for viscoelastic shear modulus. Variables 

y  and z  compose position vector X . These moduli are defined as: 

    
( ) ( )1 hom 1 hom

( ) ( )

1 1
'( )      ;     '( )

1/ 1/c p c p

k t t
k


−  − 

= =  (26) 

where 
hom
( )pk 

 and 
hom
( )p 

 are the homogenized bulk and shear moduli in Laplace-Carson domain, 

respectively. It will be considered a compressive stress 0.02 GPa =  for calculations. In relation to 

Burger-Maxwell case, below is shown the comparison between analytical solution defined in Eq. (25) 

and numerical response for vertical strain zz  and horizontal strain yy . 

 

Figure 7. Comparison of delayed responses for vertical strain zz  (Burger-Maxwell) 
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Figure 8. Comparison of delayed responses for horizontal strain yy  (Burger-Maxwell) 

As shown in Fig. 7-8, analytical and numerical curves present a satisfactory correspondence. 

Consequently, the implementation code has been successfully verified. 

4.2 Example 2: Compression under prescribed displacement 

Figure 9 shows a specimen with height H subjected to a vertical imposed displacement 

 ( ) zz Y t e−  under plane strain conditions. Material will be considered homogeneous, isotropic and 

linear viscoelastic. The initial stress state is 
0

0 = .  

H

z

yx z = 0

z = H

z

 

Figure 9. YZ-plane for specimen subjected to constant vertical displacement 

As seen in section 4.1, the problem solution involves the calculation of time-dependent stress and 

displacement fields ( )( ), ( , )t X t . The analytical solution tensorial fields are: 

    

( )
( )

( )
( )

3 ( ) 2 ( )
( , )      

3 ( ) 4 ( )

2 ( ) 3 ( ) 2 ( ) 4 ( ) 3 ( ) ( )
( )     

3 ( ) 4 ( ) 3 ( ) 4 ( )

y zz z

x x z zz z

k t t
X t y e z e

k t t

t k t t t k t t
t e e e e

k t t k t t






   

 

 

 

  −
= − +  

+  

   − +
=  +    

+ +      

 (27) 

where variables y  and z  compose position vector X . The strain caused by imposed displacement is 

denoted by z z H = − . The bulk and shear moduli in time domain are denoted by ( )k t  and ( )t , 

respectively. The numerical expressions of  ( )k t  and ( )t  can be obtained by means of some calculus 

software and depend on the rheological models adopted for matrix and fractures. 

It will be considered an imposed displacement 0.01 m.z =  for calculations. In relation to 

Burger-Maxwell case, below is shown the comparison between analytical solution defined in Eq. (27) 

and numerical response for vertical stress zz  and stress xx  perpendicular  to YZ-plane. 
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Figure 10. Comparison of delayed responses for stress zz  (Burger-Maxwell) 

 

Figure 11. Comparison of delayed responses for stress xx  (Burger-Maxwell) 

As shown in Fig. 10-11, analytical and numerical curves present a satisfactory correspondence. 

Consequently, the implementation code has been successfully verified. 

4.3 Example 3: Compression under prescribed displacement rate 

Figure 12 shows a specimen with height H subjected to a constant imposed displacement rate z  

under plane strain conditions. The applied displacement is defined as ( )  ( )( )z z z0t t Y t  += −− , 

where z0  stands for the vertical displacement imposed at the time 0t += . 

z

yx z = 0

z = H

z (t)

H

 

Figure 12. YZ-plane for specimen subjected to constant vertical displacement rate 

Material will be considered homogeneous, isotropic and linear viscoelastic. The initial stress state 

will be considered as 
0

0 =  and the strain ( )z t  related to displacement ( )z t−  can be expressed as: 

    ( ) ( )  ( )   ( )( ) z z0 z zz 0H t H Y t t tt Y   += − + = −  (28) 
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where z  can be considered as the vertical strain rate and z0  as the instantaneous vertical strain. The 

analytical solution tensorial fields are: 
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 (29) 

where ( , )
1111

s tR  and ( , )
1122

s tR  are relaxation tensor ( )t  components. The instantaneous horizontal strain 

y0  can be obtained from the viscoelastic solution shown in section 4.2. Horizontal strain rate y  is: 
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( , )
1111
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 .
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 (30) 

It will be considered an imposed instantaneous displacement 0.001 m.z0 =  and a displacement 

rate 810  z m s −=  for calculations. In relation to Burger-Maxwell case, below is shown the 

comparison between analytical solution defined in Eq. (29) and numerical response for vertical stress 

zz  and stress xx  perpendicular  to YZ-plane. 

 

Figure 13. Comparison of delayed responses for stress zz  (Burger-Maxwell) 

 

Figure 14. Comparison of delayed responses for stress xx  (Burger-Maxwell) 
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As shown in Fig. 13-14, analytical and numerical curves present an acceptable correspondence. 

Consequently, the implementation code has been successfully verified for all the examples presented 

in this section. 

5  Analysis of delayed behavior of deep underground galleries 

In addition to verification showed in section 4, the present section is focused on the analysis of 

geo-structures of greater complexity under plane strain conditions. There exist some geo-structures 

that allows this type of analysis, such as the deep underground galleries or tunnels that enables to 

determine a cross-section of interest for carrying out a bidimensional analysis. It will be considered 

two types of cross-section for deep tunnels: circular and horseshoe. Concerning to circular cross-

section, there will be presented two situations: unlined cross-section and lined cross-section. 

Subsequently, for a horseshoe cross-section, it will be analyzed its delayed response in order to 

highlight the predictive capabilities of this computational tool when it is not possible to have an 

analytical solution for viscoelastic behavior. 

5.1 Unlined circular cross-section tunnel 

The hypotheses considered in this problem are mentioned as follows. The tunnel has radius R and 

a depth H, where H R . The massif material is homogeneous and isotropic. The excavation process 

will be regarded as instantaneous. The initial stress (geostatic) 
0

 1p = − , due to self-weight of the 

massif, will be uniform in the region around the gallery. The variable p  is defined as p H= , where 

  represents the specific weight of the massif. Height and base will be L , where L H  (Fig. 15). 

L

p

L

H

       


0

R

L

p

pL

 

Figure 15. Dimensions and boundary conditions for the geometric model 

The analytical solution involving delayed response will be shown in polar coordinates. According 

to Bernaud [8], position vector rX er=   does not depend on the angular coordinate, where r  is the 

radial distance. Instant after excavation is 0t
+ . The solution fields are shown as follows: 
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 (31) 

where 
0

( )
t

Y t+  is the Heaviside function for 
0t t +  and the modulus 0( , )M t t +

 depends on the 

rheological models adopted by the matrix and fractures. This modulus can be defined as: 
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    1
0 *

1
( , )

2 ( )
cM t t

p

+ −  
=  

 
 (32) 

where *( )p  is the shear relaxation modulus in Laplace-Carson domain. The radial convergence is an 

important parameter related to the displacements in unlined cross-sections and can be expressed as: 

    0

( , )
( ) ( , ) .

R t
U t M t t

R
p


+= − =  (33) 

It will be considered a depth H =125.00 m. , radius R = 2.50 m. , specific weight 
324000 N m =  for calculations. The lateral and vertical pressure exerted by massif is 

0.003 GPap = . Concerning to viscoelastic characteristics of the material, the case of delayed 

behavior adopted by matrix and fractures is Burger-Maxwell. Consequently, mechanical parameters 

correspond to those specified in Tables 1 and 2, as well as the fracture density parameter   and the 

number of fractures per unit volume . Regarding to the discretized geometric model, Fig. 16 shows 

the finite element mesh used for the analyses. It is composed of 192 finite element and 221 nodes. 
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Figure 16. Finite element mesh for circular cross-section tunnel 

In relation to Burger-Maxwell case, the analytical solution, defined in Eq. (31), will be compared 

with the numerical response for radial displacement ( , )rr r t  and radial stress ( , )rr r t . The analysis 

will be performed for three different times: t1  corresponds to the instantaneous elastic response, t2  is 

an intermediate time and t3  corresponds to a very long time. 

 

Figure 17. Comparison of radial displacements as a function of r  (Burger-Maxwell) 
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R

q(t)

 

Figure 18. Comparison of radial stresses as a function of r  (Burger-Maxwell) 

As shown in Fig. 17-18, analytical and numerical curves present a satisfactory correspondence. It 

can be considered as an additional verification of correct performance of the implementation code. 

Despite the consistent correspondence between analytical and numerical results, boundary effects 

related to displacements have been observed in Fig. 17. Since boundary displacements are supposed to 

be zero in the discretized geometric model, it is necessary to perform future researches in order to 

reduce these boundary effects. 

5.2 Lined circular cross-section tunnel 

The hypotheses considered in this section will be the same as those used in section 5.1. In this 

problem, there will be a perfectly rigid lining in the tunnel cross-section. Tunnel cross-section surface 

presents an instantaneous radial displacement 
0( , )u R t +  after excavation that will be constrained with 

lining. Consequently, massif will exert a pressure ( )q t  on tunnel lining (Fig. 19). 

R

L

(R,t) (R,t )0 Y (t)t0

+
+

R

t = t0

+

H

 

Figure 19. Displacement conditions and pressure on tunnel lining 

As in section 5.1, position vector will be considered as  rX r e=  in polar coordinates. The 

problem solution involves calculation of stress and displacement fields ( )( , ), ( , )r t r t  for 
0t t + . 

The temporal evolution of solution fields is shown as follows: 
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where functions 0 0( , )t t + +  represent viscoelastic shear modulus evaluated at times t  and 
0t
+ , 
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respectively. Pressure ( )q t  exerted by massif on tunnel lining is defined as follows: 

    0

0 0

( , )
( ) ( , ) 1  .

( , )
rr

t t
q t R t p

t t






+

+ +

 
= − = − 

 
 (35) 

Concerning to the discretized geometric model, it is the same as that shown in Figure 16. In 

relation to Burger-Maxwell case, the analytical solution, defined in Eq. (34), will be compared with 

the numerical response for radial displacement ( , )rr r t  and radial stress ( , )rr r t . The analysis will 

be performed for three different times defined in section 5.1. 

 

Figure 20. Comparison of radial displacements as a function of r  (Burger-Maxwell) 

 

Figure 21. Comparison of radial stresses as a function of r  (Burger-Maxwell) 

As shown in Fig. 20-21, analytical and numerical curves present a satisfactory correspondence. 

This has been also an additional verification of correct performance of the implementation code. As in 

section 5.1, despite the consistent correspondence between analytical and numerical results, boundary 

effects related to displacements have been observed in Fig. 20. Therefore, it is necessary to perform 

future researches focused on discretized model dimensions and finite element mesh refinement in 

order to reduce these boundary effects. 

5.3 Horseshoe cross-section tunnel 

This section is focused on showing the predictive capabilities or potentialities of the 

computational implementation when studied complex geo-structures that don’t present an analytical 

viscoelastic solution due to their particular geometric characteristics. Information concerning cross-

section geometry, tunnel depth and specific weight of massif were obtained from Couto´s doctoral 

thesis [9], who performed some researches on an underground gallery located in Jagran, Pakistan. 

Regarding to the material viscoelastic properties, the case of delayed behavior adopted by matrix and 

fractures is the same as those used in sections 5.1 and 5.2. In the same way, it will be used the fracture 

density parameter  , number of fractures per unit volume  and mechanical parameters from Tables 
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1 and 2. Figure 22 displays a schematic representation of the geometric model and the horseshoe 

cross-section. 
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Figure 22. Geometric model dimensions and horseshoe cross-section analysis axes 

Values adopted by variables shown in Fig. 22 are: H 270 m.= , L1 45.68 m.= , L2 16.00 m.= , 

L3 61.68 m.=  and L4 48.00 m= . For this paper, it was arbitrarily chosen a semielliptical geometry 

for tunnel vault. The values for variables of horseshoe cross-section are: a 6.10 m.= , b 2.32 m.=  

and c 6.84 m= . Figure 23 illustrates the stress and strain boundary conditions, as well as the finite 

element mesh generated for respective analyses. 
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Figure 23. Boundary conditions and finite element mesh for horseshoe cross-section tunnel 

It is known that p H=  for deep galleries, where massif specific weight is 
325 kN m =  and 

initial stress state before excavation is 
0

 1p = − .  

As seen in Fig. 22, there are two marked points A and B, whose corresponding axes (Y-axis and 

X-axis) will be used for analysis of displacements ( ),xx yy   and stresses ( ),xx yy   as a function of 

distances xr  and 
yr  for three different times defined in section 5.1. In relation to Burger-Maxwell 

case, time-dependent displacements and stresses in X-axis (point B) and Y-axis (point A) are shown 

below. 
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Figure 24. Vertical displacements ( )yy yr  in Y-axis (Burger-Maxwell) 

   

Figure 25. Vertical stresses ( )yy yr  in Y-axis (Burger-Maxwell) 

   

Figure 26. Horizontal displacements ( )xx xr  in X-axis (Burger-Maxwell) 

   

Figure 27. Horizontal stresses ( )xx xr  in X-axis (Burger-Maxwell) 
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As shown in Figures 24-27, stresses and displacements present a coherent delayed behavior in the 

analyzed axes. As position vector moves away from cross-section surface, displacements values 

decrease and stresses values tend to the geostatic pressure p . Despite of boundary effects (Fig. 24 and 

26) related to displacements, the implementation code works in a satisfactory way for problems that 

address geo-structures with presence of isotropically distributed micro-fractures 

6  Conclusions 

The constitutive law formulation used as theoretical basis for development of the implementation 

code in this paper can work with different rheological models for description of matrix and fractures 

delayed behavior. The general case adopts a Burger rheological model for both material constituents. 

The choice of these models depends on many factors, such as, for example, proposals studied in 

previous research works. It also depends on the possibility of using parameters obtained from 

laboratory tests and on the research objectives when studied viscosity effects on matrix and fractures. 

The correct performance of the implementation code was verified through the examples of 

application shown in section 4 and through the analyses of deep circular cross-section tunnels in 

sections 5.1 and 5.2. This verification showed that numerical predictions have an optimal 

correspondence with the analytical solutions at short, intermediate and long times. In the case of deep 

horseshoe cross-section tunnel analysis, it was noticed a coherent delayed behavior for both 

displacements and stresses. The greater the distance from cross-section surface, the less the 

displacement given by the numerical model and stresses values tend to the geostatic pressure related to 

the initial stress state. In this way, the predictive capabilities of the computational tool were shown in 

this paper. 

One of the main suggestions for extension of the present work is validation of the viscoelastic 

model, using the parameters identification as a first step. It would be interesting to perform 

tridimensional analyses with the aim to assess the predictive capabilities of the model at short, 

intermediate and long times by comparing numerical predictions with results obtained from laboratory 

tests of a specific geomaterial subjected to long-term loadings. 
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