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Abstract. The prediction of the effective thermomechanical behavior of composite materials has been 

a matter of great interest over the last decades. This is justified because in many important industrial 

applications such materials are subjected simultaneously to high thermal gradients and mechanical 

loading. The level and distribution of the stress and strain produced by these actions are strongly 

dependent on the microstructural details of the composite. This work presents a theoretical study on 

the evaluation of the effective thermoelastic properties of composites with periodic microstructures. 

The focused effective properties are the elastic moduli and thermal expansion coefficients. For this 

end, it is applied a three-dimensional micromechanical model based on the parametric finite-volume 

formulation. In the employed three-dimensional model, the repeating unit cell of the composite is 

discretized into hexahedral subvolumes to capture the in situ microstructural details. The effective 

thermal expansion coefficients are evaluated using the well-known Levin’s formula. To demonstrate 

the efficiency of the homogenization model, numerical examples of periodic composites reinforced by 

short and long aligned fibers are presented and their results are compared with analytical and finite-

element solutions. 

Keywords: Periodic composites, Effective thermoelastic properties, Three-dimensional model, Finite-

volume theory  
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1  Introduction 

Composites are multifunctional materials with a great variety of technological applications in 

different areas of the science and engineering, extending from micro or nanoelectronic devices to 

heavy structural systems. Their applications include many situations in which such materials are 

subjected to large thermal gradients that, together with mechanical loads, can produce critical stress 

and strain fields. Then, the accurate evaluation of the effective thermoelastic moduli of composites is 

an important task for their rational applications, as well as for the development of new heterogeneous 

materials to be used in those thermomechanical environments. Such effective properties include the 

thermal conductivity, specific heat capacity, coefficients of thermal expansion and elastic moduli. 

In the last decades, a great number of analytical and numerical models have been proposed to 

describe the effective thermoelastic behavior of composites [1,2]. Many of these analytical models are 

based on the mean-field micromechanics [1,3], originally formulated for elastic homogenization of 

two-phase composites with random microstructures satisfying the statistical homogeneity condition. 

Self-consistent model [4], Mori-Tanaka model [5,6], differential scheme [7,8] and double-inclusion 

method [1] are examples of traditional mean-field micromechanical approaches. The major difference 

in the formulation of these elastic homogenization procedures consists in the strategy used to take into 

account the interactions between the phase constituents. The basic idea of the elastic mean-field 

models has been extended to thermal homogenization problems [9,10]. 

There is also a lot of micromechanical models proposed to describe the effective thermoelastic 

behavior of composites with periodic microstructures. Most of these models are based on the concept 

of repeating unit cell (RUC) as the fundamental building block of the material periodic microstructure. 

For this class of composites, the numerical homogenization techniques deserve to be highlighted. 

Finite-element method and finite-volume theory are examples of numerical tools used in the 

formulation of micromechanical models for periodic composites [2,11-14]. Analytical and semi-

analytical approaches based on the equivalent inclusion problem and express in terms of Fourier series 

are also proposed for homogenization of periodic composites [1,15,16]. 

This work presents a study on thermoelastic homogenization of composite materials with periodic 

microstructures. The focused effective properties consist in the elastic moduli and thermal expansion 

coefficients. For obtaining these overall quantities, a three-dimensional finite-volume model 

[17,18,19] is employed in conjunction with the well-known Levin’s formula for evaluation of the 

effective thermal expansion coefficients [20]. For the homogenization approach, the repeating unit cell 

of the composite is discretized into hexahedral subvolumes to capture the in situ microstructural 

details. To demonstrate the efficiency of the homogenization model, numerical examples of periodic 

composites reinforced by short and long aligned fibers are presented and their results are compared 

with analytical and finite-element solutions. The comparisons show a very good performance of the 

presented numerical procedure.    

2  Preliminary considerations  

Figure 1 shows a representative volume element (RVE) of a composite material, with volume 𝑉 

and boundary surface 𝑆, subjected to a homogeneous displacement boundary condition given by 

                                                                   𝑢0 = 𝜀�̅�𝑗𝑥𝑗                                                                             (1) 

where 𝜀�̅�𝑗  (𝑖, 𝑗 = 1,2,3) are constant strain components and 𝑥𝑗  indicate Cartesian coordinates of the 

points 𝑥 ∈ 𝑆. The displacement field on a repeating unit cell (RUC) of the RVE can be expressed in a 

two-scale representation as 

𝑢𝑖(𝒚
′) = 𝜀�̅�𝑗𝑥𝑗 + �̃�𝑖(𝒚

′)                                                                  (2) 

being �̃�𝑖(𝒚
′) the fluctuating displacement components on the RUC and 𝒚′ is the local coordinate 

vector (Fig. 1). 
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Figure 1. Periodic composite material and repeating unit cell (RUC) 

3  Three-dimensional parametric FVDAM for periodic composites 

3.1 Outline of the cell unit problem 

In the three-dimensional version of the parametric finite-volume theory, the repeating unit cell is 

discretized into hexahedral subvolumes defined by the locations of their eight vertices expressed in 

terms of local coordinates 𝑦𝑖 (𝑖 = 1,2,3), as illustrated in Fig. 2(b) [18,19]. The formulation is based 

on a mapping of a reference cubic subvolume in the (𝜁, 𝜂, 𝜉) parametric space onto each hexahedral 

subvolume in the (𝑦1, 𝑦2, 𝑦3) space of the actual repeating unit cell domain (Fig. 2). The reference 

cubic subvolume is bounded by −1 ≤ 𝜁 ≤ +1, −1 ≤ 𝜂 ≤ +1 and −1 ≤ 𝜉 ≤ +1. 

 

 

Figure 2. Mapping of the reference cubic subvolume (a) onto the actual hexahedral subvolume (b). 

The mapping of a point (𝜁, 𝜂, 𝜉) in the reference cubic subvolume to the corresponding point 

(𝑦1, 𝑦2, 𝑦3) in the hexahedral subvolume of the repeating unit cell domain is set by the relation [18]  

𝑦𝑖(𝜁, 𝜂, 𝜉) = ∑𝑁𝑗(𝜁, 𝜂, 𝜉)𝑦𝑖
(𝑗)

8

𝑗=1

 (3) 
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where 𝑦𝑖
(𝑗)

 are the coordinates of the j-th nodal point of the hexahedral subvolume (Fig. 3b) and  

   𝑁1(𝜁, 𝜂, 𝜉) =
1

8
(1 + 𝜁)(1 − 𝜂)(1 − 𝜉)         𝑁2(𝜁, 𝜂, 𝜉) =

1

8
(1 + 𝜁)(1 + 𝜂)(1 − 𝜉)         

 

𝑁3(𝜁, 𝜂, 𝜉) =
1

8
(1 − 𝜁)(1 + 𝜂)(1 − 𝜉)  𝑁4(𝜁, 𝜂, 𝜉) =

1

8
(1 − 𝜁)(1 − 𝜂)(1 − 𝜉) 

 

𝑁5(𝜁, 𝜂, 𝜉) =
1

8
(1 + 𝜁)(1 − 𝜂)(1 + 𝜉) 𝑁6(𝜁, 𝜂, 𝜉) =

1

8
(1 + 𝜁)(1 + 𝜂)(1 + 𝜉)  

𝑁7(𝜁, 𝜂, 𝜉) =
1

8
(1 − 𝜁)(1 + 𝜂)(1 + 𝜉) 𝑁8(𝜁, 𝜂, 𝜉) =

1

8
(1 − 𝜁)(1 − 𝜂)(1 + 𝜉) (4) 

For the homogenization approach, the fluctuating displacement field of a subvolume 𝑘 is 

approximated by the polynomial expansion 

�̃�𝑖
(𝑘)

= 𝑊𝑖(000)
(𝑘)

+ 𝜁𝑊𝑖(100)
(𝑘)

+ 𝜂𝑊𝑖(010)
(𝑘)

+ 𝜉𝑊𝑖(001)
(𝑘)

+
1

2
(3𝜁2 − 1)𝑊𝑖(200)

(𝑘)
+
1

2
(3𝜂2 − 1)𝑊𝑖(020)

(𝑘)

+
1

2
(3𝜉2 − 1)𝑊𝑖(002)

(𝑘)
 

(5) 

where 𝑊𝑖(𝑚𝑛𝑝)
(𝑘)

 are unknown coefficients to be determined. The equilibrium equations of the 

subvolume 𝑘 can be written as  

𝜕𝜎𝑖𝑗
(𝑘)

𝜕𝑦𝑗
= 0 

(6) 

Assuming the material as linear elastic and subjected to a uniform temperature change Δ𝑇, the 

stress components 𝜎𝑖𝑗
(𝑘)

 are related to the strain components 𝜀𝑖𝑗
(𝑘)

 by the Duhamel-Newmann 

thermoelastic constitutive relation 

𝜎𝑖𝑗
(𝑘)

= 𝐶𝑖𝑗𝑘𝑙
(𝑘)
𝜀𝑘𝑙
(𝑘)
− 𝜎𝑖𝑗

th(𝑘)
 (7) 

 with  

𝜎𝑖𝑗
th(𝑘)

= 𝐶𝑖𝑗𝑘𝑙
(𝑘)
𝛼𝑘𝑙
(𝑘)
Δ𝑇 ≡ 𝛤𝑖𝑗

(𝑘)
Δ𝑇 (8) 

being 𝐶𝑖𝑗𝑘𝑙
(𝑘)

 and 𝛼𝑘𝑙
(𝑘)

 the elastic stiffness constants and thermal expansion coefficients of the material, 

respectively. Here, 𝛤𝑖𝑗
(𝑘)
= 𝐶𝑖𝑗𝑘𝑙

(𝑘)
𝛼𝑘𝑙
(𝑘)

. 

Through Eq. (2), the following relation between the strain components and fluctuating 

displacements is obtained:  

𝜀𝑖𝑗
(𝑘)

= 𝜀�̅�𝑗 +
1

2
(
𝜕�̃�𝑖

(𝑘)

𝜕𝑦𝑗
+
𝜕�̃�𝑗

(𝑘)

𝜕𝑦𝑖
) (9) 

By the parametric finite-volume theory, the first partial derivatives of the fluctuating displacements 

�̃�𝑖
(𝑘)

with respect to the parametric (𝜁, 𝜂, 𝜉) and Cartesian coordinates (𝑦1, 𝑦2,𝑦3) are related in the 

form 
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{
 
 
 

 
 
 𝜕�̃�𝑖

(𝑘)

𝜕𝑦1

𝜕�̃�𝑖
(𝑘)

𝜕𝑦2

𝜕�̃�𝑖
(𝑘)

𝜕𝑦3 }
 
 
 

 
 
 

= 𝑱

{
 
 
 

 
 
 𝜕�̃�𝑖

(𝑘)

𝜕𝜁

𝜕�̃�𝑖
(𝑘)

𝜕𝜂

𝜕�̃�𝑖
(𝑘)

𝜕𝜉 }
 
 
 

 
 
 

 (10) 

being 𝑱 the inverse of the volume-averaged Jacobian matrix defined by 

𝑱 =
1

8
∫ ∫ ∫𝑱𝑑𝜁𝑑𝜂𝑑𝜉

1

−1

= [

𝐴1 𝐴2 𝐴3
𝐴4 𝐴5 𝐴6
𝐴7 𝐴8 𝐴9

]

1

−1

1

−1

 (11) 

where  

𝑱 =

[
 
 
 
 
 
 
𝜕𝑦1
𝜕𝜁

𝜕𝑦2
𝜕𝜁

𝜕𝑦3
𝜕𝜁

𝜕𝑦1
𝜕𝜂

𝜕𝑦2
𝜕𝜂

𝜕𝑦3
𝜕𝜂

𝜕𝑦1
𝜕𝜉

𝜕𝑦2
𝜕𝜉

𝜕𝑦3
𝜕𝜉 ]
 
 
 
 
 
 

 (12) 

and  

𝐴1 =
1

8
(𝑦1

(1)
+ 𝑦1

(2)
− 𝑦1

(3)
− 𝑦1

(4)
+ 𝑦1

(5)
+ 𝑦1

(6)
− 𝑦1

(7)
− 𝑦1

(8)
)  

𝐴2 =
1

8
(𝑦2

(1)
+ 𝑦2

(2)
− 𝑦2

(3)
− 𝑦2

(4)
+ 𝑦2

(5)
+ 𝑦2

(6)
− 𝑦2

(7)
− 𝑦2

(8)
) 

 

𝐴3 =
1

8
(𝑦3

(1)
+ 𝑦3

(2)
− 𝑦3

(3)
− 𝑦3

(4)
+ 𝑦3

(5)
+ 𝑦3

(6)
− 𝑦3

(7)
− 𝑦3

(8)
) 

 

𝐴4 =
1

8
(−𝑦1

(1)
+ 𝑦1

(2)
+ 𝑦1

(3)
− 𝑦1

(4)
− 𝑦1

(5)
+ 𝑦1

(6)
+ 𝑦1

(7)
− 𝑦1

(8)
) 

 

𝐴5 =
1

8
(−𝑦2

(1)
+ 𝑦2

(2)
+ 𝑦2

(3)
− 𝑦2

(4)
− 𝑦2

(5)
+ 𝑦2

(6)
+ 𝑦2

(7)
− 𝑦2

(8)
) 

 

𝐴6 =
1

8
(−𝑦3

(1)
+ 𝑦3

(2)
+ 𝑦3

(3)
− 𝑦3

(4)
− 𝑦3

(5)
+ 𝑦3

(6)
+ 𝑦3

(7)
− 𝑦3

(8)
) 

 

𝐴7 =
1

8
(−𝑦1

(1)
− 𝑦1

(2)
− 𝑦1

(3)
− 𝑦1

(4)
+ 𝑦1

(5)
+ 𝑦1

(6)
+ 𝑦1

(7)
+ 𝑦1

(8)
) 

 

𝐴8 =
1

8
(−𝑦2

(1)
− 𝑦2

(2)
− 𝑦2

(3)
− 𝑦2

(4)
+ 𝑦2

(5)
+ 𝑦2

(6)
+ 𝑦2

(7)
+ 𝑦2

(8)
) 

 

𝐴9 =
1

8
(−𝑦3

(1)
− 𝑦3

(2)
− 𝑦3

(3)
− 𝑦3

(4)
+ 𝑦3

(5)
+ 𝑦3

(6)
+ 𝑦3

(7)
+ 𝑦3

(8)
) 

(13) 

In the next section the superscript representing the subvolume number will be omitting.   
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3.2 Stiffness matrix of a subvolume 

Considering the polynomial expansion (5), the surface-averaged displacements on the subvolume 

faces (Fig. 2b) are defined by 

〈�̃�𝑖〉
(1,2) =

1

4
∫ ∫ �̃�𝑖(𝜁, 𝜂, 𝜉 = ∓1)𝑑𝜁𝑑𝜂 =

1

−1

1

−1

𝑊𝑖(000) ∓𝑊𝑖(001) +𝑊𝑖(002) 
 

〈�̃�𝑖〉
(3,5) =

1

4
∫ ∫ �̃�𝑖(𝜁, 𝜂 = ∓1, 𝜉)𝑑𝜁𝑑𝜉 = 𝑊𝑖(000) ∓ 𝑊𝑖(010) +𝑊𝑖(020)

1

−1

1

−1

 

 

〈�̃�𝑖〉
(4,6) =

1

4
∫ ∫ �̃�𝑖(𝜁 = ±1, 𝜂, 𝜉)𝑑𝜂𝑑𝜉 = 𝑊𝑖(000) ± 𝑊𝑖(100) +𝑊𝑖(200)

1

−1

1

−1

 
(14) 

Solving for the first and second order coefficients in terms of the fluctuating surface-averaged 

displacements and the zeroth order coefficients, 

{
  
 

  
 
𝑊𝑖(100)

𝑊𝑖(010)

𝑊𝑖(001)

𝑊𝑖(200)

𝑊𝑖(020)

𝑊𝑖(002)}
  
 

  
 

=
1

2

[
 
 
 
 
 
0 0 0 1 0 −1
0 0 −1 0 1 0
−1 1 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
1 1 0 0 0 0 ]

 
 
 
 
 

{
 
 
 

 
 
 
〈�̃�𝑖〉

(1) −𝑊𝑖(000)

〈�̃�𝑖〉
(2) −𝑊𝑖(000)

〈�̃�𝑖〉
(3) −𝑊𝑖(000)

〈�̃�𝑖〉
(4) −𝑊𝑖(000)

〈�̃�𝑖〉
(5) −𝑊𝑖(000)

〈�̃�𝑖〉
(6) −𝑊𝑖(000)}

 
 
 

 
 
 

 (15) 

Denoting by 𝐶𝑖𝑗 and 𝐺𝑖𝑗 the components of the elastic stiffness matrix of the material, 

respectively, the local equilibrium equations (6) can be written as  

𝐶11
𝜕2�̃�1

𝜕𝑦1
2 + 𝐺12

𝜕2�̃�1

𝜕𝑦2
2 + 𝐺31

𝜕2�̃�1

𝜕𝑦3
2 + (𝐶12 + 𝐺12)

𝜕2�̃�2
𝜕𝑦1𝜕𝑦2

+ (𝐶13 + 𝐺31)
𝜕2�̃�3
𝜕𝑦1𝜕𝑦3

= 0 

 

𝐺12
𝜕2�̃�2

𝜕𝑦1
2 + 𝐶22

𝜕2�̃�2

𝜕𝑦2
2 + 𝐺23

𝜕2�̃�2

𝜕𝑦3
2 + (𝐶12 + 𝐺12)

𝜕2�̃�1
𝜕𝑦1𝜕𝑦2

+ (𝐶23 + 𝐺23)
𝜕2�̃�3
𝜕𝑦2𝜕𝑦3

= 0 

 

𝐺31
𝜕2�̃�3

𝜕𝑦1
2 + 𝐺23

𝜕2�̃�3

𝜕𝑦2
2 + 𝐶33

𝜕2�̃�3

𝜕𝑦3
2 + (𝐶13 + 𝐺31)

𝜕2�̃�1
𝜕𝑦1𝜕𝑦3

+ (𝐶23 + 𝐺23)
𝜕2�̃�2
𝜕𝑦2𝜕𝑦3

= 0 (16) 

From equations (5), (15) and (16), the first and second order coefficients can be related to the surface 

averaged fluctuating displacements by 

{

𝑾1

𝑾2

𝑾3

} = �̅�

{
  
 

  
 
〈�̃�〉(1)

〈�̃�〉(2)

〈�̃�〉(3)

〈�̃�〉(4)

〈�̃�〉(5)

〈�̃�〉(6)}
  
 

  
 

 (17) 

where 𝑾𝑖 = [𝑊𝑖(100) 𝑊𝑖(010) 𝑊𝑖(001) 𝑊𝑖(200) 𝑊𝑖(020) 𝑊𝑖(002)]𝑡, 〈�̃�〉(𝑖) = [〈�̃�1〉
(𝑖)  〈�̃�2〉

(𝑖)     

〈�̃�3〉
(𝑖)]

𝑡
 and the matrix �̅� is obtained in function of the material elastic stiffness constants and inverse 

of the volume-averaged Jacobian matrix 𝑱. Here, the superscript 𝑡 indicates transpose vector or matrix. 

Introducing (5) and (10) into (9), the vector of surface-averaged strain components for the face 𝑝 

of the subvolume can be written in the form 
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[
 
 
 
 
 
 
〈𝜀11〉

〈𝜀22〉

〈𝜀33〉

〈𝛾23〉

〈𝛾31〉

〈𝛾12〉]
 
 
 
 
 
 
(𝑝)

=

[
 
 
 
 
 
𝜀1̅1
𝜀2̅2
𝜀3̅3
�̅�23
�̅�31
�̅�12]
 
 
 
 
 

+ �̅� [

𝑱 𝟎 𝟎

𝟎 𝑱 𝟎

𝟎 𝟎 𝑱

] [
𝑨(𝑝) 𝟎 𝟎
𝟎 𝑨(𝑝) 𝟎
𝟎 𝟎 𝑨(𝑝)

] [

𝑾1

𝑾2

𝑾3

] (18) 

being 

�̅� =

[
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0]

 
 
 
 
 

           𝑨(1,2) = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 ∓3

] 

𝑨(3,5) = [
1 0 0 0 0 0
0 1 0 0 ∓3 0
0 0 1 0 0 0

]                     𝑨(4,6) = [
1 0 0 ±3 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 

Using the Cauchy’s law, the surface-averaged traction components are given in function of the 

surface-averaged stresses by  

[

〈𝑡1〉

〈𝑡2〉

〈𝑡3〉
]

(𝑝)

= [

𝑛1 0 0 0 𝑛3 𝑛2
0 𝑛2 0 𝑛3 0 𝑛1
0 0 𝑛3 𝑛2 𝑛1 0

]

(𝑝)

[
 
 
 
 
 
 
〈𝜎11〉

〈𝜎22〉

〈𝜎33〉

〈𝜎23〉

〈𝜎31〉

〈𝜎12〉]
 
 
 
 
 
 
(𝑝)

 
(19) 

 

where 𝑛1, 𝑛2 and 𝑛3 represent the components of the outward unit vector normal to the subvolume 

face 𝑝.  

Considering (7) and (18), the surface-averaged stresses can be expressed by 

[
 
 
 
 
 
 
〈𝜎11〉

〈𝜎22〉

〈𝜎33〉

〈𝜎23〉

〈𝜎31〉

〈𝜎12〉]
 
 
 
 
 
 
(𝑝)

= 𝑪

[
 
 
 
 
 
𝜀1̅1
𝜀2̅2
𝜀3̅3
�̅�23
�̅�31
�̅�12]
 
 
 
 
 

+ 𝑪�̅� [

〈�̅�〉 𝟎 𝟎

𝟎 〈�̅�〉 𝟎

𝟎 𝟎 〈�̅�〉

] [
𝑨(𝑝) 𝟎 𝟎
𝟎 𝑨(𝑝) 𝟎
𝟎 𝟎 𝑨(𝑝)

] [

𝑾1

𝑾2

𝑾3

] −

[
 
 
 
 
 
 
〈𝜎11

th〉

〈𝜎22
th〉

〈𝜎33
th〉

0
0
0 ]
 
 
 
 
 
 
(𝑝)

 (20) 

being 𝑪 the stifness matrix of the subvolume material. Substituting (20) into (19) and using (17), the 

vector of the surface-averaged tractions on the subvolume faces is given in the form  

〈𝒕〉 = 𝑵𝑪�̅� + 𝑲〈�̃�〉 − 𝑵〈𝝈th〉 (21) 

where 𝑲 represents the subvolume stiffness matrix, �̅� = [𝜀1̅1 𝜀2̅2 𝜀3̅3 �̅�23 �̅�31 �̅�12]𝑡 and 

〈𝒕〉 = [〈𝒕〉(1)   〈𝒕〉(2)  〈𝒕〉(3) 〈𝒕〉(4)  〈𝒕〉(5) 〈𝒕〉(6)]
𝑡
 (22) 

𝑵 = [𝒏(1) 𝒏(2) 𝒏(3) 𝒏(4) 𝒏(5) 𝒏(6)]
𝑡 (23) 

〈𝝈th〉 = [〈𝜎11
th〉      〈𝜎22

th〉     〈𝜎33
th〉     0       0      0]

𝑡
 (24) 

〈�̃�〉 = [〈�̃�〉(1) 〈�̃�〉(2) 〈�̃�〉(3) 〈�̃�〉(4) 〈�̃�〉(5) 〈�̃�〉(6)]
𝑡
 (25) 
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being 𝒏(𝑝) = [𝑛1    𝑛2    𝑛3]
(𝑝). More details about the matrix 𝑲 can be seen in [18,19]. 

3.3 Stiffness global of the unit cell 

Assembly of the global stiffness matrix is carried out by applying traction and displacement 

continuity conditions at the common interfaces between adjacent subvolumes of the repeating unit 

cell. The traction continuity conditions are imposed by applying force balance equations, which are 

then expressed in terms of the surface-averaged interfacial displacements using the local stiffness 

matrix equations. The displacement continuity conditions are directly enforced by setting the 

interfacial surface-averaged displacements to common values. The resulting systems of equations has 

the following form 

𝑲𝐺〈�̃�〉 = Δ𝑪�̅� + Δ𝜞Δ𝑇 (26) 

where 𝑲𝐺 is the global stiffness matrix of the RUC, Δ𝑪 is a matrix comprised of the differences in the 

local stiffness matrices of adjacent subvolumes and the matrix Δ𝜞 involves the thermal contributions.  

3.4 Homogenized thermoelastic constitutive relations 

The solution of the system (26) provides the global fluctuating surface-averaged displacement 

vector 〈�̃�〉, which allows the computation of the surface-averaged strains �̅�(𝑘) and, consequently, the 

elements of the Hill’s  concentration strain matrix of each subvolume 𝑘, using the localization relation 

�̅�(𝑘) = 𝑨(𝑘)�̅� (27) 

Each column of the matrix 𝑨(𝑘)is generated applying an elementary nonzero macroscopic strain vector 

�̅� at a time and solving the system (26) to obtain the corresponding �̅�(𝑘)by (27).   

The macroscopic stress vector 〈𝝈〉 can be written in function of the corresponding macroscopic 

strain vector by the overall constitutive equation of the composite 

〈𝝈〉 = 𝑪∗〈𝜺〉 − 𝜞∗Δ𝑇 (28) 

where the material effective stiffness matrix 𝑪∗ is obtained by  

𝑪∗ =∑𝜐(𝑘)𝑪(𝑘)
𝑁𝑘

𝑘=1

𝑨(𝑘) (29) 

and 𝜞∗ = 𝑪∗𝜶∗ is given by the Levin’s formula [20]  

𝜞∗ =∑𝜐(𝑘)[𝑨(𝑘)]
t
𝜞(𝑘)

𝑁𝑘

𝑘=1

 (30) 

being 𝜐(𝑘) the volume fraction of the subvolume 𝑘. 

4  Numerical examples 

4.1 Effective thermal expansion coefficients of a unidirectional long fiber two-phase composite  

Here, the presented model is applied to evaluate thermal expansion coefficients of a periodic 

composite reinforced by unidirectional long fiber distributed in square arrays. The composite is 

constituted by an epoxy matrix reinforced with glass fibers. The thermoelastic properties of these 

constituent materials are presented in Table 1.  

The results obtained for the variation of the effective longitudinal and transverse thermal 

expansion coefficients (𝛼𝐿, 𝛼𝑇) in function of the fiber volume fraction are shown in Figures 3 and 4, 

respectively. Here, 𝛼𝑚 represents the thermal expansion coefficient of the matrix. For comparison, 

these figures also present the predictions of a micromechanical model based on the finite-element 
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method found in Karadeniz and Kumlutas [21]. As observed, the results of the present model (FVT) 

are in an excellent agreement with those corresponding to the finite-element micromechanical model 

(FEM). 

Table 1. Thermoelastic properties of epoxy matrix and glass fiber 

Constituent 𝐸 (𝐺𝑃𝑎)  𝐺 (𝐺𝑃𝑎) 𝜈 𝛼 (/𝑜𝐶)  

Epoxy 

Glass 

3.5 

72 

3.89 

40 

0.35 

0.20 

5.25x10
-5

 

5.00x10
-6

 

  

 

 

Figure 3. Longitudinal effective thermal expansion coefficient 

 

 
 

Figure 4. Transverse effective thermal expansion coefficient  
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4.2 Effective thermoelastic properties of a periodic three-phase composite  

This example consists in a unidirectional three-phase composite composed by an aluminium 

matrix reinforced by SiC cylindrical fibers coated with a thin carbon interphase. The thermoelastic 

properties of the constituent materials are presented in Table 2. The fibers are periodically distributed 

in a square array with a volume fraction of 40%. The thickness of the interphase is 0.13 𝜇𝑚 and the 

fibers have a diameter of 20 𝜇𝑚.  

Table 2. Thermoelastic properties of the constituent materials  

Constituent 𝐸 (𝐺𝑃𝑎 𝐺 (𝐺𝑃𝑎) ν α (/°C) 

Aluminium matrix  96.5 37.1 0.3 9.25x10
-6

 

SiC fiber 431 172 0.25 4.86x10
-6

 

Carbon interphase 34.48 14.34 0.20 3.30x10
-6

 

 

Table 3 shows the results of the effective thermoelastic properties provided by the FVT model for 

two cases: composite without interphase and composite with interphase. Analytical predictions 

obtained by Dasguptha and Bhandarkar [22], using a generalized self-consistent Mori-Tanaka scheme, 

are also presented in Table 3. The axis 1 coincides with the fiber direction while the axes 2 and 3 are 

in the transverse directions. As can be observed, the numerical and analytical solutions, in general, 

present a very good approximation.  

Table 3. Effective thermoelastic properties 

 

Effective properties 

Without interphase With interphase 

FVT Analytical FVT Analytical 

𝑬𝟏
∗ (GPa) 230,24 230,37 229,52 229,71 

𝑮𝟏𝟐
∗

 (GPa) 63,06 62,91 61,54 61,39 

𝑮𝟐𝟑
∗

 (GPa) 56,36 59,57 55,20 57,99 

𝜶𝑳
∗  (/°C) 6x10

-6
 5,99x10

-6
 5,99x10

-6
 5,98x10

-6
 

𝜶𝑻
∗  (/°C) 7,64x10

-6
 7,64x10

-6
 8,25x10

-6
 7,60x10

-6
 

4.3 Unidirectional short fiber periodic composite materials 

This example considers a periodic unidirectional composite composed by an aluminium matrix 

reinforced by aligned SiC short cylindrical fibers with the elastic properties shown in Table 2. The 

fibers have a length 𝐿 and cross section radius 𝑟. The objective is to analyze the influence of the aspect 

ratio of the fiber (𝜌 = 𝐿 2𝑟⁄ ) on the effective elastic moduli of the material. The microstructure of the 

composite is defined by a cuboidal repeating unit cell with square cross section normal to the fiber 

direction of side 𝑎 and length 𝑏 = 2.5 𝑎. It is assumed a fiber volume fraction 𝑣𝑓 = 0.30. The 

maximum and minimum fiber aspect ratios are given by 𝜌𝑚𝑎𝑥 = 0.5(𝑏 𝑎⁄ )√𝜋 𝑣𝑓⁄  and 𝜌𝑚𝑖𝑛 =

4𝑣𝑓𝑏 (𝜋𝑎)⁄ , respectively. Then, for the particular values adopted in this example, the extreme fiber 

aspect ratios are 𝜌𝑚𝑎𝑥 ≅ 4.04 and 𝜌𝑚𝑖𝑛 ≅ 0.95.  

The results provided by the model for the variations of the effective elastic properties in function 

of the fiber aspect ratio (1.3 ≤ 𝜌 ≤ 3.8) are presented in Figures 5-7. Figure 5 illustrates the variation 

of the effective Young’s moduli for the fiber direction (1) and transverse direction (2). It is observed 

that when 𝜌 increases the values of  𝐸1
∗ increase while those of 𝐸2

∗ decrease. This behavior occurs 

because a rise of 𝜌 is associated with increase of 𝐿 and reduction of 𝑟 because 𝑣𝑓 must keep constant 

and, consequently, the longitudinal stiffness increases and the transverse stiffness decreases. Figures 6 

and 7 show the variation of effective shear moduli and Poisson’s ratios for the longitudinal plane (1-2) 

and transverse plane (2-3) in function of the fiber aspect ratio, respectively. It is observed that the 

effective shear modulus in the plane 1-2, 𝐺12
∗ , has a small dependency of the fiber aspect ratio. The 
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transverse effective shear modulus 𝐺23
∗  is reduced when 𝜌 increases because the fiber radius must 

decrease to keep constant the fiber volume fraction. A similar explanation can be used to justify the 

increase of the effective Poisson’s ratios for increasing fiber aspect ratio shown in Fig. 7.       

 

Figure 5. Longitudinal and transverse effective Young’s moduli 

 

 

Figure 6. Effective longitudinal and transverse shear moduli 
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Figure 7. Effective Poisson’s ratios in the longitudinal and transverse planes 

5  Conclusions 

This work presented a theoretical study on the evaluation of the effective thermoelastic properties 

de composites with periodic microstructures using a three-dimensional micromechanical model based 

on the parametric finite-volume formulation. The model has been applied to evaluate the elastic 

moduli and thermal expansion coefficients of unidirectional periodic composites reinforced by 

continuous and short fibers. The performance of the model has been verified through comparisons of 

its results with analytical and finite-element solutions.  
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