
 
 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019. 

A STUDY ON EFFECTIVE THERMAL CONDUCTIVITIES OF PERIODIC 

COMPOSITES REINFORCED BY UNIDIRECTIONAL LONG FIBERS  

 
Eduardo N. Lages 

enl@ctec.ufal.br 

Laboratory of Scientific Computing and Visualization, Center of Technology, Federal University of 

Alagoas 

Campus A. C. Simões, 57072-900, Maceió, Alagoas, Brasil  

Severino P. C. Marques 

smarques@ctec.ufal.br 

Laboratory of Scientific Computing and Visualization, Center of Technology, Federal University of 

Alagoas 

Campus A. C. Simões, 57072-900, Maceió, Alagoas, Brasil.  
 

Abstract. Due to their excellent physical properties, the composite materials have achieved an 

increasing field of industrial applications over the last decades. In many of these applications such 

materials are subjected to high thermal gradients which can generate critical stresses and strains. The 

magnitude and distribution of the thermal fields induced inside a device or structural element have 

strong dependency on the composite microstructure. For the analysis and design of these composite 

systems under thermomechanical loading, the effective thermal conductivity of the material is a 

property of paramount importance. This effective property depends on many microstructural details, 

such as, volume fractions and thermal conductivities of the constituent phases, geometrical shapes and 

distribution of the fibers, among others. The present work consists in a theoretical investigation on the 

influences of the cross section geometry and volume fraction of the fibers and the contrast between 

thermal conductivities of the phases of unidirectional periodic fiber reinforced composites. To develop 

the study, a semi-analytical model expressed in terms of Fourier series and based on the thermal 

equivalent inclusion strategy is employed. Those mentioned influences are illustrated and discussed 

for several numerical examples. Results obtained by other homogenization procedures available in the 

literature are also presented to demonstrate the efficiency of the model used in the study. 
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1  Introduction 

Due to their unique properties, the composite materials have achieved a large range of 

applications in several areas of engineering. In many of these applications such materials are subjected 

to thermomechanical loading for which the thermal stress fields require particular attention. In these 

situations, the design of composite elements demands a previous thermal analysis aiming to evaluate 

the temperature field and its effects on the material behavior. To carry out this analysis, the material 

thermal conductivity is an essential property. The computation of the temperature field is an 

indispensable task for evaluation of the thermal stresses and, consequently, for the rational design of 

the composite systems.  

The effective thermal conductivity of composites is a property that depends on many factors, 

such as, volume fractions and thermal conductivities of the constituent phases and microstructural 

characteristics, as distribution and geometrical shapes of the fibers [1, 2]. There are many analytical 

and numerical models proposed in the literature for evaluating effective thermal conductivity of 

composite materials. A lot of the existent analytical models consist in extensions of micromechanical 

model originally formulated for elastic homogenization of two-phase composites with random 

microstructure satisfying the statistical homogeneity condition [3–8]  

Periodic composites constitute an important class of heterogeneous materials. In these materials, 

the fibers are periodically distributed into the matrix, so that their microstructures can be constructed 

by regularly replicated elementary block, named repeating unit cell (RUC) [9]. There are also a 

number of models proposed for thermal and mechanical homogenization of periodic composites. 

Many of these models use numerical methods, such as finite element method [10-13] and finite 

volume theory [14–16], in their formulations. Due to the microstructure periodicity, the Fourier series 

also have been employed for homogenization of periodic composites, as can be seen in [17–20] and 

[21, 22] for elastic and thermal problems, respectively.  

 This paper presents a theoretical investigation on the influences of the cross section geometry, 

contrast between thermal conductivities of the phases and volume fraction of the fibers on the 

effective thermal conductivity of unidirectional periodic fiber reinforced composites. The study is 

developed using a semi-analytical model expressed in terms of Fourier series and based on the thermal 

equivalent inclusion strategy [22]. This model incorporates an efficient procedure for determination of 

the transformation temperature gradient field related to the thermal equivalent inclusion strategy. The 

above mentioned influences are illustrated and discussed through several numerical examples. Results 

obtained by other homogenization procedures available in the literature are also presented to 

demonstrate the efficiency of the model used in the study. 

2  Outline on thermal homogenization 

Figure 1 illustrates a representative volume element (RVE) of a composite material, with volume 

𝐷 and boundary surface 𝜕𝐷, subjected to a homogeneous temperature boundary condition given by 

𝑻𝟎(𝒙) = 𝑮𝟎 ∙ 𝒙      for  𝒙 ∈ ∂𝐷 (1) 

where 𝑮𝟎 = 𝝏𝑻𝟎 𝝏𝒙⁄  and 𝒙 is the coordinate vector of points in 𝐷. The symbol (∙) indicates scalar 

product of two vectors. The average values of the temperature and its average gradient vector taken on 

the RVE are defined respectively by   

�̅�𝐷 =
1

𝐷
∫ 𝑇(𝒙)𝑑𝐷

𝐷

 (2) 

�̅�𝐷 =
1

𝐷
∫ 𝑮(𝒙)𝑑𝐷

𝐷

 

(3) 

 

 

where 𝑇(𝒙) is the temperature field and 𝑮(𝒙) = 𝜕𝑇(𝒙) 𝜕𝒙⁄  indicates the corresponding gradient 

vector. Applying the divergence theorem to Eq. (3), the following relation is obtained  
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�̅�𝐷 = 𝑮0 (4) 

meaning that the average temperature gradient vector over the entire RVE coincides with the 

temperature gradient applied on the RVE boundary surface, irrespective of the material microstructure.  

This last equation corresponds to the average temperature gradient theorem. 

The microstructure of a periodic composite can be conceived as generated by repeating unit cells 

distributed regularly over the material domain, such as shown in Fig. 1. Here, 2𝑎1, 2𝑎2 and 2𝑎3 

indicate the RUC dimensions. In this case, the temperature field of a generic RUC can be expressed by 

using a two-scale representation, in the form 

𝑇(𝒚) = 𝑮0 ∙ 𝒙 + �̃�(𝒚) (5) 

where the first term on the right side represents the macroscopic contribution and �̃� stands for the 

fluctuating temperature field. In Eq. (5), 𝒚 and 𝒙 indicate the local coordinates for the RUC scale and 

the global coordinates used in the RVE scale, respectively. Due to the material microstructure 

periodicity and RVE boundary condition homogeneity, �̃�(𝒚) is a periodic function over the RUC 

domain.  

From Eq. (5), the average temperature gradient over the RUC volume (V) can be obtained by 

�̅�V = 𝑮0 +
1

V
∫ �̃�

V

(𝒚)𝑑Ω (6) 

being �̃�(𝒚) = 𝜕�̃�(𝒚) 𝜕𝒚⁄ . Taking into account that �̃�(𝒚) is also a periodic function over the RUC 

domain, the integral appearing in Eq. (6) is a null vector. Then,  

�̅�V = 𝑮0 
(7) 

indicating that the average temperature gradient over the RUC coincides with the average temperature 

gradient over the RVE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Periodic composite material and repeating unit cell (RUC) 

3  Thermal equivalent inclusion problem 

Figure 2(a) presents a typical RUC that constitutes a RVE of a periodic composite material 

subjected to a homogeneous temperature boundary condition. The RUC is composed by a matrix 

embedding a fiber with domain Ω. Under the mentioned boundary condition, the heat flux vector 

inside the fiber can be expressed by 

𝒒(𝒚) = −𝒌Ω𝑮(𝒚)   for 𝒚 ∈ Ω (8) 

being 𝒌Ω the thermal conductivity matrix of the fiber and 𝑮 the local temperature gradient vector. 
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Figure 2. Equivalent inclusion thermal problem: (a) actual RUC and (b) homogeneous RUC 

The equivalent inclusion thermal problem consists in to find a transformation temperature 

gradient 𝑮∗(𝒚) that imposed over the domain Ω of the homogenized RUC, constituted only by the 

matrix material and under the same boundary condition, generates the same temperature and heat flux 

of the actual heterogeneous RUC (Fig. 2(b)). This problem can be defined by the consistency 

condition: 

𝒌Ω[𝑮0 + �̃�(𝒚)] = 𝒌[𝑮0 + �̃�(𝒚) − 𝑮∗(𝒚)]     for 𝒚 ∈ Ω (9) 

where 𝑮∗(𝒚) = 0 for 𝒚 ∉ Ω and 𝒌 is the thermal conductivity matrix of the matrix material.  

The periodic fluctuating temperature field �̃�(𝒚) can be expanded in Fourier series in the form 

[22] 

�̃�(𝒚) =  ∑ �̂�(𝝃

±∞

𝝃

) exp(𝑖𝝃 ∙ 𝒚) (10) 

with the components of 𝝃 given by 𝜉𝑘 = 𝜋𝑛𝑘 𝑎𝑘⁄ , (𝑘=1,2,3), being 2𝑎𝑘 the RUC side dimensions (Fig. 

2) and 𝑛𝑘 = 0, ±1, ±2, … ± ∞. The series coefficients are defined as 

�̂�(𝝃) =  
1

V
∫ �̃�(𝒚)

V

exp(−𝑖𝝃 ∙ 𝒚)𝑑Ω (11) 

Considering the definition of the fluctuating temperature gradient (Section 2), it follows the 

relation 

�̃�(𝒚) =  ∑ �̂�(𝝃

±∞

𝝃

) exp(𝑖𝝃 ∙ 𝒚) (12) 

being �̂�(𝝃) = 𝑖 �̂�(𝝃)𝝃. Similarly, the periodic distribution of 𝑮∗(𝒚) allows writing the Fourier series 

expansion 

𝑮∗(𝒚) =  ∑ �̂�∗(𝝃

±∞

𝝃

) exp(𝑖𝝃 ∙ 𝒚) (13) 

with 

�̂�∗(𝝃) =
1

V
∫ 𝑮∗(𝒚)

V

exp(−𝑖𝝃 ∙ 𝒚) 𝑑Ω (14) 

For the case of steady state heat conduction, without internal heat source, the heat flux vector 

satisfies the energy conservation law 

2𝑎3 

2𝑎2 
2𝑎1 

𝑦1 

𝑦3 

𝑦2 

             (b)  
 

Ω 

𝑮∗(𝒚) 

 

Ω 

2𝑎3 

2𝑎2 
2𝑎1 

𝑦1 

𝑦3 

𝑦2 

         (a)  
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𝛁 ∙ 𝒒(𝒚) = 𝛁 ∙ 𝒌[𝑮0 + �̃�(𝒚) − 𝑮∗(𝒚)] = 0 (15) 

which, using (12) and (13), provides 

�̂�(𝝃) = −𝑖
𝝃 ∙ 𝒌�̂�∗(𝝃)

𝝃 ∙ 𝒌𝝃
     for   𝝃 ≠ 𝟎   

(16) 

 

 

Introducing (13) and (14) into (15), the following expression is obtained                                                                                                                                             

𝑮0 = −(𝒌Ω − 𝒌)−1𝒌𝑮∗(𝒚) − ∑
1

V
𝑺(𝝃)𝒌

±∞

𝝃

∫ 𝑮∗(𝒚′) exp(−𝑖𝝃 ∙ 𝒚′) 𝑑
Ω

Ω exp(𝑖𝝃 ∙ 𝒚)  (17) 

where 𝑺(𝝃) = 𝝃𝝃𝑡 (𝝃 ∙ 𝒌𝝃)⁄ . Discretizing the inclusion domain into subdomains or partitions Ω𝑗  

(𝑗 = 1, 2, … , 𝑁) and integrating the terms of Eq. (17) over each one of them, it follows that 

𝑓𝑗𝑮0 = ∑ [−(𝒌Ω − 𝒌)−1𝒌𝛿𝑗𝑘 −
1

VΩ𝑘
∑ 𝑺(𝝃)𝒌𝑔𝑘 (−𝝃)𝑔𝑗 (𝝃)

±∞

𝝃

]

𝑁

𝑘=1

𝑓𝑘  �̅�Ω𝑘

∗  (18) 

being 𝑓𝑠 = Ω𝑠 Ω⁄  (𝑠 = 1, 2, … , 𝑁) the subdomain volume fraction, 𝝃 ≠ 𝟎, 𝛿𝑗𝑘 = 1 for 𝑗 = 𝑘, 𝛿𝑗𝑘 =

0 for 𝑗 ≠ 𝑘,  

𝑔𝑗 (𝝃) = ∫ exp(𝑖𝝃 ∙ 𝒚)𝑑Ω𝑗
Ω𝑗

                 𝑔𝑘 (−𝝃) = ∫ exp(−𝑖𝝃 ∙ 𝒚)𝑑Ω𝑘
Ω𝑘

 (19) 

and  

�̅�Ω𝑘

∗ =
1

Ω𝑘
∫ 𝑮∗(𝒚)

Ω𝑘

𝑑Ω𝑘    (20) 

Finally, the solution of Eq. (18) for �̅�Ω𝑘

∗  can be written in the matrix form   

�̅�
∗

= 𝓛−1𝕴𝑮0 (21) 

where �̅�
∗

= {�̅�Ω1

∗
  �̅�Ω2

∗
⋯ �̅�Ω𝑁

∗
}

(3𝑁×1)

𝑡
, 𝕴 = [𝑰3   𝑰3  ⋯ 𝑰3](3𝑁×3)

𝑡 , 𝑮0 = {𝐺1
0   𝐺2

0   𝐺3
0}(3×1)

𝑡  and  

𝓛 = [

𝑳11 𝑳12 ⋯ 𝑳1𝑁

𝑳21 𝑳22 ⋯ 𝑳2𝑁

    ⋯ ⋮
𝑳𝑁1 𝑳𝑁2 ⋯ 𝑳𝑁𝑁

]

(3𝑁×3𝑁)

 

with 

𝑳𝑗𝑘 = −(𝒌Ω − 𝒌)−1𝒌𝛿𝑗𝑘 −
1

VΩ𝑗

∑ 𝑺(𝝃)𝒌𝑔
𝑘 

(−𝝃)𝑔
𝑗 
(𝝃)

±∞

𝝃

 

and 𝑰3 indicating the (3x3) identity matrix. Then, the average value of 𝑮∗ over the entire inclusion 

may be then evaluated in function of �̅�Ω𝑘

∗  (𝑘 = 1, 2, … , 𝑁) by 

�̅�𝛀
∗ = ∑ 𝑓𝑠�̅�Ω𝑠

∗ =

𝑁

𝑠=1

𝓕𝓛−1𝕴𝑮0 (22) 

being 𝓕 = [𝑓1𝑰3   𝑓2𝑰3  ⋯ 𝑓𝑁𝑰3](3×3𝑁). More detail about this model can be seen in the reference 

[22]. 
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4  Homogenized thermal conductivity of a unit cell 

The effective thermal behavior of a periodic composite can be expressed in terms of volume-

averaged quantities related to the RUC. The average heat flux is given by 

�̅�𝑉 =
1

𝑉
∫ 𝒒(𝒚)𝑑𝑉

𝑉

= −
1

𝑉
∫ 𝒌[𝑮0 + �̃�(𝒚) − 𝑮∗(𝒚)]𝑑𝑉

𝑉

 (23) 

which, considering the periodicity of �̃�(𝒚) over the RUC domain, becomes   

�̅�
𝑉

= −𝒌(𝑮0 − 𝑓
Ω

�̅�𝛀
∗

) (24) 

Introducing Eq. (22) into Eq. (24), the macroscopic heat conduction equation of the RUC can be 

written as 

�̅�
𝑉

= 𝒌(𝑰3 − 𝑓
Ω

𝓕𝓛−1𝕴)𝑮0 (25) 

Then, the effective thermal conductivity of the composite of the composite is given by the expression 

�̅� = 𝒌(𝑰3 − 𝑓
Ω

𝓕𝓛−1𝕴) (26) 

5  Investigated examples 

5.1 Influence of the fiber geometry  

The objective of this example is to investigate the influence of the fiber cross section geometry on 

the effective thermal conductivity 𝑘𝑒𝑓𝑓 of periodic unidirectional long fiber composites. Three 

different composites reinforced by fibers with square, circular and octagonal cross sections are 

considered. It is assumed a ratio 𝑘Ω 𝑘𝑀 = 666⁄ , where 𝑘Ω and 𝑘𝑀 represent the thermal conductivities 

of the fiber and matrix, respectively. Figure 3 shows the fiber partitions used in the analyses. A total of 

150 terms of the Fourier series have been used in this example.  

Figure 4 illustrates the variation of the effective thermal conductivity of the composites in function of 

the fiber volume fraction 𝑓Ω. It is observed that for fiber volume fraction smaller than 60% the 

effective thermal conductivity is practically the same for the three fiber geometries. On the other hand, 

for 𝑓Ω > 60% the geometry of the fiber has greater influence on the values of 𝑘𝑒𝑓𝑓. For this latter 

range of fiber volume fraction, the curve 𝑘𝑒𝑓𝑓 𝑘𝑀⁄  for the composite reinforced with the circular cross 

section fibers is always above of those corresponding to the other fiber geometries. The values of 

𝑘𝑒𝑓𝑓 𝑘𝑀⁄  for the composite with octagonal cross section fibers keep between those obtained for the 

other two fiber geometries in the investigated interval of 𝑓Ω, being closer to the curve of the circular 

cross section. It is interesting to observe that the curves exhibit a high slope when 𝑓Ω tends for the 

limit value 𝑓Ωmax of each cross section geometry. This curve inclination depends on the ratio 𝑘Ω 𝑘𝑀⁄ . 

 
                   Circular fiber                                 Octagon fiber                                 Square fiber 

Figure 4. Partitions of the fibers 
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Figure 4. Effective thermal conductivities for composites with different fiber shapes 

5.2 Influence of the contrast between phase thermal conductivities and fiber volume fraction 

This section evaluates two-phase composites formed by a matrix reinforced with aligned 

continuous fibers. Both the composite constituents are considered isotropic in this study. The fibers are 

arranged in a square periodic array. The objective is to analyze the influences of the fiber volume 

fraction and mismatch between the thermal conductivities of the phases on the effective thermal 

conductivity of the composite, as well as the performance of the adopted homogenization model, when 

compared with FEM solutions. The three fiber partitions shown in Fig. 5 have been employed in the 

analyses.  

 

Figure 5. Partitions of the cylindrical fibers 

Figures 6 and 7 illustrate the results obtained for 𝑘𝑒𝑓𝑓 𝑘𝑀⁄  in function of the fiber volume fraction 𝑓Ω 

and ratio 𝑘Ω 𝑘𝑀⁄ , respectively, considering the partitions of Fig. 5. A total of 150 terms of the Fourier 

series were used in the analyses. The results of Fig. 6 have been generated for a ratio 𝑘Ω 𝑘𝑀⁄ = 666, 

while those illustrated in Fig. 7 correspond to a fiber volume fraction of 𝑓Ω = 0.60. To comparison, 

the predictions obtained by Sihn and Roy [11], using finite element method (FEM), are also shown in 

Figs. 6 and 7. It is observed that the results provided by the present model for the partitions 2 and 3 are 

in excellent agreement with those obtained by the FEM. As already discussed in [22], the Partition 1 
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does not work well for cases of composites with large fiber volume fraction or large mismatch between 

the thermal conductivities of the matrix and fiber.   

Considering the ratio 𝑘Ω 𝑘𝑀⁄  corresponding to Fig. 6, it is expected the monotonic increasing of 

the effective thermal conductivity for increasing values of 𝑓Ω. Figure 7 also shows a continuous 

increasing of the effective thermal conductivity with the rise of the ratio 𝑘Ω 𝑘𝑀⁄ . In this case, the rate 

of increase is small for the range of low and high values of the mentioned ratio and more elevated for 

intermediate values (0.1 < 𝑘Ω 𝑘𝑀⁄ < 100). 

 

Figure 6. Effective thermal conductivity in function of the fiber volume fraction 

   

Figure 7. Effective thermal conductivity in function of the ratio 𝑘Ω 𝑘𝑀⁄  
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6  Conclusions 

This work presented a study about the influence of the fiber cross section geometry, fiber volume 

fraction and mismatch between the thermal conductivities of fiber and matrix on the effective thermal 

conductivity of two-phase periodic composites. The study has been developed using a 

micromechanical homogenization model based on the equivalent inclusion thermal problem, which 

uses Fourier series to represent the periodic variable fields. Composites reinforced with fibers of 

circular, octagon and square cross sections were analyzed. The results showed that the influence of the 

fiber geometry is more important for high fiber volume fractions. It was also observed that when the 

fiber domain is not discretized (Partition 1), the micromechanical model does not produce good 

solutions for composites with high fiber volume fractions and contrast between the thermal 

conductivities of the phase constituents. However, the model provided results in excellent agreement 

with finite element predictions for coarse partitions of the fiber domain, irrespective of the values of 

phase thermal conductivity ratio and inclusion volume fraction. Comparison with experimental results 

is interesting for additional validation of the adopted model.     
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