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Abstract. Plates are flat structural members with a thickness much less than the other two dimensions, 

loaded in the direction perpendicular to the plane containing these two larger lengths. In case the 

thickness does not exceed 1/10 of the other dimensions, these structures are called thin plates. In this 

case, it is possible to adopt the so-called classical thin plate theory of plate dynamics, developed by 

Lagrange / Sophie-Germain, in which Kirchhoff's hypotheses are given as valid. Due to the difficulty of 

obtaining analytical solutions for the differential equations that govern this structural model, and to the 

advancement of software and computational hardware, numerical methods have been used in the 

modeling of this type of structural system. Our objective in this paper is to present modal analysis of 

aircraft plates using a computer implementation of the Central Finite Differences Method. The 

numerical results will be compared to solutions available in the literature. The numerical method of 

finite differences is an approach to obtain the approximation of the solution of differential equations. 

The basic idea of this method is to transform the resolution of a differential equation into a system of 

algebraic equations, replacing the derivatives by differences. 
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1  Introduction 

In this paper, we present a simple Finite Differences algorithm, implement in MATLAB 

environment, to compute frequencies and modes of free undamped vibrations of thin elastic plates. 

The massive industrial and academic use of structural analysis Finite Elements software in the last 

half-century has unduly obscured research on other sometimes more efficient numerical methods for 

some particular applications.  That is certainly the case of the use of Finite Differences schemes for plate 

analysis both in statics and dynamics, as presented by, for example, Crandall [1]. 

The theoretical basis is Sophie-Germain/Lagrange equation valid in Kirchhoff’s thin plate 

hypothesis (Timoshenko [2]). Next, Central Finite Differences approximations are introduced and the 

undamped free vibrations linear algebraic eigenvalue problem formulated under the assumption that 

these vibrations are harmonic. 

Although none of this is new, the authors feel that their implementation effort is a valid contribution 

to both academic and commercial applications. 

We present several application examples, and comparisons are made with classical results by Leissa 

[3], using the assumed modes technique. 

2  Theoretical background 

2.1 Sophie-Germain/Lagrange equation 

Consider a plate of small thickness h, made of homogeneous linear elastic material with Young 

modulus E, Poisson’s coefficient  and density . Let 𝑤 = 𝑤(𝑥, 𝑦, 𝑡) be the time dependent 
transverse displacements of the points of it mid surface defined by coordinates x and y contained 
into that plane. Sophie-Germain/Lagrange equation for free undamped vibrations (Timoshenko [1]), is 

 

 
𝐷𝛻4𝑤 + 𝜌

𝜕2𝑤

𝜕𝑡2
= 0 (1) 

 

conditioned to the appropriate boundary conditions: null displacements and first derivative for clamped 

conditions; null displacements and second derivative for simply support conditions. In Eq. (1) we use 

the nabla-four operator 

 
𝛻4 =

𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
 (2) 

 

and 
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   (3) 

2.2 Central Finite Differences 

Consider the planar domain of a plate uniformly meshed by straight lines hx apart in the x direction 

and hy apart in the y direction.  The partial derivatives present in Eq. (2) may be approximated by the 

following Central Finite Differences expressions, for a certain j,k node of the mesh: 
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For clamped boundary conditions, the first partial derivatives will be approximated by 
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and, for simply supported boundaries, the second partial derivatives will be approximated by 
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2.3 The linear algebraic eigenvalue problem 

In Eq. (1), the time dependent 𝑤 = 𝑤(𝑥, 𝑦, 𝑡)  transverse displacements, in free undamped 

vibrations, are considered to be composed of a spatial time independent function, the vibration mode 

W(x,y), times a harmonic function of time only, 

 

 𝑤(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑦) 𝑠𝑖𝑛 𝜔𝑡                          (11) 
 

where  are the vibration frequencies. Under this supposition, the accelerations field �̈� = �̈�(𝑥, 𝑦, 𝑡) 
can also be put in the form 

 �̈�(𝑥, 𝑦, 𝑡) = −𝜔2𝑊(𝑥, 𝑦) 𝑠𝑖𝑛 𝜔𝑡                          (12) 
 

The vibration mode W(x,y) can now be discretized using the Finite Differences approximations of 

Eqs. 4 through 10 and plugged into Eqs. (11) and (12) and then substituted into Eq. (1) to render a linear 

algebraic eigenvalue problem, 

 (𝑨 − 𝜆)𝑾 = 𝟎                          (13) 
 

where W is a discretized vector version of the vibration mode whose components are the normalized 

modal displacements at each node of the adopted discretization mesh, and 
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Vibrations of plates by Finite Diffrences 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

Coefficients of matrix A are derived from Eqs. 4 through 10 and are not displayed in this paper for 

the sake of concision. They are listed in Brasil [4].  

The implementation of this algorithm in MATLAB environment is straight forward using the 

resident function eig. 

3  Results of examples 

In this section, we present a series of results obtained with our implementation in MATLAB of a 

Finite Differences algorithm to compute frequencies and modes of free undamped vibrations of plates 

with varied boundary conditions. The material is aluminum, E = 73 GPa,  = 2800 kg/m³,  = 0,25. 

Thickness for all examples is 100 mm.  

We analyze square plates, 5x5m, and rectangular ones, 5x8m. We also present results for four 

different meshes: 4, 16, 32 and 64 divisions. As for boundary conditions, six cases are displayed, as 

follows: 

Case 1: clamped in all four edges; 

Case 2: clamped in three edges and simply supported in the fourth one; 

Case 3: clamped in two opposite edges and simply supported in the two opposite others; 

Case 4: clamped in two adjacent edges and simply supported in the other adjacent two; 

Case 5: only one face clamped and simply supported in the other three; 

Case 6: simply supported in all four edges. 

 

Results are compared to those available in Leissa [3], using the assumed modes technique. It is 

important to mention that that author himself declares that some of his results are quite poor. 

3.1 Square 5x5m plates 

Table 1. First frequency for square 5x5m plates (rad/s) 

 

Case 4x4 mesh 16x16 mesh 32x32 mesh 64x64 mesh Leissa [3] 

1 55.429 68.037 68,969 69.211 71.672 

2 50.705 60.359 61.047 61.224 63.697 

3 46.771 54.970 55.549 55.698 57.015 

4 46.771 54.970 51.961 52.062 54.554 

5 46.771 45.195 45,448 45.512 46.785 

6 46.771 37.887 37.979 38.002 38.010 

 

3.2 Rectangular 5x8m plates 

Table 2. First frequency for rectangular 5x8m plates (rad/s) 

 

Case 4x4 mesh 16x16 mesh 32x32 mesh 64x64 mesh Leissa [3] 

1 40.521 49.722 50.383 50.554 52.172 

2 39.584 48.053 48.634 48,783 50.379 

3 27.703 31.074 31.334 31.401 32.115 

4 32.538 36.844 37.119 37.189 38.806 

5 26.312 28.375 28.508 28.542 29.240 

6 25.098 26.344 26.407 26.423 26.428 
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3.3 Mode shapes 

For the sake of illustration, Figs. 1 and 2 display plots the first vibration modes for the simply 

supported edges cases for the square 5x5m and the rectangular 5x8m pates, respectively. The plotted 

mesh is 32x32. 

 

Figure 1. First mode 5x5m plate simply supported, mesh 32x32 

 

Figure 2. First mode 5x8m plate simply supported, mesh 32x32 
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4  Conclusions 

In this paper we present an implementation of a Central Finite Differences algorithm for numerical 

computation of frequencies and modes of free undamped vibrations of linear elastic thin plates. Results 

are compared to values available in the classical literature. 

Results in section 3 compare very well with available values in literature with considerable less 

computational cost than using the FEM. 

We consider this implementation effort a valuable contribution to academics and professionals as 

an alternative to massive use of Finite Elements commercial software. 
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