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Abstract. A simplified model of a rocket structure by means of a 2-DOF, lumped parameter Beck
column analogue was studied through stability analysis by Lyapunov’s first method linearization of the
equations of motion around equilibrium under different thrust intensities and spring constants. The
equations of motion were generated from the analytical differentiation of the Lagrange’s equations
with dissipative effects lumped into a Rayleigh function and external forces represented by the action
of a single follower force, which is tangent to the nozzle.
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Thrust effects on 2-DOF model of elastic model structure

1 Introduction

Rockets are tubular shaped, jet propelled systems whose task is to take payload from ground,
watercraft or aircraft to another ground/sea location, air target or to the outer space. The payload might
be a satellite, scientific instruments, explosives, passengers or cargo. The physical principle behind its
motion is the law of conservation of linear momentum of the rocket-gas system, such that the high
speed ejection of combustion gas from the nozzle results in propulsion of the rocket in the direction
opposite to the gas flow. Diverse mechanical stresses appear on a rocket's structure during its operation
such as  those created by  thrust  force,  combustion instability,  pressure  distribution and rigid-body
acceleration, as mentioned in Sutton & Biblarz [1].

It is possible to model an elastic rocket structure by considering it on a reference frame stationary
to its tip, analogous to a Beck column, under the effect of a follower force which is tangent to the
nozzle and whose direction varies continuously as the structure deforms, as studied in Langtjhem [2].
Even though the model is bidimensional, reflects a worst-case scenario in terms of axial oscillation.
Furthermore, the rocket structure is axisymmetric and axial stresses are dominant because of the great
thrust force generated by the propulsion system.

A discretized model of three point masses with two rotational degrees-of-freedom (2-DOF) and
constant follower force was generated as presented in  Brejão & Brasil [3]. In that presentation, the
equations of motion have been symbolically obtained by the use of Maclaurin polynomials of 3rd order
in Lagrange's  equation and numerically  integrated by the  use  of  a  Runge-Kutta  4 th and  5th order
integrator. Variation of dissipation and thrust parameters resulted in marginal or asymptotic stability. 

The present work furthered the investigation of the effects of the follower force in such 2-DOF
model. The equations of motion have been obtained by the automated symbolic manipulation and
solution of the Lagrange equations by the use of the input Lagrangian function in its full non-linear
form as a way to preserve nonlinearity until  the first-order ODE system could be obtained.  Once
obtained,  such  ODEs  were  subjected  to  Lyapunov’s  first  method  by  linearization  around  the
undeformed configuration and could also be integrated by the same Runge-Kutta  4 th and 5th order
integrator for any example case of state configuration.

2 Modelling

The studied model consists of three point masses  m1 located at the tip,  m2 = 2m1 located at the
middle and m3 = m1 located at the nozzle, as to reflect the mass distribution of the rocket. Each mass is
linked to the next by an inextensible bar of length  l and each rotational DOF has a spring  ki and
damper ci. A schematic of the model as given in [3] is shown next in Fig. 1:
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Figure 1. 2-DOF pendulum model of rocket under follower force

The  required  Lagrange’s  equations  for  the  problem  are  therefore  those  who  account  for
dissipative terms arising from dampening by means of a Rayleigh function and the follower thrust by
means of an external, non-conservative generalized force. Usually, either the Rayleigh function or the
generalized force approach is used in analytical mechanics, as in Lemos [4], but the present problem
requires both to avoid resorting to Lagrange multipliers to treat coupling of the original four (or six, if
the tip mass movement is taken into account) coordinates, a pair for each movable mass. 

The i = 1,2 Lagrange equations have the format shown in Eq. 1:

d
dt

∂ L
∂ q̇i

−
∂L
∂ qi

+
∂R
∂ q̇ i

= Qi
NC , (1)

where L is the Lagrangian, R is the Rayleigh dissipation function and Qi
NC are the external generalized

forces which cannot be accounted for in R.

2.1 Further simplifying hypotheses

The bars were assumed as having equal length, the spring coefficients were assumed equal and
constant and so were the viscous damping coefficients.  Even though any  q1 =  q2 system could be
thought of as axially stable, in practice there is some control over the rocket thrust as to direct its tip in
a specific direction, in this case the y axis. The xy reference system is also assumed as only translating.

Gravitational effects were ignored, even though they might influence system stability, because the
thrust-to-weight ratios of some rockets might achieve values as large as 10 to 100 as reported in Sutton
& Biblarz [1], but not always, so low-thrust propulsive systems must take these effects in account.

Finally, mass, thrust and therefore their ratio are assumed constant. Even though typical large
booster rockets have short burn rates of about 100 s and typical mass ratios of at least 0.5 as in Sutton
& Biblarz [1], choosing appropriate mass values might account for worst-case scenarios. Constant
thrust refers to choked flow on the nozzle, where the mass flow can only by increased by pressure and
temperature differences [5].
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2.2 Derivations of the equations of motion

Under the forementioned hypotheses, the Lagrangian for use in Eq. 1 can be defined as following
for the j = 1,2,3 masses and i = 1,2 angular displacements in Eq. 2:

L = T − V =
1
2∑j

v j⋅v j −
1
2∑i

k i qi
2 , (2)

where T is the kinetic energy term, V is potential energy term, v are the velocity vectors for each mass,
k are the spring constants and q are the angular displacements for each DOF. The Rayleigh dissipation
function can be defined as in Eq. 3:

R =
1
2∑i

c i q̇i
2
, (3)

where c are the damping constants. The positions vectors are given by the equations shown in Eq. 4:

{
r1 = 0 i + 0 j
r2 = l sin q1 i − lcos q1 j
r3 = r 2 + l sin q2 i − lcos q2 j = l (sin q1 + sin q2) i − l(cosq1 + cos q2)i

, (4)

where l is each bar length and q are the generalized coordinates. Velocity vectors for use in Eq. 2 can
be obtained by simple differentiation of position vectors and are shown in Eq. 5:

{
v1 = 0 i + 0 j
v2 = q̇1l cosq1i + q̇2l sin q1 j
v3 = l(q̇1cos q1 + q̇2 cosq2) i + l(q̇1 sin q1 + q̇2 sin q2) i

. (5)

The thrust force vector can be described as in Eq. 6:

F = −F (t )
(r3−r2)

|r3−r2|
= F( t )(sin q2 i − cos q2 j) , (6)

where  F(t) is  the  thrust  intensity  function,  supposed  dependent  only  on  time  and  not  on  the
configuration space. The generalized force that acts on the masses can be obtained by application of
the principle of virtual work [4], as in Eq. 7:

Qi
NC

= ∑
i

F j⋅
∂r j

∂ qi

, (7)

the resulting generalized forces for this problem are given in Eq. 8:

Q1
NC

= F (t )l sin(q2−q1); Q2
NC

= 0 , (8)

noting that F acts only on m3.
The  resulting  equations  of  motion  have  been  obtained  by  the  symbolic  manipulation  and

differentiation of Eq. 1 using MATLAB® [6] are shown in Eqs. 9:

3ml2 q̈1 + c q̇1 + k q1 + ml2
[sin (q1−q2) + cos(q1−q2)] q̇2

2
= F (t ) lsin (q2−q1)

ml2q̈2 + c q̇2 + k q2 + ml2
[sin(q2−q1) q̇1

2
+ cos(q1−q2) q̈1] = 0

(9)

which can be readily seen to be non-linear, particularly it is strongly nonlinear on the second equation.

2.3 Lyapunov first method for nonlinear stability analysis

Lyapunov’s first (or direct) method can be applied to a nonlinear system about an equilibrium
vector state x = x0 as given by Kozlov & Furta [7] in Eq. 10:

ẋ = A x , (10)

where A is a jacobian matrix evaluted at  x0 of the full nonlinear functional relationship between the
state vector and its time derivative, seen in Eq. 11:  

ẋ = f (x , t) . (11)
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Therefore, A can be calculated by Eq. 12:

A ij (x0) = ( ∂ f i

∂ x j
)
x=x0

(12)

and if the eigenvalues of A evaluated at a equilibrium point x0 have only negative real parts, then the
nonlinear system can be said to be asymptotically stable about x0.

2.4 Assumed values for the damping constant (c)

Damping constants for structures are in the range of ζ = 0.01 as pointed by Craig & Kurdila [8].
Assuming linearization around the only admissible stable point for the present analysis  q1 = q2 = 0, the
two uncoupled modes of axial oscillation have the same damping constant given by Eq. 13:

c = 2√km ζ = 0.02√km , (13)

where k is the spring constant and m is a measure of inertia associated with each DOF and is naturally
a function of the lumped masses. 

2.5 Treatment of the spring constant (k)

Each DOF behaves modally around linearization as in Eq. 14:

ml2q̈ i + c q̇i + k qi = F (t) f (q) l ⇒ q̈ i +
c

ml2 q̇i +
k

ml2 qi =
F (t )
ml

f (q) , (14)

where f is a non-dimensional function of the DOFs. Choosing k* as a measure of rigidity defined in
Eq. 15 as:

k*
=

k

ml2 (15)

and it becomes possible to redefine c as in Eq. 16:

c* =
c

ml2 = 0.02√ k
ml4 = 0.02 √k*

l
. (16)

Finally, the thrust force is redefined in Eq. 17 :

F* =
F
ml

= 0.02√ k
ml4 = 0.02 √k*

l
(17)

and the configuration space is reduced to the analysis of F* and k*.

3 Results

Graphs of  the  real  part  of  the  eigenvalues  of  matrix  A (as  defined  in  Eq.  12)  for  different
constants F* and k* are shown below in Figs. 1, 2, 3 and 4:
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Figure 1. First eigenvalue of matrix A as a function of thrust intensity and spring constant

Figure 2.  Second eigenvalue of matrix A as a function of thrust intensity and spring constant
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Figure 3.  Third eigenvalue of matrix A as a function of thrust intensity and spring constant

Figure 4.  Fourth eigenvalue of matrix A as a function of thrust intensity and spring constant
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It can be thus seen that the thrust force actually contributes to the stability about the zero point.
That  could be explained by the fact  that  any deviation of  the   x0 =  (0,0,0,0)  is  corrected by the
opposing action of the thrust  force. The constant  thrust  contribution to stabilization vanishes very
quickly with increasing intensity and seems to be largely independent of spring constant values. In the
limit  of zero thrust,  the system behaves as a damped double pendulum with a very low damping
coefficient (as seen by the “spikes” in the origin of the graphs).

As an example, the coordinate space curve is shown for k* = 1, F* = 1, starting conditions q1 = q2

= 0.01, zero angular velocities and time between 0 and 100 s in Fig. 5:

Figure 5. Coordinate space curve for example parameters

The graph shows that the curve tends not only to stabilize around the origin with increasing time,
but the coordinate curve tends to q1 = q2, that is, the “pendulum” swings as a whole. The effects of this
“whole” structure vibration have not been studied in the present paper and might be a topic of future
research.

Phase state graphs for both generalized coordinates could also be generated, as shown in Figs. 6
and 7:
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Figure 7. Phase diagram for coordinate q1

Figure 8. Phase diagram for coordinate q2

The preceding phase diagrams show tendencies to asymptotic stability as they converge slowly to
the equilibrium position of the system.
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4 Conclusions

We present a study of stability of a 2-DOF nonlinear lumped parameters Beck’s Column model of
a rock structure excited by its thrust, considered as a follower force. The equations of motion were
derived  via  Lagrange’s  Equations  and  symbolic  computation.  Stability  was  investigated  using
Lyapunov’s first method and results show that thrust acts as a stabilizer in axial oscillations, although
its frequency effects on structure have not been yet studied.

Future research could also incorporate the effects of variable mass and variable thrust intensities
in the stability analysis, considering gravitational, combustion, aerodynamic and aeroelastic effects
(and their variation in time) as well as increasing the number of angular DOF or even considering a
continuous bar model for the rocket.
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