
 
 

CILAMCE 2019 

Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019. 

NONLINEAR DYNAMIC STUDY OF A SIMPLIFIED SOLAR SAIL 

STRUCTURE 

Lucas Sardinha de Arruda1 

Reyolando M.L.R.F Brasil2 
1arrudalucas@usp.br 
2reyolando.brasil@ufabc.edu.br 
1Universidade de São Paulo 

Av. Prof. Almeida Prado, trav.2 nº. 83, Edifício Paula Souza (Prédio da Engenharia Civil), São Paulo, 

Brasil. 
2Universidade Federal do ABC 
Alameda da Universidade, s/nº, Bairro Anchieta, São Bernardo do Campo, Brasil. 

Abstract. We propose a nonlinear dynamic study of a solar sail model, to understand the structural 

response of large lightweight appendages in space environment and to set an adequate procedure to 

simulate one. Initially, a static linear/nonlinear analysis is carried out using the commercial software 

ABAQUS® and an implemented nonlinear algorithm to determine the limit conditions of this structure. 

After that, we perform a dynamic simulation in order to determine the real impact of the nonlinear 

assumption in the final response of this lightweight model. The numerical algorithm is written in 

MATLAB® language and based on a ‘composite scheme’, where the first sub-step solution is obtained 

via the trapezoidal rule, and for the second sub-step solution, a 3-point Euler backward formula is 

employed. The dynamic equilibrium at each load step is achieved via a path following methodology, 

seeking to solve the nonlinear systems of equations derived from the time integration procedure. The 

proposed 450m2 solar sail is modelled as a kite-shape structure, consisting of four-swallow lattice 

members kept in the cross configuration by guyed cables, each one modeled with nonlinear space truss 

elements. To represent working conditions, solar wind pressure is applied at the upmost elements of 

the lattice members in conjunction with a set of concentrated forces at the corners of the cross 

configuration to represent the cables linking the appendage to a supposed mother spacecraft/satellite. 

Keywords: Nonlinear Dynamic Analysis; Nonlinear truss; Solar Sail. 
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1  Introduction 

The concept of solar sailing can be traced back to the early 20th century, see Tsander [1], and is 

based on the phenomenon of the Solar Radiation Pressure (or SRP), were the electromagnetic 

radiation originated by a solar source perturbs the attitude of spacecraft through conservation of 

momentum. This perturbation affects every object in sightline, and therefore is perceived regardless of 

the Spacecraft's orientation. In theory, this concept can outperform conventional systems, such as, 

chemical and ion propulsion, due to its absence of embarked propellant. The main setback of this 

concept is that the momentum carried by solar radiation is extremely small, and thus to provide a 

suitably propulsion an extremely large surface area is needed. A first concept study of solar orientation 

control was performed by NASA in its Comet Halley mission (Macdonald [2]) and culminated with 

the Japan Aerospace Exploration Agency spacecraft “IKAROS”. 

In his work, Tsuda [3] describes the detail behind the Japanese deep space demonstration 

spacecraft, focusing in explaining the spacecraft design, control systems and solar sail deployment 

operation, as shown in Figure 1. The mission was launched in May 2010, together with a climate 

orbiter satellite, as payload of the H-IIA vehicle from the Tanegashima space center. The main 

objective of this mission was to check the viability of “solar sailing” concept, as well as, test new 

technologies and procedures, such as, the deployment procedure of the solar sail, demonstration of the 

guidance and navigation control and power generation using thin film cells embedded in the sail. 

 

Figure 1. Example of a Solar Sail deployment procedure, Tsuda [3]. 

In parallel with those concept study missions, a large number of solar sail mission, material 

technologies and deployment procedures have been devised and promoted by solar sail proponents. In 

the literature, simulation based on the finite element methods were develop to study the dynamic 

effects of the typical mission’s load envelope, as seeing in Liu [4], in conjunction with alternative 

formulation and methodologies to improve the current state-of-the-art software’s, such as 

NASTRAN®, ABAQUS® or ANSYS® (Boni [5]). The main objective of this mission was to check the 

viability of “solar sailing” concept, as well as, test new technologies and procedures, such as, the 

deployment procedure of the solar sail, demonstration of the guidance and navigation control and 

power generation using thin film cells embedded in the sail. Finally, this work proposes a nonlinear 

dynamic study of a solar sail model, to understand the structural response of large lightweight 

appendages in space environment and to set an adequate procedure to simulate one. 
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2  Methodology 

This section presents a brief introduction about the integration time scheme used to perform the 

dynamic simulation, as well as, the nonlinear path-following algorithm used to solve the equilibrium 

equations obtained at each time step. Additionally, we introduce the reader to the nonlinear geometric 

space truss theory and a short description of the ABAQUS® software. 

2.1 “Composite” Time Integration procedure. 

The implemented “composite” time integration scheme was proposed by Bathe [6] as an 

alternative to the classic Newmark method for large displacements and long dynamic responses 

structural analysis. The main idea behind this scheme is calculate the unknown variables by 

considering the time step ∆𝑡 as two equally sized sub-steps. In the first sub-step, the Newmark 

constant average acceleration method is used to compute the variables value at 𝑡 + ∆𝑡/2. Then, this 

solutions in employed in the 3-point Euler backward formula to obtain the new equilibrium state at 𝑡 +
∆𝑡. In other words, the method uses the solution obtained from the Newmark method as an additional 

information for the Euler backward formula, correcting and improving its results. For this reason, this 

simple and efficient procedure is a second-order accurate scheme with small amplitude decay and 

period elongation and can be directly employed when the mechanical energy is not conserved. 

Assuming that for a 𝑛-set of nonlinear equilibrium equation with fixed mass matrix 𝒎 and 

damping matrix 𝒄, the dynamic equilibrium equations at the end of a time step 𝑡 + ∆𝑡 may be 

expressed as Eq. (1). 

𝒎�̈�𝑡𝑓  + 𝒄�̇�𝑡𝑓 + 𝒇𝑖𝑛𝑡 = 𝒇𝑒𝑥𝑡 , (1) 

where 𝒇𝑒𝑥𝑡 is the equivalent external forces. In the first sub-step, the nodal variables at time 𝑡 + ∆𝑡/2 

are computed via an iterative scheme presented below, see Eq. (2). 
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equilibrium point (𝑡) and the nodal variables at time 𝑡 + ∆𝑡/2 to obtain the increment displacement at 

time step 𝑡 + ∆𝑡 via an iterative scheme using the 3-point backward Euler method, as follows: 
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(3) 

2.2 Incremental-iterative numerical procedure 

On structural analysis, the Newton-Raphson method is the first-choice technique to solve the set 

of nonlinear equations obtained at each time step from an applied integration time scheme, mainly due 

to its simplicity, robustness and second order convergence ratio. Nonetheless, this method and its 

variants tends to become inefficient when directly applied to problems with a high degree of 

nonlinearity. A typical solution to overcome this limitation is to treat the load parameter as additional 

variable, basis of the path-following strategies, such as the Orthogonal residual algorithm or the Arc-

length algorithm. (Crisfield [7,8] and Carrera [9]) 

The main idea behind the Arc-length method is to propose additional constraint equation that 

aims to find the intersection between the governing equations and an 𝑛-dimensional sphere with a 

fixed radius 𝛥𝑙, thus turning the whole system into a solvable one. In the spherical version of the 

method, this constraint is given by, 
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𝛥𝒖𝑇𝛥𝒖 + 𝛥𝜆2𝜑2𝒇𝑒𝑥𝑡
𝑻𝒇𝑒𝑥𝑡 − 𝛥𝑙 = 0, (4) 

being 𝛥𝒖 is the incremental displacement, 𝛥𝜆 the incremental load factor and 𝜑 the scaling parameter. 

A simple explanation of the method can be found in Figure 2, where from a previous equilibrium 

point (point A), we determine an initial displacement increment 𝛿𝑢𝑡
𝑖  based on a tangent estimative 

(same as the classic Newton-Raphson procedure), leading to the Tangential solution from point A. 

This initial guess is then corrected by an iterative process based on the constraint equation Eq. (4) until 

the final solution is achieved. 

 

Figure 2. Arc-length methodology based on Newton-Raphson method, Crisfield [7]. 

Following the formulation proposed by Crisfield, we have that the iterative change of 

displacement for the new unknown load level is written as: 

𝛿𝒖 = −(𝒌𝒕)−1[𝒈𝑖 + 𝛿𝜆𝑖𝒇𝑒𝑥𝑡] = 𝛿𝒖̅̅̅̅ 𝑖 +  𝛿𝜆𝑖𝛿𝒖𝑡
𝑖 . (5) 

Being 𝒈𝑖 = 𝒇𝑖𝑛𝑡 − 𝜆𝒇𝑒𝑥𝑡 is the iterative out of balance array for the static context. Consequently, 

the incremental displacement 𝛥𝒖𝑛
𝑖+1 and incremental load 𝛥𝜆𝑖+1 for the next step can be written as Eq. 

(6) and Eq. (7). 

𝛥𝑢𝑛
𝑖+1 =  𝛥𝑢𝑛

𝑖 + 𝛿𝒖; (6) 

𝛥𝜆𝑛
𝑖+1 =  𝛥𝜆𝑛

𝑖 + 𝛿𝜆𝑖 . (7) 

Substituting the relations above into the constraint equation, Eq. (4), a quadratic constraint 

equation arises, given by: 

𝑎1(𝛿𝜆𝑖)2 +  𝑎2𝛿𝜆𝑖 + 𝑎3 = 0. (8) 

The parameters 𝑎1, 𝑎2 and 𝑎3 are constants computed based on the current iterative displacement 

and load level and are fully presented in Crisfield [7]. The solution of Eq. (8) gives us two possible 

solution for the new load increment δλi, with the possibility of two identical roots; two distinct real 

roots or complex roots. To avoid the problems of incorrect root choice, Crisfield proposed to choose 

the appropriate root by estimating the two angles between the displacement vector at the last load 

increment and the displacement at the current iteration; and choosing the one that gives a positive 

angle (or closest to the linear solution). 
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2.3 Nonlinear geometric space truss theory 

The fundamental idea behind the nonlinear geometric space truss theory can be traced back to the 

works of Turner (1960) and Argris (1964), as described in Souza Lima [10], and are widely 

established in the literature. In this paper, we follow the matrix description presented in Pimenta [11], 

due to its simplicity and adaptability to nonlinear material models. 

 Assuming a generic truss bar element in its global reference frame, as shown in Figure 3, we 

designate 𝑉𝑠, 𝐴𝑠 and 𝑙𝑠 as its volume, cross section area and length in state 𝑠 - either the reference 

state or the current one. 

 

Figure 3. Truss element bar in the global reference frame, Pimenta [11]. 

In this configuration, the element nodal array is presented as, 

𝒙𝑒 = {{𝑥, 𝑦, 𝑧}1, {𝑥, 𝑦, 𝑧}2}𝑇, (9) 

where {𝑥, 𝑦, 𝑧, }𝑖=1,2 refers to each set of nodal coordinates. Therefore, the element length 𝑙𝑠 and its 

stretch 𝜆∗ can be determined using the following relations: 

𝑙𝑠 = 𝒙𝑒
𝑇𝝓𝑇𝝓𝒙𝑒; (10) 

and, 

𝜆∗  = (𝑙𝑐𝑟𝑡/𝑙𝑟𝑒𝑓) = (√𝒙𝑒
𝑇𝝓𝑇𝝓𝒙𝑒)/𝑙𝑟𝑒𝑓 , (11) 

where 𝝓 is a matrix relating the two element nodes and given by 𝝓 = [−𝑰3 +𝑰3], with 𝑰3 

representing the 3x3 identity matrix; the superscripts 𝑐𝑟𝑡 and 𝑟𝑒𝑓are related to the current state and 

the reference one, respectively. 

Adopting a linear constitutive relation and a family of strain relations, it is possible to derive the 

element internal force and stiffness matrix, as 

𝒇𝑖𝑛𝑡,𝑒 = 𝑉𝑟𝑒𝑓𝜎𝑚𝜆∗2𝑚(𝑙𝑐𝑟𝑡)−2𝝓𝑇𝝓𝒙𝑒; (12) 

and, 

𝑲𝑇,𝑒 =  𝑉𝑟𝑒𝑓𝜆∗4𝑚(𝑙𝑐𝑟𝑡)−4𝐸𝝓𝑇(𝝓𝒙𝑒)(𝝓𝒙𝑒)𝑇𝝓 + ⋯ 

+ 𝑉𝑟𝑒𝑓𝜆∗2𝑚[(2𝑚 − 2)𝑙𝑐𝑟𝑡−4
𝜎𝑚𝝓𝑇(𝝓𝒙𝑒)(𝝓𝒙𝑒)𝑇𝝓 + 𝑙𝑐𝑟𝑡−2

𝜎𝑚𝝓𝑇𝝓]. 
(13) 

where 𝐸 is the elastic modulus of the structure and 𝑚 a parameter related to the strain-stretch relation. 

Notice that this procedure can be easily adapted to be a piecewise elastic tangent modulus of a 

material nonlinear model. 
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2.4 ABAQUS FEA® software 

The ABAQUS FEA® is a software suite for finite element analysis and computer-aided 

engineering. It has a simple and comprehensive interface that allows the modelling and simulation of 

complex designs and behaviors. The suite has a broad set of finite element models, optimized explicit 

and implicit schemes for nonlinear analysis and state-of-the-art procedures to solve contact, 

thermodynamic and electromagnetic problems. Nonetheless, the software allows for scripting and 

customization of element and material model subroutines using the computer language Python. 

Finally, it has a series of packages and interfaces to communicate with third-party programs, e.g. 

SolidWorks®, Mathematica® or MATLAB®. 

 

Figure 4. ABAQUS interface example, Company’s website [16]. 

3  Solar Sail Model 

In this work, a 450𝑚2 kite-shape solar sail is modelled as a four-swallow lattice structure, 

responsible for the structural shape and stability of the sail, four identical isosceles triangular sails, 

responsible for the satellite movement and attitude control, and a rigid body element located in the 

center of the lattice structure and representing the satellite, as shown in Figure 5. In the static analysis 

performed via ABAQUS®, the complete structure (𝑆𝑎𝑖𝑙 + 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) is adopted, however, 

for the dynamic counterpart, only the lattice structure is used.  

 

Figure 5. Kite-shape structure model. 
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The material’s mechanical properties used in this study are presented in Table 1. As we can see, 

from figure 8 and table 1, the transversal truss elements of the lattice structure were based on an E 

glass fabric class of Carbon Fiber Reinforced Polymer (CFRP) in order to ensure the high-

performance and lightweight of the structure. Meanwhile, the triangular shaped rings were modelled 

using a heavier and sturdier MgAl alloy, in order to prevent buckling of the transversal loaded 

members and maintains the original lattice shape. The Solar sail was modelled using Polyimide®, same 

class of high-performance polymers used in the “IKAROS” spacecraft. 

Table 1. Material properties. 

Material Density [𝑘𝑔/𝑚3] Elastic Modulus [𝐺𝑃𝑎] Poisson’s ratio 

Carbon Fiber Reinforced Polymer 1800 22.0 0.3 

MgAl Alloy 1900 45.0 0.29 

Polyimide® 1340 2.5 0.37 

 

Table 2 presents the geometric properties of each element type, where should be noticed that the 

adopted shell element, used to describe the solar sail, is based on the Homogenous shell element 

model preset in ABAQUS® and uses five integration points for the thickness. Furthermore, a previous 

set of simulation were performed to set the distance between each ring, as well as, the maximum size 

of each transversal member.  

Table 2. Geometric properties. 

Section Thickness [𝑚] Cross-section area [𝑚2] 

Truss - 2.545E-4 

Δ-shaped Ring - 3.5E-4 

Solar sail 1E-05 - 

 

Figure 6 shows the tip section of the four-swallow lattice structure. Each lattice structure has 

15 𝑚  and consists of fifteen Δ-shaped rings, a 3-element pyramid tip and fifteen Z-section repetitions, 

each one containing six truss - three in the vertical configuration and three in the diagonal one. 

 

Figure 6. Representation of a single section of the four-swallow lattice structure. 

The Solar sail is modelled as four 15𝑚 × 15𝑚  isosceles triangles, each one representing a 

quarter of the sail, as see in Figure 7. This representation of the problem allows different set of 

constraint conditions between the sail and lattice structure, as well as, simplifying the meshing 

procedure. 
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Figure 7. Model of the upper quarter of the solar sail. 

For the static analysis, we assume that the cross shaped structure is constraint by the satellite 

fuselage (assumed rigid) and not allowed for displacement in the three main directions. This is 

performed by restricting the degrees of freedom of the central part of the lattice, as shown in the left 

part of Figure 8. Meanwhile, the constraint conditions between the sail and lattice structure are 

simulated using the axial connection element from ABAQUS®. 

 

Figure 8. Kite-shape structure model. 

The applied pressure at each simulation is presented on Table 3, assuming three possible 

configurations. The first one being an orbital mission near the Earth; the second one near Venus, 

similar to the one performed by the “IKAROS” and the third one on the vicinities of Mercury. 

Table 3. Solar radiation pressure on perfect reflector at normal incidence, extracted from 

literature. 

Distance from sun Radiation pressure [𝜇𝑁/𝑚2]  

0.39 AU (Mercury)  60.6  

0.72 AU (Venus)  17.4  

1.00 AU (Earth)  9.08  

 

At last, the nonlinear static and dynamic study using the proposed methodology was performed 

assuming a symmetry condition of the four-swallow lattice structure, being the modelled as a lattice 

structure presented in Figure 9, this was made to improve the computational efficiency.  
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Figure 9. Lattice structure model. 

4  Results 

In this section, we present the static results of the solar sail for three different Solar Radiation 

Pressure conditions - Earth, Mercury and Venus orbit; and the dynamic nonlinear analysis of 

exceptional load conditions applied at the tip of the single arm lattice structure presented in Figure 9. 

This load condition was chosen due to the small displacements observed in the three previous 

simulations. 

4.1 Solar Pressure at 1AU (Earth) 

The first simulation consists of a static analysis using the software ABAQUS of the complete 

model, that is, 𝑆𝑜𝑙𝑎𝑟 𝑠𝑎𝑖𝑙 + 𝐿𝑎𝑡𝑡𝑖𝑐𝑒 near the Earth’s orbit.  

 

Figure 10. Solar sail analysis near the Earth orbit, where the (a), (b) and (c) illustrations represent the 

lattice displacement, reaction force and stress respectively; and (d) and (e) the structure stress and 

displacement. 
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In this orbit, the maximum pressure value for a perfect reflector at normal incidence is 9.08 𝜇𝑁/
𝑚2. Applying this pressure at the modelled solar panel results in a maximum displacement magnitude 

of 71.88 𝜇𝑚 at the tip of the lattice structure, as seen in the plots (a) to (e) of Figure 10. 

From Fig.10 (d), it is possible to notice that instability effects, specially buckling, should be 

considered due to the slenderness ration of the truss elements and the compressible stress magnitude 

noticed in the structural elements near the center, close to the satellite fuselage. Those effects were 

added to the simulation in a previous study were the position of the MgAl alloy rings were defined, 

seeking to optimize the load-distance ratio.  

4.2 Solar Pressure at 0.72AU (Venus) 

For the second simulation, a distance of 0.7 astronomical units is adopted, representing a satellite 

mission near the Venus’s orbit, similar to the one performed by the spacecraft “IKAROS”.  

 

Figure 11. Solar sail analysis near the Venus orbit, where the (a), (b) and (c) illustrations represent the 

lattice displacement, reaction force and stress respectively; and (d) and (e) the structure stress and 

displacement. 

In this condition, the solar radiation pressure was raised to 17.4 𝜇𝑁/𝑚2, leading to a maximum 

trust force of 7.83 𝑚𝑁, similar magnitude as the one obtained for the IKAROS’ solar sail (JAXA’s 

observed a 1.12 millinewtons thrust force on IKAROS’ 196 𝑚2 sail). This new load level resulted in 

in a maximum displacement magnitude of 137.7 𝜇𝑚 at the tip of the lattice structure, almost doubling 



de Arruda, Lucas S., Brasil, Reyolando M.L.R.F 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

the previous displacement condition. Figure 11 shows the reaction force magnitude (RF, Fig.11 (b)), 

the maximum displacement of the sail and the lattice structure (U, Fig.11 (a) and (e)) and its’ stress 

conditions (S, Fig.11 (c) and (d)). Anew, the instability effects play a major role in the simulation, 

since the new load magnitude only increase the stress condition noticed near the satellite core. 

4.3 Solar Pressure at 0.72AU (Mercury) 

The final static simulation consists in a mission near Mercury orbit, 0.34 astronomical units from 

the sun. This is hypothetical condition considering the extremely harsh environment near the planet 

orbit, due to its innermost location and temperatures varying between ranging from −173 °𝐶 to 

427 °𝐶. 

 

Figure 12. Solar sail analysis near the Mercury orbit, where the (a), (b) and (c) illustrations represent 

the lattice displacement, reaction force and stress respectively; and (d) and (e) the structure stress and 

displacement. 

Due to its innermost location, Mercury has an average solar radiation pressure value six times 

higher than the one felt near the Earth’s orbit. For a 450 𝑚2 solar sail, this 60.6 𝜇𝑁/𝑚2 solar 

radiation pressure value results in a thrust force of 0.03 𝑁, near the thrust range of  ion thrusters and 

some attitude control mechanisms. In this condition, the maximum displacement output is of 0.48 𝑚𝑚 

at the tip of the lattice structure. Similarly to the previous simulations, Figure 12 shows the reaction 

force magnitude (RF, Fig.12 (b)), the maximum displacement of the sail and the lattice structure (U, 

Fig.12 (a) and (e)) and its’ stress conditions (S, Fig.12 (c) and (d)). 



Nonlinear Dynamic Study of a Simplified Solar Sail Structure 

CILAMCE 2019 

Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

4.4 Vibration modes 

The final simulation performed using the software ABAQUS® consist of a modal analysis of the 

four-swallow lattice structure. The first eight modes are shown in Figure 13, where we notice that the 

first four modes correspond to vertical motion, and the four latter to a lateral displacement.  

 

Figure 13. First eight vibration modes of the four-swallow lattice structure. 

4.5 Harmonic Vibration 

In this section, we present the dynamic simulation of the Lattice structure model, see Fig. 9, 

undergoing a sine harmonic load. We assume that the base of the lattice structure is fixed in the 

satellite fuselage, and thus, displacement restricted in the three directions. Furthermore, a harmonic 

load with magnitude of 1 𝑁 is applied at the tip, simulation a hypothetical condition. The MATLAB® 

version of the implemented model is presented Fig. 14.   
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Figure 14. First eight vibration modes of the four-swallow lattice structure. 

The applied load is shown in Figure 15, with a maximum amplitude of 1 𝑁 and an assumed 

period of 0.1667 𝑟𝑎𝑑/𝑠. This harmonic profile was chosen based on a extraordinary load condition 

(thirty times greater than the solar wind pressure of mercury), to see if any overestimation on the load 

envelope could lead to structural damage.  

 

Figure 15. Harmonic load. 

 

For this simulation, we assume an undamped structure, 𝑐 =  0, and build the mass matrix based 

on mass of each element, computed using the density of Table 1 and the element current length. The 

displacement at the tip of structure is shown in Figure 16.  

 

Figure 16. Tip displacement of the lattice structure for the harmonic load. 
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Complementary, the maximum displacement is like the one obtained from a dynamic simulation 

using the ABAQUS, as shown in figure 17. 

 

Figure 17. Truss configuration at 𝑡 =  2.5𝑠, ABAQUS simulation. 

From these two pictures and the assumption of an extraordinary load condition, became clear that 

the typical minute load magnitude of the solar wind pressure will not generate enough displacement to 

clearly affect the linear response. 

5  Conclusions 

An initial nonlinear dynamic study of a simplified solar sail model was carried out, seeking to 

understand the main structural limitations of this lightweight appendages as well as to set an adequate 

procedure to simulate one. Initially, an introduction of some current works in solar sails, as a brief 

explanation about the used methodology was presented. After that, a static linear/nonlinear analysis 

was carried out to better understand the load envelope of the lattice structure for three different solar 

wind pressure configurations, Earth, Venus and Mercury orbits. Finally, we perform a dynamic 

simulation in order to show that the impact of the nonlinear assumption in the lightweight structure for 

this load condition is mainly related to the stability of the lattice structure, mainly because of the 

slenderness ratio of the truss members. 

The first part of the results presents the static simulation of the whole structure in three different 

configurations, an Earth, Venus and Mercury missions. In each one, the displacement and stress are 

plotted, and used as basis to the stability study of the frame. This was necessary, to prevent buckling 

of the truss members through the correct positioning of each MgAl rings. After ensuring that the 

structure configuration could resist the applied load condition, we performed the static and dynamic 

analysis. Additionally, a modal analysis of the four-swallow lattice structure was carried out and the 

first eight modes the structures are obtained, noticing that the first four modes correspond are vertical 

ones, and the four latter lateral.  

As shown in the dynamic analysis, the magnitude of the maximum displacement obtained from 

both simulations, linear and nonlinear one, are nearly identical. A future study will seek implement 

material nonlinearities and change the load envelope to a combination of attitude correction and solar 

sailing, seeking to observe if in this configuration the nonlinear assumption leads to noticeable 

differences. Furthermore, a thermal analysis could also be performed, to observe the thermal effects in 

the dynamic configuration of the structure. 
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